MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgr2edg Structured version   Visualization version   GIF version

Theorem uhgr2edg 26100
Description: If a vertex is adjacent to two different vertices in a hypergraph, there are more than one edges starting at this vertex. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 11-Feb-2021.)
Hypotheses
Ref Expression
usgrf1oedg.i 𝐼 = (iEdg‘𝐺)
usgrf1oedg.e 𝐸 = (Edg‘𝐺)
uhgr2edg.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
uhgr2edg (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ (𝐴𝑉𝐵𝑉𝑁𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼(𝑥𝑦𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑦,𝐺   𝑥,𝐼,𝑦   𝑥,𝑁,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐸(𝑥,𝑦)

Proof of Theorem uhgr2edg
StepHypRef Expression
1 simp1l 1085 . . 3 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ (𝐴𝑉𝐵𝑉𝑁𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → 𝐺 ∈ UHGraph )
2 simp1r 1086 . . 3 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ (𝐴𝑉𝐵𝑉𝑁𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → 𝐴𝐵)
3 simp23 1096 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ (𝐴𝑉𝐵𝑉𝑁𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → 𝑁𝑉)
4 simp21 1094 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ (𝐴𝑉𝐵𝑉𝑁𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → 𝐴𝑉)
5 3simpc 1060 . . . . 5 ((𝐴𝑉𝐵𝑉𝑁𝑉) → (𝐵𝑉𝑁𝑉))
653ad2ant2 1083 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ (𝐴𝑉𝐵𝑉𝑁𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → (𝐵𝑉𝑁𝑉))
73, 4, 6jca31 557 . . 3 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ (𝐴𝑉𝐵𝑉𝑁𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉)))
81, 2, 7jca31 557 . 2 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ (𝐴𝑉𝐵𝑉𝑁𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))))
9 simp3 1063 . 2 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ (𝐴𝑉𝐵𝑉𝑁𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸))
10 usgrf1oedg.e . . . . . . . . 9 𝐸 = (Edg‘𝐺)
1110a1i 11 . . . . . . . 8 (𝐺 ∈ UHGraph → 𝐸 = (Edg‘𝐺))
12 edgval 25941 . . . . . . . . 9 (Edg‘𝐺) = ran (iEdg‘𝐺)
1312a1i 11 . . . . . . . 8 (𝐺 ∈ UHGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
14 usgrf1oedg.i . . . . . . . . . . 11 𝐼 = (iEdg‘𝐺)
1514eqcomi 2631 . . . . . . . . . 10 (iEdg‘𝐺) = 𝐼
1615a1i 11 . . . . . . . . 9 (𝐺 ∈ UHGraph → (iEdg‘𝐺) = 𝐼)
1716rneqd 5353 . . . . . . . 8 (𝐺 ∈ UHGraph → ran (iEdg‘𝐺) = ran 𝐼)
1811, 13, 173eqtrd 2660 . . . . . . 7 (𝐺 ∈ UHGraph → 𝐸 = ran 𝐼)
1918eleq2d 2687 . . . . . 6 (𝐺 ∈ UHGraph → ({𝑁, 𝐴} ∈ 𝐸 ↔ {𝑁, 𝐴} ∈ ran 𝐼))
2018eleq2d 2687 . . . . . 6 (𝐺 ∈ UHGraph → ({𝐵, 𝑁} ∈ 𝐸 ↔ {𝐵, 𝑁} ∈ ran 𝐼))
2119, 20anbi12d 747 . . . . 5 (𝐺 ∈ UHGraph → (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) ↔ ({𝑁, 𝐴} ∈ ran 𝐼 ∧ {𝐵, 𝑁} ∈ ran 𝐼)))
2214uhgrfun 25961 . . . . . . 7 (𝐺 ∈ UHGraph → Fun 𝐼)
23 funfn 5918 . . . . . . 7 (Fun 𝐼𝐼 Fn dom 𝐼)
2422, 23sylib 208 . . . . . 6 (𝐺 ∈ UHGraph → 𝐼 Fn dom 𝐼)
25 fvelrnb 6243 . . . . . . 7 (𝐼 Fn dom 𝐼 → ({𝑁, 𝐴} ∈ ran 𝐼 ↔ ∃𝑥 ∈ dom 𝐼(𝐼𝑥) = {𝑁, 𝐴}))
26 fvelrnb 6243 . . . . . . 7 (𝐼 Fn dom 𝐼 → ({𝐵, 𝑁} ∈ ran 𝐼 ↔ ∃𝑦 ∈ dom 𝐼(𝐼𝑦) = {𝐵, 𝑁}))
2725, 26anbi12d 747 . . . . . 6 (𝐼 Fn dom 𝐼 → (({𝑁, 𝐴} ∈ ran 𝐼 ∧ {𝐵, 𝑁} ∈ ran 𝐼) ↔ (∃𝑥 ∈ dom 𝐼(𝐼𝑥) = {𝑁, 𝐴} ∧ ∃𝑦 ∈ dom 𝐼(𝐼𝑦) = {𝐵, 𝑁})))
2824, 27syl 17 . . . . 5 (𝐺 ∈ UHGraph → (({𝑁, 𝐴} ∈ ran 𝐼 ∧ {𝐵, 𝑁} ∈ ran 𝐼) ↔ (∃𝑥 ∈ dom 𝐼(𝐼𝑥) = {𝑁, 𝐴} ∧ ∃𝑦 ∈ dom 𝐼(𝐼𝑦) = {𝐵, 𝑁})))
2921, 28bitrd 268 . . . 4 (𝐺 ∈ UHGraph → (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) ↔ (∃𝑥 ∈ dom 𝐼(𝐼𝑥) = {𝑁, 𝐴} ∧ ∃𝑦 ∈ dom 𝐼(𝐼𝑦) = {𝐵, 𝑁})))
