MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unitg Structured version   Visualization version   GIF version

Theorem unitg 20771
Description: The topology generated by a basis 𝐵 is a topology on 𝐵. Importantly, this theorem means that we don't have to specify separately the base set for the topological space generated by a basis. In other words, any member of the class TopBases completely specifies the basis it corresponds to. (Contributed by NM, 16-Jul-2006.) (Proof shortened by OpenAI, 30-Mar-2020.)
Assertion
Ref Expression
unitg (𝐵𝑉 (topGen‘𝐵) = 𝐵)

Proof of Theorem unitg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tg1 20768 . . . . . 6 (𝑥 ∈ (topGen‘𝐵) → 𝑥 𝐵)
2 selpw 4165 . . . . . 6 (𝑥 ∈ 𝒫 𝐵𝑥 𝐵)
31, 2sylibr 224 . . . . 5 (𝑥 ∈ (topGen‘𝐵) → 𝑥 ∈ 𝒫 𝐵)
43ssriv 3607 . . . 4 (topGen‘𝐵) ⊆ 𝒫 𝐵
5 sspwuni 4611 . . . 4 ((topGen‘𝐵) ⊆ 𝒫 𝐵 (topGen‘𝐵) ⊆ 𝐵)
64, 5mpbi 220 . . 3 (topGen‘𝐵) ⊆ 𝐵
76a1i 11 . 2 (𝐵𝑉 (topGen‘𝐵) ⊆ 𝐵)
8 bastg 20770 . . 3 (𝐵𝑉𝐵 ⊆ (topGen‘𝐵))
98unissd 4462 . 2 (𝐵𝑉 𝐵 (topGen‘𝐵))
107, 9eqssd 3620 1 (𝐵𝑉 (topGen‘𝐵) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  wss 3574  𝒫 cpw 4158   cuni 4436  cfv 5888  topGenctg 16098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-topgen 16104
This theorem is referenced by:  tgcl  20773  tgtopon  20775  tgcmp  21204  2ndcsep  21262  txtopon  21394  ptuni  21397  xkouni  21402  prdstopn  21431  tgqtop  21515  alexsubb  21850  alexsubALTlem3  21853  alexsubALTlem4  21854  ptcmplem1  21856  uniretop  22566  fneval  32347  fnemeet1  32361  kelac2  37635
  Copyright terms: Public domain W3C validator