![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgrspan | Structured version Visualization version GIF version |
Description: A spanning subgraph 𝑆 of a pseudograph 𝐺 is a pseudograph. (Contributed by AV, 11-Oct-2020.) (Proof shortened by AV, 18-Nov-2020.) |
Ref | Expression |
---|---|
uhgrspan.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgrspan.e | ⊢ 𝐸 = (iEdg‘𝐺) |
uhgrspan.s | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
uhgrspan.q | ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
uhgrspan.r | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐸 ↾ 𝐴)) |
upgrspan.g | ⊢ (𝜑 → 𝐺 ∈ UPGraph ) |
Ref | Expression |
---|---|
upgrspan | ⊢ (𝜑 → 𝑆 ∈ UPGraph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgrspan.g | . 2 ⊢ (𝜑 → 𝐺 ∈ UPGraph ) | |
2 | uhgrspan.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | uhgrspan.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
4 | uhgrspan.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
5 | uhgrspan.q | . . 3 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) | |
6 | uhgrspan.r | . . 3 ⊢ (𝜑 → (iEdg‘𝑆) = (𝐸 ↾ 𝐴)) | |
7 | upgruhgr 25997 | . . . 4 ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph ) | |
8 | 1, 7 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ UHGraph ) |
9 | 2, 3, 4, 5, 6, 8 | uhgrspansubgr 26183 | . 2 ⊢ (𝜑 → 𝑆 SubGraph 𝐺) |
10 | subupgr 26179 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ UPGraph ) | |
11 | 1, 9, 10 | syl2anc 693 | 1 ⊢ (𝜑 → 𝑆 ∈ UPGraph ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 class class class wbr 4653 ↾ cres 5116 ‘cfv 5888 Vtxcvtx 25874 iEdgciedg 25875 UHGraph cuhgr 25951 UPGraph cupgr 25975 SubGraph csubgr 26159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-edg 25940 df-uhgr 25953 df-upgr 25977 df-subgr 26160 |
This theorem is referenced by: upgrspanop 26189 |
Copyright terms: Public domain | W3C validator |