Proof of Theorem uhgr2edg
| Step | Hyp | Ref
| Expression |
| 1 | | simp1l 1085 |
. . 3
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → 𝐺 ∈ UHGraph ) |
| 2 | | simp1r 1086 |
. . 3
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → 𝐴 ≠ 𝐵) |
| 3 | | simp23 1096 |
. . . 4
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → 𝑁 ∈ 𝑉) |
| 4 | | simp21 1094 |
. . . 4
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → 𝐴 ∈ 𝑉) |
| 5 | | 3simpc 1060 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) |
| 6 | 5 | 3ad2ant2 1083 |
. . . 4
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) |
| 7 | 3, 4, 6 | jca31 557 |
. . 3
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
| 8 | 1, 2, 7 | jca31 557 |
. 2
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)))) |
| 9 | | simp3 1063 |
. 2
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) |
| 10 | | usgrf1oedg.e |
. . . . . . . . 9
⊢ 𝐸 = (Edg‘𝐺) |
| 11 | 10 | a1i 11 |
. . . . . . . 8
⊢ (𝐺 ∈ UHGraph → 𝐸 = (Edg‘𝐺)) |
| 12 | | edgval 25941 |
. . . . . . . . 9
⊢
(Edg‘𝐺) = ran
(iEdg‘𝐺) |
| 13 | 12 | a1i 11 |
. . . . . . . 8
⊢ (𝐺 ∈ UHGraph →
(Edg‘𝐺) = ran
(iEdg‘𝐺)) |
| 14 | | usgrf1oedg.i |
. . . . . . . . . . 11
⊢ 𝐼 = (iEdg‘𝐺) |
| 15 | 14 | eqcomi 2631 |
. . . . . . . . . 10
⊢
(iEdg‘𝐺) =
𝐼 |
| 16 | 15 | a1i 11 |
. . . . . . . . 9
⊢ (𝐺 ∈ UHGraph →
(iEdg‘𝐺) = 𝐼) |
| 17 | 16 | rneqd 5353 |
. . . . . . . 8
⊢ (𝐺 ∈ UHGraph → ran
(iEdg‘𝐺) = ran 𝐼) |
| 18 | 11, 13, 17 | 3eqtrd 2660 |
. . . . . . 7
⊢ (𝐺 ∈ UHGraph → 𝐸 = ran 𝐼) |
| 19 | 18 | eleq2d 2687 |
. . . . . 6
⊢ (𝐺 ∈ UHGraph → ({𝑁, 𝐴} ∈ 𝐸 ↔ {𝑁, 𝐴} ∈ ran 𝐼)) |
| 20 | 18 | eleq2d 2687 |
. . . . . 6
⊢ (𝐺 ∈ UHGraph → ({𝐵, 𝑁} ∈ 𝐸 ↔ {𝐵, 𝑁} ∈ ran 𝐼)) |
| 21 | 19, 20 | anbi12d 747 |
. . . . 5
⊢ (𝐺 ∈ UHGraph → (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) ↔ ({𝑁, 𝐴} ∈ ran 𝐼 ∧ {𝐵, 𝑁} ∈ ran 𝐼))) |
| 22 | 14 | uhgrfun 25961 |
. . . . . . 7
⊢ (𝐺 ∈ UHGraph → Fun 𝐼) |
| 23 | | funfn 5918 |
. . . . . . 7
⊢ (Fun
𝐼 ↔ 𝐼 Fn dom 𝐼) |
| 24 | 22, 23 | sylib 208 |
. . . . . 6
⊢ (𝐺 ∈ UHGraph → 𝐼 Fn dom 𝐼) |
| 25 | | fvelrnb 6243 |
. . . . . . 7
⊢ (𝐼 Fn dom 𝐼 → ({𝑁, 𝐴} ∈ ran 𝐼 ↔ ∃𝑥 ∈ dom 𝐼(𝐼‘𝑥) = {𝑁, 𝐴})) |
| 26 | | fvelrnb 6243 |
. . . . . . 7
⊢ (𝐼 Fn dom 𝐼 → ({𝐵, 𝑁} ∈ ran 𝐼 ↔ ∃𝑦 ∈ dom 𝐼(𝐼‘𝑦) = {𝐵, 𝑁})) |
| 27 | 25, 26 | anbi12d 747 |
. . . . . 6
⊢ (𝐼 Fn dom 𝐼 → (({𝑁, 𝐴} ∈ ran 𝐼 ∧ {𝐵, 𝑁} ∈ ran 𝐼) ↔ (∃𝑥 ∈ dom 𝐼(𝐼‘𝑥) = {𝑁, 𝐴} ∧ ∃𝑦 ∈ dom 𝐼(𝐼‘𝑦) = {𝐵, 𝑁}))) |
| 28 | 24, 27 | syl 17 |
. . . . 5
⊢ (𝐺 ∈ UHGraph → (({𝑁, 𝐴} ∈ ran 𝐼 ∧ {𝐵, 𝑁} ∈ ran 𝐼) ↔ (∃𝑥 ∈ dom 𝐼(𝐼‘𝑥) = {𝑁, 𝐴} ∧ ∃𝑦 ∈ dom 𝐼(𝐼‘𝑦) = {𝐵, 𝑁}))) |
| 29 | 21, 28 | bitrd 268 |
. . . 4
⊢ (𝐺 ∈ UHGraph → (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) ↔ (∃𝑥 ∈ dom 𝐼(𝐼‘𝑥) = {𝑁, 𝐴} ∧ ∃𝑦 ∈ dom 𝐼(𝐼‘𝑦) = {𝐵, 𝑁}))) |
| 30 | 29 | ad2antrr 762 |
. . 3
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) ↔ (∃𝑥 ∈ dom 𝐼(𝐼‘𝑥) = {𝑁, 𝐴} ∧ ∃𝑦 ∈ dom 𝐼(𝐼‘𝑦) = {𝐵, 𝑁}))) |
| 31 | | reeanv 3107 |
. . . 4
⊢
(∃𝑥 ∈ dom
𝐼∃𝑦 ∈ dom 𝐼((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}) ↔ (∃𝑥 ∈ dom 𝐼(𝐼‘𝑥) = {𝑁, 𝐴} ∧ ∃𝑦 ∈ dom 𝐼(𝐼‘𝑦) = {𝐵, 𝑁})) |
| 32 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → (𝐼‘𝑥) = (𝐼‘𝑦)) |
| 33 | 32 | eqeq1d 2624 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → ((𝐼‘𝑥) = {𝑁, 𝐴} ↔ (𝐼‘𝑦) = {𝑁, 𝐴})) |
