| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2622 |
. . . . 5
⊢ ∪ (topGen‘𝐵) = ∪
(topGen‘𝐵) |
| 2 | 1 | iscmp 21191 |
. . . 4
⊢
((topGen‘𝐵)
∈ Comp ↔ ((topGen‘𝐵) ∈ Top ∧ ∀𝑦 ∈ 𝒫
(topGen‘𝐵)(∪ (topGen‘𝐵) = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ (topGen‘𝐵) = ∪ 𝑧))) |
| 3 | 2 | simprbi 480 |
. . 3
⊢
((topGen‘𝐵)
∈ Comp → ∀𝑦 ∈ 𝒫 (topGen‘𝐵)(∪
(topGen‘𝐵) = ∪ 𝑦
→ ∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)∪ (topGen‘𝐵) = ∪ 𝑧)) |
| 4 | | unitg 20771 |
. . . . . . . 8
⊢ (𝐵 ∈ TopBases → ∪ (topGen‘𝐵) = ∪ 𝐵) |
| 5 | | eqtr3 2643 |
. . . . . . . 8
⊢ ((∪ (topGen‘𝐵) = ∪ 𝐵 ∧ 𝑋 = ∪ 𝐵) → ∪ (topGen‘𝐵) = 𝑋) |
| 6 | 4, 5 | sylan 488 |
. . . . . . 7
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → ∪ (topGen‘𝐵) = 𝑋) |
| 7 | 6 | eqeq1d 2624 |
. . . . . 6
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → (∪ (topGen‘𝐵) = ∪ 𝑦 ↔ 𝑋 = ∪ 𝑦)) |
| 8 | 6 | eqeq1d 2624 |
. . . . . . 7
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → (∪ (topGen‘𝐵) = ∪ 𝑧 ↔ 𝑋 = ∪ 𝑧)) |
| 9 | 8 | rexbidv 3052 |
. . . . . 6
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ (topGen‘𝐵) = ∪ 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧)) |
| 10 | 7, 9 | imbi12d 334 |
. . . . 5
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → ((∪ (topGen‘𝐵) = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ (topGen‘𝐵) = ∪ 𝑧) ↔ (𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
| 11 | 10 | ralbidv 2986 |
. . . 4
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → (∀𝑦 ∈ 𝒫
(topGen‘𝐵)(∪ (topGen‘𝐵) = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ (topGen‘𝐵) = ∪ 𝑧) ↔ ∀𝑦 ∈ 𝒫
(topGen‘𝐵)(𝑋 = ∪
𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
| 12 | | bastg 20770 |
. . . . . . 7
⊢ (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵)) |
| 13 | 12 | adantr 481 |
. . . . . 6
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → 𝐵 ⊆ (topGen‘𝐵)) |
| 14 | | sspwb 4917 |
. . . . . 6
⊢ (𝐵 ⊆ (topGen‘𝐵) ↔ 𝒫 𝐵 ⊆ 𝒫
(topGen‘𝐵)) |
| 15 | 13, 14 | sylib 208 |
. . . . 5
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → 𝒫 𝐵 ⊆ 𝒫
(topGen‘𝐵)) |
| 16 | | ssralv 3666 |
. . . . 5
⊢
(𝒫 𝐵 ⊆
𝒫 (topGen‘𝐵)
→ (∀𝑦 ∈
𝒫 (topGen‘𝐵)(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) → ∀𝑦 ∈ 𝒫 𝐵(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
| 17 | 15, 16 | syl 17 |
. . . 4
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → (∀𝑦 ∈ 𝒫
(topGen‘𝐵)(𝑋 = ∪
𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) → ∀𝑦 ∈ 𝒫 𝐵(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
| 18 | 11, 17 | sylbid 230 |
. . 3
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → (∀𝑦 ∈ 𝒫