3029ad2antrr 762 . . 3 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) ↔ (∃𝑥 ∈ dom 𝐼(𝐼𝑥) = {𝑁, 𝐴} ∧ ∃𝑦 ∈ dom 𝐼(𝐼𝑦) = {𝐵, 𝑁})))
31 reeanv 3107 . . . 4 (∃𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝐼𝑥) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁}) ↔ (∃𝑥 ∈ dom 𝐼(𝐼𝑥) = {𝑁, 𝐴} ∧ ∃𝑦 ∈ dom 𝐼(𝐼𝑦) = {𝐵, 𝑁}))
32 fveq2 6191 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝐼𝑥) = (𝐼𝑦))
3332eqeq1d 2624 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝐼𝑥) = {𝑁, 𝐴} ↔ (𝐼𝑦) = {𝑁, 𝐴}))
3433anbi1d 741 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((𝐼𝑥) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁}) ↔ ((𝐼𝑦) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁})))
35 eqtr2 2642 . . . . . . . . . . . . 13 (((𝐼𝑦) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁}) → {𝑁, 𝐴} = {𝐵, 𝑁})
36 prcom 4267 . . . . . . . . . . . . . . 15 {𝐵, 𝑁} = {𝑁, 𝐵}
3736eqeq2i 2634 . . . . . . . . . . . . . 14 ({𝑁, 𝐴} = {𝐵, 𝑁} ↔ {𝑁, 𝐴} = {𝑁, 𝐵})
38 preq12bg 4386 . . . . . . . . . . . . . . . . . 18 (((𝑁𝑉𝐴𝑉) ∧ (𝑁𝑉𝐵𝑉)) → ({𝑁, 𝐴} = {𝑁, 𝐵} ↔ ((𝑁 = 𝑁𝐴 = 𝐵) ∨ (𝑁 = 𝐵𝐴 = 𝑁))))
3938ancom2s 844 . . . . . . . . . . . . . . . . 17 (((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉)) → ({𝑁, 𝐴} = {𝑁, 𝐵} ↔ ((𝑁 = 𝑁𝐴 = 𝐵) ∨ (𝑁 = 𝐵𝐴 = 𝑁))))
40 eqneqall 2805 . . . . . . . . . . . . . . . . . . . 20 (𝐴 = 𝐵 → (𝐴𝐵𝑥𝑦))
4140adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑁 = 𝑁𝐴 = 𝐵) → (𝐴𝐵𝑥𝑦))
42 eqtr 2641 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 = 𝑁𝑁 = 𝐵) → 𝐴 = 𝐵)
4342ancoms 469 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 = 𝐵𝐴 = 𝑁) → 𝐴 = 𝐵)
4443, 40syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑁 = 𝐵𝐴 = 𝑁) → (𝐴𝐵𝑥𝑦))
4541, 44jaoi 394 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 𝑁𝐴 = 𝐵) ∨ (𝑁 = 𝐵𝐴 = 𝑁)) → (𝐴𝐵𝑥𝑦))
4645adantld 483 . . . . . . . . . . . . . . . . 17 (((𝑁 = 𝑁𝐴 = 𝐵) ∨ (𝑁 = 𝐵𝐴 = 𝑁)) → ((𝐺 ∈ UHGraph ∧ 𝐴𝐵) → 𝑥𝑦))
4739, 46syl6bi 243 . . . . . . . . . . . . . . . 16 (((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉)) → ({𝑁, 𝐴} = {𝑁, 𝐵} → ((𝐺 ∈ UHGraph ∧ 𝐴𝐵) → 𝑥𝑦)))
4847com3l 89 . . . . . . . . . . . . . . 15 ({𝑁, 𝐴} = {𝑁, 𝐵} → ((𝐺 ∈ UHGraph ∧ 𝐴𝐵) → (((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉)) → 𝑥𝑦)))
4948impd 447 . . . . . . . . . . . . . 14 ({𝑁, 𝐴} = {𝑁, 𝐵} → (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → 𝑥𝑦))
5037, 49sylbi 207 . . . . . . . . . . . . 13 ({𝑁, 𝐴} = {𝐵, 𝑁} → (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → 𝑥𝑦))
5135, 50syl 17 . . . . . . . . . . . 12 (((𝐼𝑦) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁}) → (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → 𝑥𝑦))
5234, 51syl6bi 243 . . . . . . . . . . 11 (𝑥 = 𝑦 → (((𝐼𝑥) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁}) → (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → 𝑥𝑦)))
5352com23 86 . . . . . . . . . 10 (𝑥 = 𝑦 → (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → (((𝐼𝑥) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁}) → 𝑥𝑦)))
5453impd 447 . . . . . . . . 9 (𝑥 = 𝑦 → ((((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) ∧ ((𝐼𝑥) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁})) → 𝑥𝑦))
55 ax-1 6 . . . . . . . . 9 (𝑥𝑦 → ((((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) ∧ ((𝐼𝑥) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁})) → 𝑥𝑦))
5654, 55pm2.61ine 2877 . . . . . . . 8 ((((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) ∧ ((𝐼𝑥) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁})) → 𝑥𝑦)
57 prid1g 4295 . . . . . . . . . . . . 13 (𝑁𝑉𝑁 ∈ {𝑁, 𝐴})