| 34 | 33 | anbi1d 741 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}) ↔ ((𝐼‘𝑦) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}))) |
| 35 | | eqtr2 2642 |
. . . . . . . . . . . . 13
⊢ (((𝐼‘𝑦) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}) → {𝑁, 𝐴} = {𝐵, 𝑁}) |
| 36 | | prcom 4267 |
. . . . . . . . . . . . . . 15
⊢ {𝐵, 𝑁} = {𝑁, 𝐵} |
| 37 | 36 | eqeq2i 2634 |
. . . . . . . . . . . . . 14
⊢ ({𝑁, 𝐴} = {𝐵, 𝑁} ↔ {𝑁, 𝐴} = {𝑁, 𝐵}) |
| 38 | | preq12bg 4386 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝑁 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → ({𝑁, 𝐴} = {𝑁, 𝐵} ↔ ((𝑁 = 𝑁 ∧ 𝐴 = 𝐵) ∨ (𝑁 = 𝐵 ∧ 𝐴 = 𝑁)))) |
| 39 | 38 | ancom2s 844 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) → ({𝑁, 𝐴} = {𝑁, 𝐵} ↔ ((𝑁 = 𝑁 ∧ 𝐴 = 𝐵) ∨ (𝑁 = 𝐵 ∧ 𝐴 = 𝑁)))) |
| 40 | | eqneqall 2805 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐵 → 𝑥 ≠ 𝑦)) |
| 41 | 40 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 = 𝑁 ∧ 𝐴 = 𝐵) → (𝐴 ≠ 𝐵 → 𝑥 ≠ 𝑦)) |
| 42 | | eqtr 2641 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 = 𝑁 ∧ 𝑁 = 𝐵) → 𝐴 = 𝐵) |
| 43 | 42 | ancoms 469 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 = 𝐵 ∧ 𝐴 = 𝑁) → 𝐴 = 𝐵) |
| 44 | 43, 40 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 = 𝐵 ∧ 𝐴 = 𝑁) → (𝐴 ≠ 𝐵 → 𝑥 ≠ 𝑦)) |
| 45 | 41, 44 | jaoi 394 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 = 𝑁 ∧ 𝐴 = 𝐵) ∨ (𝑁 = 𝐵 ∧ 𝐴 = 𝑁)) → (𝐴 ≠ 𝐵 → 𝑥 ≠ 𝑦)) |
| 46 | 45 | adantld 483 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 = 𝑁 ∧ 𝐴 = 𝐵) ∨ (𝑁 = 𝐵 ∧ 𝐴 = 𝑁)) → ((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) → 𝑥 ≠ 𝑦)) |
| 47 | 39, 46 | syl6bi 243 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) → ({𝑁, 𝐴} = {𝑁, 𝐵} → ((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) → 𝑥 ≠ 𝑦))) |
| 48 | 47 | com3l 89 |
. . . . . . . . . . . . . . 15
⊢ ({𝑁, 𝐴} = {𝑁, 𝐵} → ((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) → (((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) → 𝑥 ≠ 𝑦))) |
| 49 | 48 | impd 447 |
. . . . . . . . . . . . . 14
⊢ ({𝑁, 𝐴} = {𝑁, 𝐵} → (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → 𝑥 ≠ 𝑦)) |
| 50 | 37, 49 | sylbi 207 |
. . . . . . . . . . . . 13
⊢ ({𝑁, 𝐴} = {𝐵, 𝑁} → (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → 𝑥 ≠ 𝑦)) |
| 51 | 35, 50 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐼‘𝑦) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}) → (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → 𝑥 ≠ 𝑦)) |
| 52 | 34, 51 | syl6bi 243 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}) → (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → 𝑥 ≠ 𝑦))) |
| 53 | 52 | com23 86 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → (((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}) → 𝑥 ≠ 𝑦))) |
| 54 | 53 | impd 447 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) ∧ ((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁})) → 𝑥 ≠ 𝑦)) |
| 55 | | ax-1 6 |
. . . . . . . . 9
⊢ (𝑥 ≠ 𝑦 → ((((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) ∧ ((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁})) → 𝑥 ≠ 𝑦)) |
| 56 | 54, 55 | pm2.61ine 2877 |
. . . . . . . 8
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) ∧ ((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁})) → 𝑥 ≠ 𝑦) |