(topGen‘𝐵)(∪ (topGen‘𝐵) = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ (topGen‘𝐵) = ∪ 𝑧) → ∀𝑦 ∈ 𝒫 𝐵(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
| 19 | 3, 18 | syl5 34 |
. 2
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) →
((topGen‘𝐵) ∈
Comp → ∀𝑦
∈ 𝒫 𝐵(𝑋 = ∪
𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
| 20 | | elpwi 4168 |
. . . . 5
⊢ (𝑢 ∈ 𝒫
(topGen‘𝐵) →
𝑢 ⊆
(topGen‘𝐵)) |
| 21 | | simprr 796 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) → 𝑋 = ∪ 𝑢) |
| 22 | | simprl 794 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) → 𝑢 ⊆ (topGen‘𝐵)) |
| 23 | 22 | sselda 3603 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) ∧ 𝑡 ∈ 𝑢) → 𝑡 ∈ (topGen‘𝐵)) |
| 24 | 23 | adantrr 753 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) ∧ (𝑡 ∈ 𝑢 ∧ 𝑦 ∈ 𝑡)) → 𝑡 ∈ (topGen‘𝐵)) |
| 25 | | simprr 796 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) ∧ (𝑡 ∈ 𝑢 ∧ 𝑦 ∈ 𝑡)) → 𝑦 ∈ 𝑡) |
| 26 | | tg2 20769 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑡 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ 𝑡) → ∃𝑤 ∈ 𝐵 (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡)) |
| 27 | 24, 25, 26 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) ∧ (𝑡 ∈ 𝑢 ∧ 𝑦 ∈ 𝑡)) → ∃𝑤 ∈ 𝐵 (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡)) |
| 28 | 27 | expr 643 |
. . . . . . . . . . . . . 14
⊢ ((((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) ∧ 𝑡 ∈ 𝑢) → (𝑦 ∈ 𝑡 → ∃𝑤 ∈ 𝐵 (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡))) |
| 29 | 28 | reximdva 3017 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) → (∃𝑡 ∈ 𝑢 𝑦 ∈ 𝑡 → ∃𝑡 ∈ 𝑢 ∃𝑤 ∈ 𝐵 (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡))) |
| 30 | | eluni2 4440 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ∪ 𝑢
↔ ∃𝑡 ∈
𝑢 𝑦 ∈ 𝑡) |
| 31 | | elunirab 4448 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ∪ {𝑤
∈ 𝐵 ∣
∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ↔ ∃𝑤 ∈ 𝐵 (𝑦 ∈ 𝑤 ∧ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡)) |
| 32 | | r19.42v 3092 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑡 ∈
𝑢 (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡) ↔ (𝑦 ∈ 𝑤 ∧ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡)) |
| 33 | 32 | rexbii 3041 |
. . . . . . . . . . . . . 14
⊢
(∃𝑤 ∈
𝐵 ∃𝑡 ∈ 𝑢 (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡) ↔ ∃𝑤 ∈ 𝐵 (𝑦 ∈ 𝑤 ∧ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡)) |
| 34 | | rexcom 3099 |
. . . . . . . . . . . . . 14
⊢
(∃𝑤 ∈
𝐵 ∃𝑡 ∈ 𝑢 (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡) ↔ ∃𝑡 ∈ 𝑢 ∃𝑤 ∈ 𝐵 (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡)) |
| 35 | 31, 33, 34 | 3bitr2i 288 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ∪ {𝑤
