![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvelrnb | Structured version Visualization version GIF version |
Description: A member of a function's range is a value of the function. (Contributed by NM, 31-Oct-1995.) |
Ref | Expression |
---|---|
fvelrnb | ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrnfv 6242 | . . 3 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) | |
2 | 1 | eleq2d 2687 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ 𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)})) |
3 | fvex 6201 | . . . . 5 ⊢ (𝐹‘𝑥) ∈ V | |
4 | eleq1 2689 | . . . . 5 ⊢ ((𝐹‘𝑥) = 𝐵 → ((𝐹‘𝑥) ∈ V ↔ 𝐵 ∈ V)) | |
5 | 3, 4 | mpbii 223 | . . . 4 ⊢ ((𝐹‘𝑥) = 𝐵 → 𝐵 ∈ V) |
6 | 5 | rexlimivw 3029 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵 → 𝐵 ∈ V) |
7 | eqeq1 2626 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 = (𝐹‘𝑥) ↔ 𝐵 = (𝐹‘𝑥))) | |
8 | eqcom 2629 | . . . . 5 ⊢ (𝐵 = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = 𝐵) | |
9 | 7, 8 | syl6bb 276 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑦 = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = 𝐵)) |
10 | 9 | rexbidv 3052 | . . 3 ⊢ (𝑦 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) |
11 | 6, 10 | elab3 3358 | . 2 ⊢ (𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵) |
12 | 2, 11 | syl6bb 276 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∈ wcel 1990 {cab 2608 ∃wrex 2913 Vcvv 3200 ran crn 5115 Fn wfn 5883 ‘cfv 5888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 |
This theorem is referenced by: foelrni 6244 chfnrn 6328 rexrn 6361 ralrn 6362 elrnrexdmb 6364 ffnfv 6388 elunirn 6509 isoini 6588 canth 6608 reldm 7219 seqomlem2 7546 fipreima 8272 ordiso2 8420 inf0 8518 inf3lem6 8530 noinfep 8557 cantnflem4 8589 infenaleph 8914 isinfcard 8915 dfac5 8951 ackbij1 9060 sornom 9099 fin23lem16 9157 fin23lem21 9161 isf32lem2 9176 fin1a2lem5 9226 itunitc 9243 axdc3lem2 9273 zorn2lem4 9321 cfpwsdom 9406 peano2nn 11032 uzn0 11703 om2uzrani 12751 uzrdgfni 12757 uzin2 14084 unbenlem 15612 vdwlem6 15690 0ram 15724 imasmnd2 17327 imasgrp2 17530 pmtrfrn 17878 pgpssslw 18029 efgsfo 18152 efgrelexlemb 18163 gexex 18256 imasring 18619 mpfind 19536 mpfpf1 19715 pf1mpf 19716 lindfrn 20160 2ndcomap 21261 kgenidm 21350 kqreglem1 21544 zfbas 21700 rnelfmlem 21756 rnelfm 21757 fmfnfmlem2 21759 ovolctb 23258 ovolicc2 23290 mbfinf 23432 dvivth 23773 dvne0 23774 aannenlem3 24085 reeff1o 24201 uhgr2edg 26100 ushgredgedg 26121 ushgredgedgloop 26123 2pthon3v 26839 rnbra 28966 cnvbraval 28969 pjssdif1i 29034 dfpjop 29041 elpjrn 29049 foresf1o 29343 fsumiunle 29575 esumfsup 30132 esumiun 30156 msrid 31442 tailfb 32372 indexdom 33529 cdleme50rnlem 35832 diaelrnN 36334 diaintclN 36347 cdlemm10N 36407 dibintclN 36456 dihglb2 36631 dihintcl 36633 lcfrlem9 36839 mapd1o 36937 hdmaprnlem11N 37152 hgmaprnlem4N 37191 nacsfix 37275 fvelrnbf 39177 cncmpmax 39191 climinf2lem 39938 stoweidlem27 40244 stoweidlem31 40248 stoweidlem48 40265 stoweidlem59 40276 stirlinglem13 40303 fourierdlem12 40336 fourierdlem41 40365 fourierdlem42 40366 fourierdlem46 40369 fourierdlem48 40371 fourierdlem49 40372 fourierdlem70 40393 fourierdlem71 40394 fourierdlem74 40397 fourierdlem75 40398 fourierdlem102 40425 fourierdlem103 40426 fourierdlem104 40427 fourierdlem114 40437 sge0tsms 40597 sge0sup 40608 sge0le 40624 sge0isum 40644 sge0seq 40663 nnfoctbdjlem 40672 meadjiunlem 40682 iccpartrn 41366 iccpartnel 41374 fmtnorn 41446 |
Copyright terms: Public domain | W3C validator |