![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgrspansubgr | Structured version Visualization version GIF version |
Description: A spanning subgraph 𝑆 of a hypergraph 𝐺 is actually a subgraph of 𝐺. A subgraph 𝑆 of a graph 𝐺 which has the same vertices as 𝐺 and is obtained by removing some edges of 𝐺 is called a spanning subgraph (see section I.1 in [Bollobas] p. 2 and section 1.1 in [Diestel] p. 4). Formally, the edges are "removed" by restricting the edge function of the original graph by an arbitrary class (which actually needs not to be a subset of the domain of the edge function). (Contributed by AV, 18-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.) |
Ref | Expression |
---|---|
uhgrspan.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgrspan.e | ⊢ 𝐸 = (iEdg‘𝐺) |
uhgrspan.s | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
uhgrspan.q | ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
uhgrspan.r | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐸 ↾ 𝐴)) |
uhgrspan.g | ⊢ (𝜑 → 𝐺 ∈ UHGraph ) |
Ref | Expression |
---|---|
uhgrspansubgr | ⊢ (𝜑 → 𝑆 SubGraph 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3624 | . . 3 ⊢ (Vtx‘𝑆) ⊆ (Vtx‘𝑆) | |
2 | uhgrspan.q | . . 3 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) | |
3 | 1, 2 | syl5sseq 3653 | . 2 ⊢ (𝜑 → (Vtx‘𝑆) ⊆ 𝑉) |
4 | uhgrspan.r | . . 3 ⊢ (𝜑 → (iEdg‘𝑆) = (𝐸 ↾ 𝐴)) | |
5 | resss 5422 | . . 3 ⊢ (𝐸 ↾ 𝐴) ⊆ 𝐸 | |
6 | 4, 5 | syl6eqss 3655 | . 2 ⊢ (𝜑 → (iEdg‘𝑆) ⊆ 𝐸) |
7 | uhgrspan.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
8 | uhgrspan.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
9 | uhgrspan.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
10 | uhgrspan.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ UHGraph ) | |
11 | 7, 8, 9, 2, 4, 10 | uhgrspansubgrlem 26182 | . 2 ⊢ (𝜑 → (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) |
12 | 8 | uhgrfun 25961 | . . . 4 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
13 | 10, 12 | syl 17 | . . 3 ⊢ (𝜑 → Fun 𝐸) |
14 | eqid 2622 | . . . 4 ⊢ (Vtx‘𝑆) = (Vtx‘𝑆) | |
15 | eqid 2622 | . . . 4 ⊢ (iEdg‘𝑆) = (iEdg‘𝑆) | |
16 | eqid 2622 | . . . 4 ⊢ (Edg‘𝑆) = (Edg‘𝑆) | |
17 | 14, 7, 15, 8, 16 | issubgr2 26164 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ Fun 𝐸 ∧ 𝑆 ∈ 𝑊) → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ 𝑉 ∧ (iEdg‘𝑆) ⊆ 𝐸 ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))) |
18 | 10, 13, 9, 17 | syl3anc 1326 | . 2 ⊢ (𝜑 → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ 𝑉 ∧ (iEdg‘𝑆) ⊆ 𝐸 ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))) |
19 | 3, 6, 11, 18 | mpbir3and 1245 | 1 ⊢ (𝜑 → 𝑆 SubGraph 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ⊆ wss 3574 𝒫 cpw 4158 class class class wbr 4653 ↾ cres 5116 Fun wfun 5882 ‘cfv 5888 Vtxcvtx 25874 iEdgciedg 25875 Edgcedg 25939 UHGraph cuhgr 25951 SubGraph csubgr 26159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-edg 25940 df-uhgr 25953 df-subgr 26160 |
This theorem is referenced by: uhgrspan 26184 upgrspan 26185 umgrspan 26186 usgrspan 26187 |
Copyright terms: Public domain | W3C validator |