Proof of Theorem uhgr2edg
Step | Hyp | Ref
| Expression |
1 | | simp1l 1085 |
. . 3
   UHGraph  
    
  
 
UHGraph  |
2 | | simp1r 1086 |
. . 3
   UHGraph  
    
  
 
  |
3 | | simp23 1096 |
. . . 4
   UHGraph  
    
  
 
  |
4 | | simp21 1094 |
. . . 4
   UHGraph  
    
  
 
  |
5 | | 3simpc 1060 |
. . . . 5
 
 
   |
6 | 5 | 3ad2ant2 1083 |
. . . 4
   UHGraph  
    
  
 

   |
7 | 3, 4, 6 | jca31 557 |
. . 3
   UHGraph  
    
  
 
 
 
    |
8 | 1, 2, 7 | jca31 557 |
. 2
   UHGraph  
    
  
 
 
UHGraph   


     |
9 | | simp3 1063 |
. 2
   UHGraph  
    
  
 
  

      |
10 | | usgrf1oedg.e |
. . . . . . . . 9
Edg   |
11 | 10 | a1i 11 |
. . . . . . . 8
 UHGraph Edg    |
12 | | edgval 25941 |
. . . . . . . . 9
Edg  iEdg   |
13 | 12 | a1i 11 |
. . . . . . . 8
 UHGraph Edg  iEdg    |
14 | | usgrf1oedg.i |
. . . . . . . . . . 11
iEdg   |
15 | 14 | eqcomi 2631 |
. . . . . . . . . 10
iEdg   |
16 | 15 | a1i 11 |
. . . . . . . . 9
 UHGraph iEdg    |
17 | 16 | rneqd 5353 |
. . . . . . . 8
 UHGraph
iEdg    |
18 | 11, 13, 17 | 3eqtrd 2660 |
. . . . . . 7
 UHGraph   |
19 | 18 | eleq2d 2687 |
. . . . . 6
 UHGraph           |
20 | 18 | eleq2d 2687 |
. . . . . 6
 UHGraph           |
21 | 19, 20 | anbi12d 747 |
. . . . 5
 UHGraph     
          
    |
22 | 14 | uhgrfun 25961 |
. . . . . . 7
 UHGraph
  |
23 | | funfn 5918 |
. . . . . . 7

  |
24 | 22, 23 | sylib 208 |
. . . . . 6
 UHGraph   |
25 | | fvelrnb 6243 |
. . . . . . 7
    
       
    |
26 | | fvelrnb 6243 |
. . . . . . 7
    
       
    |
27 | 25, 26 | anbi12d 747 |
. . . . . 6
        

 
       
             |
28 | 24, 27 | syl 17 |
. . . . 5
 UHGraph       
 
 
       
             |
29 | 21, 28 | bitrd 268 |
. . . 4
 UHGraph     
                           |
30 | 29 | ad2antrr 762 |
. . 3
   UHGraph   


       
                           |
31 | | reeanv 3107 |
. . . 4
   
              
                        |
32 | | fveq2 6191 |
. . . . . . . . . . . . . 14
           |
33 | 32 | eqeq1d 2624 |
. . . . . . . . . . . . 13
        
     
    |
34 | 33 | anbi1d 741 |
. . . . . . . . . . . 12
        
        
             
     |
35 | | eqtr2 2642 |
. . . . . . . . . . . . 13
                     
   |
36 | | prcom 4267 |
. . . . . . . . . . . . . . 15
    
  |
37 | 36 | eqeq2i 2634 |
. . . . . . . . . . . . . 14
         
     |
38 | | preq12bg 4386 |
. . . . . . . . . . . . . . . . . 18
  


     
 
          |
39 | 38 | ancom2s 844 |
. . . . . . . . . . . . . . . . 17
  


     
 
          |
40 | | eqneqall 2805 |
. . . . . . . . . . . . . . . . . . . 20
     |
41 | 40 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
 
     |
42 | | eqtr 2641 |
. . . . . . . . . . . . . . . . . . . . 21
 
   |
43 | 42 | ancoms 469 |
. . . . . . . . . . . . . . . . . . . 20
 
   |
44 | 43, 40 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
 
     |
45 | 41, 44 | jaoi 394 |
. . . . . . . . . . . . . . . . . 18
           |
46 | 45 | adantld 483 |
. . . . . . . . . . . . . . . . 17
         UHGraph

   |
47 | 39, 46 | syl6bi 243 |
. . . . . . . . . . . . . . . 16
  


     
 
   UHGraph

    |
48 | 47 | com3l 89 |
. . . . . . . . . . . . . . 15
         UHGraph 
  


      |
49 | 48 | impd 447 |
. . . . . . . . . . . . . 14
          UHGraph
  


      |
50 | 37, 49 | sylbi 207 |
. . . . . . . . . . . . 13
          UHGraph
  


      |
51 | 35, 50 | syl 17 |
. . . . . . . . . . . 12
                    UHGraph

 
 
      |
52 | 34, 51 | syl6bi 243 |
. . . . . . . . . . 11
        
            UHGraph 
 
 
       |
53 | 52 | com23 86 |
. . . . . . . . . 10
    UHGraph

 
 
                 
 
    |
54 | 53 | impd 447 |
. . . . . . . . 9
     UHGraph 
 
 
         
             |
55 | | ax-1 6 |
. . . . . . . . 9
     UHGraph 
 
 
         
             |
56 | 54, 55 | pm2.61ine 2877 |
. . . . . . . 8
    UHGraph

 
 
         
            |
57 | | prid1g 4295 |
. . . . . . . . . . . . 13
      |
58 | 57 | ad2antrr 762 |
. . . . . . . . . . . 12
  


 
     |
59 | 58 | adantl 482 |
. . . . . . . . . . 11
   UHGraph   


    
   |
60 | | eleq2 2690 |
. . . . . . . . . . 11
       
    
      |
61 | 59, 60 | syl5ibr 236 |
. . . . . . . . . 10
       
   UHGraph   


          |
62 | 61 | adantr 481 |
. . . . . . . . 9
                    UHGraph

 
 
  
       |
63 | 62 | impcom 446 |
. . . . . . . 8
    UHGraph

 
 
         
                |
64 | | prid2g 4296 |
. . . . . . . . . . . . 13
      |
65 | 64 | ad2antrr 762 |
. . . . . . . . . . . 12
  


 
     |
66 | 65 | adantl 482 |
. . . . . . . . . . 11
   UHGraph   


    
   |
67 | | eleq2 2690 |
. . . . . . . . . . 11
       
    
      |
68 | 66, 67 | syl5ibr 236 |
. . . . . . . . . 10
       
   UHGraph   


          |
69 | 68 | adantl 482 |
. . . . . . . . 9
                    UHGraph

 
 
  
       |
70 | 69 | impcom 446 |
. . . . . . . 8
    UHGraph

 
 
         
                |
71 | 56, 63, 70 | 3jca 1242 |
. . . . . . 7
    UHGraph

 
 
         
              
       |
72 | 71 | ex 450 |
. . . . . 6
   UHGraph   


           
        
            |
73 | 72 | reximdv 3016 |
. . . . 5
   UHGraph   


             
              
        |
74 | 73 | reximdv 3016 |
. . . 4
   UHGraph   


               
                
        |
75 | 31, 74 | syl5bir 233 |
. . 3
   UHGraph   


              
                 
        |
76 | 30, 75 | sylbid 230 |
. 2
   UHGraph   


       
   
        
        |
77 | 8, 9, 76 | sylc 65 |
1
   UHGraph  
    
  
 
        
       |