MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrspansubgr Structured version   Visualization version   Unicode version

Theorem uhgrspansubgr 26183
Description: A spanning subgraph  S of a hypergraph  G is actually a subgraph of  G. A subgraph  S of a graph  G which has the same vertices as  G and is obtained by removing some edges of  G is called a spanning subgraph (see section I.1 in [Bollobas] p. 2 and section 1.1 in [Diestel] p. 4). Formally, the edges are "removed" by restricting the edge function of the original graph by an arbitrary class (which actually needs not to be a subset of the domain of the edge function). (Contributed by AV, 18-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.)
Hypotheses
Ref Expression
uhgrspan.v  |-  V  =  (Vtx `  G )
uhgrspan.e  |-  E  =  (iEdg `  G )
uhgrspan.s  |-  ( ph  ->  S  e.  W )
uhgrspan.q  |-  ( ph  ->  (Vtx `  S )  =  V )
uhgrspan.r  |-  ( ph  ->  (iEdg `  S )  =  ( E  |`  A ) )
uhgrspan.g  |-  ( ph  ->  G  e. UHGraph  )
Assertion
Ref Expression
uhgrspansubgr  |-  ( ph  ->  S SubGraph  G )

Proof of Theorem uhgrspansubgr
StepHypRef Expression
1 ssid 3624 . . 3  |-  (Vtx `  S )  C_  (Vtx `  S )
2 uhgrspan.q . . 3  |-  ( ph  ->  (Vtx `  S )  =  V )
31, 2syl5sseq 3653 . 2  |-  ( ph  ->  (Vtx `  S )  C_  V )
4 uhgrspan.r . . 3  |-  ( ph  ->  (iEdg `  S )  =  ( E  |`  A ) )
5 resss 5422 . . 3  |-  ( E  |`  A )  C_  E
64, 5syl6eqss 3655 . 2  |-  ( ph  ->  (iEdg `  S )  C_  E )
7 uhgrspan.v . . 3  |-  V  =  (Vtx `  G )
8 uhgrspan.e . . 3  |-  E  =  (iEdg `  G )
9 uhgrspan.s . . 3  |-  ( ph  ->  S  e.  W )
10 uhgrspan.g . . 3  |-  ( ph  ->  G  e. UHGraph  )
117, 8, 9, 2, 4, 10uhgrspansubgrlem 26182 . 2  |-  ( ph  ->  (Edg `  S )  C_ 
~P (Vtx `  S
) )
128uhgrfun 25961 . . . 4  |-  ( G  e. UHGraph  ->  Fun  E )
1310, 12syl 17 . . 3  |-  ( ph  ->  Fun  E )
14 eqid 2622 . . . 4  |-  (Vtx `  S )  =  (Vtx
`  S )
15 eqid 2622 . . . 4  |-  (iEdg `  S )  =  (iEdg `  S )
16 eqid 2622 . . . 4  |-  (Edg `  S )  =  (Edg
`  S )
1714, 7, 15, 8, 16issubgr2 26164 . . 3  |-  ( ( G  e. UHGraph  /\  Fun  E  /\  S  e.  W
)  ->  ( S SubGraph  G  <-> 
( (Vtx `  S
)  C_  V  /\  (iEdg `  S )  C_  E  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) ) ) )
1810, 13, 9, 17syl3anc 1326 . 2  |-  ( ph  ->  ( S SubGraph  G  <->  ( (Vtx `  S )  C_  V  /\  (iEdg `  S )  C_  E  /\  (Edg `  S )  C_  ~P (Vtx `  S ) ) ) )
193, 6, 11, 18mpbir3and 1245 1  |-  ( ph  ->  S SubGraph  G )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483    e. wcel 1990    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653    |` cres 5116   Fun wfun 5882   ` cfv 5888  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UHGraph cuhgr 25951   SubGraph csubgr 26159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-edg 25940  df-uhgr 25953  df-subgr 26160
This theorem is referenced by:  uhgrspan  26184  upgrspan  26185  umgrspan  26186  usgrspan  26187
  Copyright terms: Public domain W3C validator