∈ 𝐵 ∣
∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ↔ ∃𝑡 ∈ 𝑢 ∃𝑤 ∈ 𝐵 (𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡)) |
| 36 | 29, 30, 35 | 3imtr4g 285 |
. . . . . . . . . . . 12
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) → (𝑦 ∈ ∪ 𝑢 → 𝑦 ∈ ∪ {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡})) |
| 37 | 36 | ssrdv 3609 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) → ∪ 𝑢
⊆ ∪ {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡}) |
| 38 | 21, 37 | eqsstrd 3639 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) → 𝑋 ⊆ ∪ {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡}) |
| 39 | | ssrab2 3687 |
. . . . . . . . . . . 12
⊢ {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ⊆ 𝐵 |
| 40 | 39 | unissi 4461 |
. . . . . . . . . . 11
⊢ ∪ {𝑤
∈ 𝐵 ∣
∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ⊆ ∪ 𝐵 |
| 41 | | simplr 792 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) → 𝑋 = ∪ 𝐵) |
| 42 | 40, 41 | syl5sseqr 3654 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) → ∪ {𝑤
∈ 𝐵 ∣
∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ⊆ 𝑋) |
| 43 | 38, 42 | eqssd 3620 |
. . . . . . . . 9
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) → 𝑋 = ∪ {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡}) |
| 44 | | elpw2g 4827 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ TopBases → ({𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∈ 𝒫 𝐵 ↔ {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ⊆ 𝐵)) |
| 45 | 44 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) → ({𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∈ 𝒫 𝐵 ↔ {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ⊆ 𝐵)) |
| 46 | 39, 45 | mpbiri 248 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) → {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∈ 𝒫 𝐵) |
| 47 | | unieq 4444 |
. . . . . . . . . . . . 13
⊢ (𝑦 = {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} → ∪ 𝑦 = ∪
{𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡}) |
| 48 | 47 | eqeq2d 2632 |
. . . . . . . . . . . 12
⊢ (𝑦 = {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} → (𝑋 = ∪ 𝑦 ↔ 𝑋 = ∪ {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡})) |
| 49 | | pweq 4161 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} → 𝒫 𝑦 = 𝒫 {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡}) |
| 50 | 49 | ineq1d 3813 |
. . . . . . . . . . . . 13
⊢ (𝑦 = {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} → (𝒫 𝑦 ∩ Fin) = (𝒫 {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin)) |
| 51 | 50 | rexeqdv 3145 |
