MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgr0vb Structured version   Visualization version   Unicode version

Theorem uhgr0vb 25967
Description: The null graph, with no vertices, is a hypergraph if and only if the edge function is empty. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 9-Oct-2020.)
Assertion
Ref Expression
uhgr0vb  |-  ( ( G  e.  W  /\  (Vtx `  G )  =  (/) )  ->  ( G  e. UHGraph 
<->  (iEdg `  G )  =  (/) ) )

Proof of Theorem uhgr0vb
StepHypRef Expression
1 eqid 2622 . . . 4  |-  (Vtx `  G )  =  (Vtx
`  G )
2 eqid 2622 . . . 4  |-  (iEdg `  G )  =  (iEdg `  G )
31, 2uhgrf 25957 . . 3  |-  ( G  e. UHGraph  ->  (iEdg `  G
) : dom  (iEdg `  G ) --> ( ~P (Vtx `  G )  \  { (/) } ) )
4 pweq 4161 . . . . . . . 8  |-  ( (Vtx
`  G )  =  (/)  ->  ~P (Vtx `  G )  =  ~P (/) )
54difeq1d 3727 . . . . . . 7  |-  ( (Vtx
`  G )  =  (/)  ->  ( ~P (Vtx `  G )  \  { (/)
} )  =  ( ~P (/)  \  { (/) } ) )
6 pw0 4343 . . . . . . . . 9  |-  ~P (/)  =  { (/)
}
76difeq1i 3724 . . . . . . . 8  |-  ( ~P (/)  \  { (/) } )  =  ( { (/) } 
\  { (/) } )
8 difid 3948 . . . . . . . 8  |-  ( {
(/) }  \  { (/) } )  =  (/)
97, 8eqtri 2644 . . . . . . 7  |-  ( ~P (/)  \  { (/) } )  =  (/)
105, 9syl6eq 2672 . . . . . 6  |-  ( (Vtx
`  G )  =  (/)  ->  ( ~P (Vtx `  G )  \  { (/)
} )  =  (/) )
1110adantl 482 . . . . 5  |-  ( ( G  e.  W  /\  (Vtx `  G )  =  (/) )  ->  ( ~P (Vtx `  G )  \  { (/) } )  =  (/) )
1211feq3d 6032 . . . 4  |-  ( ( G  e.  W  /\  (Vtx `  G )  =  (/) )  ->  ( (iEdg `  G ) : dom  (iEdg `  G ) --> ( ~P (Vtx `  G
)  \  { (/) } )  <-> 
(iEdg `  G ) : dom  (iEdg `  G
) --> (/) ) )
13 f00 6087 . . . . 5  |-  ( (iEdg `  G ) : dom  (iEdg `  G ) --> (/)  <->  (
(iEdg `  G )  =  (/)  /\  dom  (iEdg `  G )  =  (/) ) )
1413simplbi 476 . . . 4  |-  ( (iEdg `  G ) : dom  (iEdg `  G ) --> (/)  ->  (iEdg `  G )  =  (/) )
1512, 14syl6bi 243 . . 3  |-  ( ( G  e.  W  /\  (Vtx `  G )  =  (/) )  ->  ( (iEdg `  G ) : dom  (iEdg `  G ) --> ( ~P (Vtx `  G
)  \  { (/) } )  ->  (iEdg `  G
)  =  (/) ) )
163, 15syl5 34 . 2  |-  ( ( G  e.  W  /\  (Vtx `  G )  =  (/) )  ->  ( G  e. UHGraph  ->  (iEdg `  G
)  =  (/) ) )
17 simpl 473 . . . . 5  |-  ( ( G  e.  W  /\  (iEdg `  G )  =  (/) )  ->  G  e.  W )
18 simpr 477 . . . . 5  |-  ( ( G  e.  W  /\  (iEdg `  G )  =  (/) )  ->  (iEdg `  G )  =  (/) )
1917, 18uhgr0e 25966 . . . 4  |-  ( ( G  e.  W  /\  (iEdg `  G )  =  (/) )  ->  G  e. UHGraph  )
2019ex 450 . . 3  |-  ( G  e.  W  ->  (
(iEdg `  G )  =  (/)  ->  G  e. UHGraph  ) )
2120adantr 481 . 2  |-  ( ( G  e.  W  /\  (Vtx `  G )  =  (/) )  ->  ( (iEdg `  G )  =  (/)  ->  G  e. UHGraph  ) )
2216, 21impbid 202 1  |-  ( ( G  e.  W  /\  (Vtx `  G )  =  (/) )  ->  ( G  e. UHGraph 
<->  (iEdg `  G )  =  (/) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    \ cdif 3571   (/)c0 3915   ~Pcpw 4158   {csn 4177   dom cdm 5114   -->wf 5884   ` cfv 5888  Vtxcvtx 25874  iEdgciedg 25875   UHGraph cuhgr 25951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-uhgr 25953
This theorem is referenced by:  usgr0vb  26129  uhgr0v0e  26130  0uhgrsubgr  26171  finsumvtxdg2size  26446  0uhgrrusgr  26474  frgr0v  27125  frgruhgr0v  27127
  Copyright terms: Public domain W3C validator