| 57 | | prid1g 4295 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ 𝑉 → 𝑁 ∈ {𝑁, 𝐴}) |
| 58 | 57 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) → 𝑁 ∈ {𝑁, 𝐴}) |
| 59 | 58 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → 𝑁 ∈ {𝑁, 𝐴}) |
| 60 | | eleq2 2690 |
. . . . . . . . . . 11
⊢ ((𝐼‘𝑥) = {𝑁, 𝐴} → (𝑁 ∈ (𝐼‘𝑥) ↔ 𝑁 ∈ {𝑁, 𝐴})) |
| 61 | 59, 60 | syl5ibr 236 |
. . . . . . . . . 10
⊢ ((𝐼‘𝑥) = {𝑁, 𝐴} → (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → 𝑁 ∈ (𝐼‘𝑥))) |
| 62 | 61 | adantr 481 |
. . . . . . . . 9
⊢ (((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}) → (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → 𝑁 ∈ (𝐼‘𝑥))) |
| 63 | 62 | impcom 446 |
. . . . . . . 8
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) ∧ ((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁})) → 𝑁 ∈ (𝐼‘𝑥)) |
| 64 | | prid2g 4296 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ 𝑉 → 𝑁 ∈ {𝐵, 𝑁}) |
| 65 | 64 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) → 𝑁 ∈ {𝐵, 𝑁}) |
| 66 | 65 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → 𝑁 ∈ {𝐵, 𝑁}) |
| 67 | | eleq2 2690 |
. . . . . . . . . . 11
⊢ ((𝐼‘𝑦) = {𝐵, 𝑁} → (𝑁 ∈ (𝐼‘𝑦) ↔ 𝑁 ∈ {𝐵, 𝑁})) |
| 68 | 66, 67 | syl5ibr 236 |
. . . . . . . . . 10
⊢ ((𝐼‘𝑦) = {𝐵, 𝑁} → (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → 𝑁 ∈ (𝐼‘𝑦))) |
| 69 | 68 | adantl 482 |
. . . . . . . . 9
⊢ (((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}) → (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → 𝑁 ∈ (𝐼‘𝑦))) |
| 70 | 69 | impcom 446 |
. . . . . . . 8
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) ∧ ((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁})) → 𝑁 ∈ (𝐼‘𝑦)) |
| 71 | 56, 63, 70 | 3jca 1242 |
. . . . . . 7
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) ∧ ((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁})) → (𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦))) |
| 72 | 71 | ex 450 |
. . . . . 6
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → (((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}) → (𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)))) |
| 73 | 72 | reximdv 3016 |
. . . . 5
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → (∃𝑦 ∈ dom 𝐼((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}) → ∃𝑦 ∈ dom 𝐼(𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)))) |
| 74 | 73 | reximdv 3016 |
. . . 4
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → (∃𝑥 ∈ dom 𝐼∃𝑦 ∈ dom 𝐼((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}) → ∃𝑥 ∈ dom 𝐼∃𝑦 ∈ dom 𝐼(𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)))) |
| 75 | 31, 74 | syl5bir 233 |
. . 3
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → ((∃𝑥 ∈ dom 𝐼(𝐼‘𝑥) = {𝑁, 𝐴} ∧ ∃𝑦 ∈ dom 𝐼(𝐼‘𝑦) = {𝐵, 𝑁}) → ∃𝑥 ∈ dom 𝐼∃𝑦 ∈ dom 𝐼(𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)))) |
| 76 | 30, 75 | sylbid 230 |
. 2
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) → ∃𝑥 ∈ dom 𝐼∃𝑦 ∈ dom 𝐼(𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)))) |
| 77 | 8, 9, 76 | sylc 65 |
1
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥 ∈ dom 𝐼∃𝑦 ∈ dom 𝐼(𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦))) |