. . . . . . . . . . . 12
⊢ (𝑦 = {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧 ↔ ∃𝑧 ∈ (𝒫 {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin)𝑋 = ∪ 𝑧)) |
| 52 | 48, 51 | imbi12d 334 |
. . . . . . . . . . 11
⊢ (𝑦 = {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} → ((𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) ↔ (𝑋 = ∪ {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} → ∃𝑧 ∈ (𝒫 {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin)𝑋 = ∪ 𝑧))) |
| 53 | 52 | rspcv 3305 |
. . . . . . . . . 10
⊢ ({𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∈ 𝒫 𝐵 → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) → (𝑋 = ∪ {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} → ∃𝑧 ∈ (𝒫 {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin)𝑋 = ∪ 𝑧))) |
| 54 | 46, 53 | syl 17 |
. . . . . . . . 9
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) → (𝑋 = ∪ {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} → ∃𝑧 ∈ (𝒫 {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin)𝑋 = ∪ 𝑧))) |
| 55 | 43, 54 | mpid 44 |
. . . . . . . 8
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) → ∃𝑧 ∈ (𝒫 {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin)𝑋 = ∪ 𝑧)) |
| 56 | | elfpw 8268 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (𝒫 {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ↔ (𝑧 ⊆ {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∧ 𝑧 ∈ Fin)) |
| 57 | 56 | simprbi 480 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (𝒫 {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) → 𝑧 ∈ Fin) |
| 58 | 57 | ad2antrl 764 |
. . . . . . . . . . 11
⊢ ((((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) → 𝑧 ∈ Fin) |
| 59 | 56 | simplbi 476 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (𝒫 {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) → 𝑧 ⊆ {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡}) |
| 60 | 59 | ad2antrl 764 |
. . . . . . . . . . . 12
⊢ ((((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) → 𝑧 ⊆ {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡}) |
| 61 | | ssrab 3680 |
. . . . . . . . . . . . 13
⊢ (𝑧 ⊆ {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ↔ (𝑧 ⊆ 𝐵 ∧ ∀𝑤 ∈ 𝑧 ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡)) |
| 62 | 61 | simprbi 480 |
. . . . . . . . . . . 12
⊢ (𝑧 ⊆ {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} → ∀𝑤 ∈ 𝑧 ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡) |
| 63 | 60, 62 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) → ∀𝑤 ∈ 𝑧 ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡) |
| 64 | | sseq2 3627 |
. . . . . . . . . . . 12