5857ad2antrr 762 . . . . . . . . . . . 12 (((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉)) → 𝑁 ∈ {𝑁, 𝐴})
5958adantl 482 . . . . . . . . . . 11 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → 𝑁 ∈ {𝑁, 𝐴})
60 eleq2 2690 . . . . . . . . . . 11 ((𝐼𝑥) = {𝑁, 𝐴} → (𝑁 ∈ (𝐼𝑥) ↔ 𝑁 ∈ {𝑁, 𝐴}))
6159, 60syl5ibr 236 . . . . . . . . . 10 ((𝐼𝑥) = {𝑁, 𝐴} → (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → 𝑁 ∈ (𝐼𝑥)))
6261adantr 481 . . . . . . . . 9 (((𝐼𝑥) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁}) → (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → 𝑁 ∈ (𝐼𝑥)))
6362impcom 446 . . . . . . . 8 ((((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) ∧ ((𝐼𝑥) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁})) → 𝑁 ∈ (𝐼𝑥))
64 prid2g 4296 . . . . . . . . . . . . 13 (𝑁𝑉𝑁 ∈ {𝐵, 𝑁})
6564ad2antrr 762 . . . . . . . . . . . 12 (((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉)) → 𝑁 ∈ {𝐵, 𝑁})
6665adantl 482 . . . . . . . . . . 11 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → 𝑁 ∈ {𝐵, 𝑁})
67 eleq2 2690 . . . . . . . . . . 11 ((𝐼𝑦) = {𝐵, 𝑁} → (𝑁 ∈ (𝐼𝑦) ↔ 𝑁 ∈ {𝐵, 𝑁}))
6866, 67syl5ibr 236 . . . . . . . . . 10 ((𝐼𝑦) = {𝐵, 𝑁} → (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → 𝑁 ∈ (𝐼𝑦)))
6968adantl 482 . . . . . . . . 9 (((𝐼𝑥) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁}) → (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → 𝑁 ∈ (𝐼𝑦)))
7069impcom 446 . . . . . . . 8 ((((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) ∧ ((𝐼𝑥) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁})) → 𝑁 ∈ (𝐼𝑦))
7156, 63, 703jca 1242 . . . . . . 7 ((((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) ∧ ((𝐼𝑥) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁})) → (𝑥𝑦𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)))
7271ex 450 . . . . . 6 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → (((𝐼𝑥) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁}) → (𝑥𝑦𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦))))
7372reximdv 3016 . . . . 5 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → (∃𝑦 ∈ dom 𝐼((𝐼𝑥) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁}) → ∃𝑦 ∈ dom 𝐼(𝑥𝑦𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦))))
7473reximdv 3016 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → (∃𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝐼𝑥) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁}) → ∃𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼(𝑥𝑦𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦))))
7531, 74syl5bir 233 . . 3 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → ((∃𝑥 ∈ dom 𝐼(𝐼𝑥) = {𝑁, 𝐴} ∧ ∃𝑦 ∈ dom 𝐼(𝐼𝑦) = {𝐵, 𝑁}) → ∃𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼(𝑥𝑦𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦))))
7630, 75sylbid 230 . 2 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) → ∃𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼(𝑥𝑦𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦))))
778, 9, 76sylc 65 1 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ (𝐴𝑉𝐵𝑉𝑁𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼(𝑥𝑦𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913  {cpr 4179  dom cdm 5114  ran crn 5115  Fun wfun 5882   Fn wfn 5883  cfv 5888  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UHGraph cuhgr 25951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-edg 25940  df-uhgr 25953
This theorem is referenced by:  umgr2edg  26101
  Copyright terms: Public domain W3C validator