⊢ (𝑡 = (𝑓‘𝑤) → (𝑤 ⊆ 𝑡 ↔ 𝑤 ⊆ (𝑓‘𝑤))) |
| 65 | 64 | ac6sfi 8204 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ Fin ∧ ∀𝑤 ∈ 𝑧 ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡) → ∃𝑓(𝑓:𝑧⟶𝑢 ∧ ∀𝑤 ∈ 𝑧 𝑤 ⊆ (𝑓‘𝑤))) |
| 66 | 58, 63, 65 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) → ∃𝑓(𝑓:𝑧⟶𝑢 ∧ ∀𝑤 ∈ 𝑧 𝑤 ⊆ (𝑓‘𝑤))) |
| 67 | | frn 6053 |
. . . . . . . . . . . . 13
⊢ (𝑓:𝑧⟶𝑢 → ran 𝑓 ⊆ 𝑢) |
| 68 | 67 | ad2antrl 764 |
. . . . . . . . . . . 12
⊢
(((((𝐵 ∈
TopBases ∧ 𝑋 = ∪ 𝐵)
∧ (𝑢 ⊆
(topGen‘𝐵) ∧
𝑋 = ∪ 𝑢))
∧ (𝑧 ∈ (𝒫
{𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) ∧ (𝑓:𝑧⟶𝑢 ∧ ∀𝑤 ∈ 𝑧 𝑤 ⊆ (𝑓‘𝑤))) → ran 𝑓 ⊆ 𝑢) |
| 69 | | ffn 6045 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:𝑧⟶𝑢 → 𝑓 Fn 𝑧) |
| 70 | | dffn4 6121 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 Fn 𝑧 ↔ 𝑓:𝑧–onto→ran 𝑓) |
| 71 | 69, 70 | sylib 208 |
. . . . . . . . . . . . . 14
⊢ (𝑓:𝑧⟶𝑢 → 𝑓:𝑧–onto→ran 𝑓) |
| 72 | 71 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝑓:𝑧⟶𝑢 ∧ ∀𝑤 ∈ 𝑧 𝑤 ⊆ (𝑓‘𝑤)) → 𝑓:𝑧–onto→ran 𝑓) |
| 73 | | fofi 8252 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ Fin ∧ 𝑓:𝑧–onto→ran 𝑓) → ran 𝑓 ∈ Fin) |
| 74 | 58, 72, 73 | syl2an 494 |
. . . . . . . . . . . 12
⊢
(((((𝐵 ∈
TopBases ∧ 𝑋 = ∪ 𝐵)
∧ (𝑢 ⊆
(topGen‘𝐵) ∧
𝑋 = ∪ 𝑢))
∧ (𝑧 ∈ (𝒫
{𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) ∧ (𝑓:𝑧⟶𝑢 ∧ ∀𝑤 ∈ 𝑧 𝑤 ⊆ (𝑓‘𝑤))) → ran 𝑓 ∈ Fin) |
| 75 | | elfpw 8268 |
. . . . . . . . . . . 12
⊢ (ran
𝑓 ∈ (𝒫 𝑢 ∩ Fin) ↔ (ran 𝑓 ⊆ 𝑢 ∧ ran 𝑓 ∈ Fin)) |
| 76 | 68, 74, 75 | sylanbrc 698 |
. . . . . . . . . . 11
⊢
(((((𝐵 ∈
TopBases ∧ 𝑋 = ∪ 𝐵)
∧ (𝑢 ⊆
(topGen‘𝐵) ∧
𝑋 = ∪ 𝑢))
∧ (𝑧 ∈ (𝒫
{𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) ∧ (𝑓:𝑧⟶𝑢 ∧ ∀𝑤 ∈ 𝑧 𝑤 ⊆ (𝑓‘𝑤))) → ran 𝑓 ∈ (𝒫 𝑢 ∩ Fin)) |
| 77 | | simplrr 801 |
. . . . . . . . . . . . 13
⊢
(((((𝐵 ∈
TopBases ∧ 𝑋 = ∪ 𝐵)
∧ (𝑢 ⊆
(topGen‘𝐵) ∧
𝑋 = ∪ 𝑢))
∧ (𝑧 ∈ (𝒫
{𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) ∧ (𝑓:𝑧⟶𝑢 ∧ ∀𝑤 ∈ 𝑧 𝑤 ⊆ (𝑓‘𝑤))) → 𝑋 = ∪ 𝑧) |
| 78 | | uniiun 4573 |
. . . . . . . . . . . . . . . 16
⊢ ∪ 𝑧 =
∪ 𝑤 ∈ 𝑧 𝑤 |
| 79 | | ss2iun 4536 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑤 ∈
𝑧 𝑤 ⊆ (𝑓‘𝑤) → ∪
𝑤 ∈ 𝑧 𝑤 ⊆ ∪
𝑤 ∈ 𝑧 (𝑓‘𝑤)) |
| 80 | 78, 79 | syl5eqss 3649 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑤 ∈
𝑧 𝑤 ⊆ (𝑓‘𝑤) → ∪ 𝑧 ⊆ ∪ 𝑤 ∈ 𝑧 (𝑓‘𝑤)) |
| 81 | 80 | ad2antll 765 |
. . . . . . . . . . . . . 14
⊢
(((((𝐵 ∈
TopBases ∧ 𝑋 = ∪ 𝐵)
∧ (𝑢 ⊆
(topGen‘𝐵) ∧
𝑋 = ∪ 𝑢))
∧ (𝑧 ∈ (𝒫
{𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) ∧ (𝑓:𝑧⟶𝑢 ∧ ∀𝑤 ∈ 𝑧 𝑤 ⊆ (𝑓‘𝑤))) → ∪ 𝑧 ⊆ ∪ 𝑤 ∈ 𝑧 (𝑓‘𝑤)) |
| 82 | | fniunfv 6505 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 Fn 𝑧 → ∪
𝑤 ∈ 𝑧 (𝑓‘𝑤) = ∪ ran 𝑓) |
| 83 | 69, 82 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:𝑧⟶𝑢 → ∪
𝑤 ∈ 𝑧 (𝑓‘𝑤) = ∪ ran 𝑓) |
| 84 | 83 | ad2antrl 764 |
. . . . . . . . . . . . . 14
⊢
(((((𝐵 ∈
TopBases ∧ 𝑋 = ∪ 𝐵)
∧ (𝑢 ⊆
(topGen‘𝐵) ∧
𝑋 = ∪ 𝑢))
∧ (𝑧 ∈ (𝒫
{𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) ∧ (𝑓:𝑧⟶𝑢 ∧ ∀𝑤 ∈ 𝑧 𝑤 ⊆ (𝑓‘𝑤))) → ∪ 𝑤 ∈ 𝑧 (𝑓‘𝑤) = ∪ ran 𝑓) |
| 85 | 81, 84 | sseqtrd 3641 |
. . . . . . . . . . . . 13
⊢
(((((𝐵 ∈
TopBases ∧ 𝑋 = ∪ 𝐵)
∧ (𝑢 ⊆
(topGen‘𝐵) ∧
𝑋 = ∪ 𝑢))
∧ (𝑧 ∈ (𝒫
{𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) ∧ (𝑓:𝑧⟶𝑢 ∧ ∀𝑤 ∈ 𝑧 𝑤 ⊆ (𝑓‘𝑤))) → ∪ 𝑧 ⊆ ∪ ran 𝑓) |
| 86 | 77, 85 | eqsstrd 3639 |
. . . . . . . . . . . 12
⊢
(((((𝐵 ∈
TopBases ∧ 𝑋 = ∪ 𝐵)
∧ (𝑢 ⊆
(topGen‘𝐵) ∧
𝑋 = ∪ 𝑢))
∧ (𝑧 ∈ (𝒫
{𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) ∧ (𝑓:𝑧⟶𝑢 ∧ ∀𝑤 ∈ 𝑧 𝑤 ⊆ (𝑓‘𝑤))) → 𝑋 ⊆ ∪ ran
𝑓) |
| 87 | 68 | unissd 4462 |
. . . . . . . . . . . . 13
⊢
(((((𝐵 ∈
TopBases ∧ 𝑋 = ∪ 𝐵)
∧ (𝑢 ⊆
(topGen‘𝐵) ∧
𝑋 = ∪ 𝑢))
∧ (𝑧 ∈ (𝒫
{𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) ∧ (𝑓:𝑧⟶𝑢 ∧ ∀𝑤 ∈ 𝑧 𝑤 ⊆ (𝑓‘𝑤))) → ∪ ran
𝑓 ⊆ ∪ 𝑢) |
| 88 | 21 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢
(((((𝐵 ∈
TopBases ∧ 𝑋 = ∪ 𝐵)
∧ (𝑢 ⊆
(topGen‘𝐵) ∧
𝑋 = ∪ 𝑢))
∧ (𝑧 ∈ (𝒫
{𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) ∧ (𝑓:𝑧⟶𝑢 ∧ ∀𝑤 ∈ 𝑧 𝑤 ⊆ (𝑓‘𝑤))) → 𝑋 = ∪ 𝑢) |
| 89 | 87, 88 | sseqtr4d 3642 |
. . . . . . . . . . . 12
⊢
(((((𝐵 ∈
TopBases ∧ 𝑋 = ∪ 𝐵)
∧ (𝑢 ⊆
(topGen‘𝐵) ∧
𝑋 = ∪ 𝑢))
∧ (𝑧 ∈ (𝒫
{𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) ∧ (𝑓:𝑧⟶𝑢 ∧ ∀𝑤 ∈ 𝑧 𝑤 ⊆ (𝑓‘𝑤))) → ∪ ran
𝑓 ⊆ 𝑋) |
| 90 | 86, 89 | eqssd 3620 |
. . . . . . . . . . 11
⊢
(((((𝐵 ∈
TopBases ∧ 𝑋 = ∪ 𝐵)
∧ (𝑢 ⊆
(topGen‘𝐵) ∧
𝑋 = ∪ 𝑢))
∧ (𝑧 ∈ (𝒫
{𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) ∧ (𝑓:𝑧⟶𝑢 ∧ ∀𝑤 ∈ 𝑧 𝑤 ⊆ (𝑓‘𝑤))) → 𝑋 = ∪ ran 𝑓) |
| 91 | | unieq 4444 |
. . . . . . . . . . . . 13
⊢ (𝑣 = ran 𝑓 → ∪ 𝑣 = ∪
ran 𝑓) |
| 92 | 91 | eqeq2d 2632 |
. . . . . . . . . . . 12
⊢ (𝑣 = ran 𝑓 → (𝑋 = ∪ 𝑣 ↔ 𝑋 = ∪ ran 𝑓)) |
| 93 | 92 | rspcev 3309 |
. . . . . . . . . . 11
⊢ ((ran
𝑓 ∈ (𝒫 𝑢 ∩ Fin) ∧ 𝑋 = ∪
ran 𝑓) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑣) |
| 94 | 76, 90, 93 | syl2anc 693 |
. . . . . . . . . 10
⊢
(((((𝐵 ∈
TopBases ∧ 𝑋 = ∪ 𝐵)
∧ (𝑢 ⊆
(topGen‘𝐵) ∧
𝑋 = ∪ 𝑢))
∧ (𝑧 ∈ (𝒫
{𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) ∧ (𝑓:𝑧⟶𝑢 ∧ ∀𝑤 ∈ 𝑧 𝑤 ⊆ (𝑓‘𝑤))) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑣) |
| 95 | 66, 94 | exlimddv 1863 |
. . . . . . . . 9
⊢ ((((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) ∧ (𝑧 ∈ (𝒫 {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin) ∧ 𝑋 = ∪ 𝑧)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑣) |
| 96 | 95 | rexlimdvaa 3032 |
. . . . . . . 8
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) → (∃𝑧 ∈ (𝒫 {𝑤 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡} ∩ Fin)𝑋 = ∪ 𝑧 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑣)) |
| 97 | 55, 96 | syld 47 |
. . . . . . 7
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ (𝑢 ⊆ (topGen‘𝐵) ∧ 𝑋 = ∪ 𝑢)) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑣)) |
| 98 | 97 | expr 643 |
. . . . . 6
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ 𝑢 ⊆ (topGen‘𝐵)) → (𝑋 = ∪ 𝑢 → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑣))) |
| 99 | 98 | com23 86 |
. . . . 5
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ 𝑢 ⊆ (topGen‘𝐵)) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) → (𝑋 = ∪ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑣))) |
| 100 | 20, 99 | sylan2 491 |
. . . 4
⊢ (((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) ∧ 𝑢 ∈ 𝒫 (topGen‘𝐵)) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) → (𝑋 = ∪ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑣))) |
| 101 | 100 | ralrimdva 2969 |
. . 3
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) → ∀𝑢 ∈ 𝒫
(topGen‘𝐵)(𝑋 = ∪
𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑣))) |
| 102 | | tgcl 20773 |
. . . . . 6
⊢ (𝐵 ∈ TopBases →
(topGen‘𝐵) ∈
Top) |
| 103 | 102 | adantr 481 |
. . . . 5
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) →
(topGen‘𝐵) ∈
Top) |
| 104 | 1 | iscmp 21191 |
. . . . . 6
⊢
((topGen‘𝐵)
∈ Comp ↔ ((topGen‘𝐵) ∈ Top ∧ ∀𝑢 ∈ 𝒫
(topGen‘𝐵)(∪ (topGen‘𝐵) = ∪ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)∪ (topGen‘𝐵) = ∪ 𝑣))) |
| 105 | 104 | baib 944 |
. . . . 5
⊢
((topGen‘𝐵)
∈ Top → ((topGen‘𝐵) ∈ Comp ↔ ∀𝑢 ∈ 𝒫
(topGen‘𝐵)(∪ (topGen‘𝐵) = ∪ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)∪ (topGen‘𝐵) = ∪ 𝑣))) |
| 106 | 103, 105 | syl 17 |
. . . 4
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) →
((topGen‘𝐵) ∈
Comp ↔ ∀𝑢
∈ 𝒫 (topGen‘𝐵)(∪
(topGen‘𝐵) = ∪ 𝑢
→ ∃𝑣 ∈
(𝒫 𝑢 ∩
Fin)∪ (topGen‘𝐵) = ∪ 𝑣))) |
| 107 | 6 | eqeq1d 2624 |
. . . . . 6
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → (∪ (topGen‘𝐵) = ∪ 𝑢 ↔ 𝑋 = ∪ 𝑢)) |
| 108 | 6 | eqeq1d 2624 |
. . . . . . 7
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → (∪ (topGen‘𝐵) = ∪ 𝑣 ↔ 𝑋 = ∪ 𝑣)) |
| 109 | 108 | rexbidv 3052 |
. . . . . 6
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → (∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)∪ (topGen‘𝐵) = ∪ 𝑣 ↔ ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑣)) |
| 110 | 107, 109 | imbi12d 334 |
. . . . 5
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → ((∪ (topGen‘𝐵) = ∪ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)∪ (topGen‘𝐵) = ∪ 𝑣) ↔ (𝑋 = ∪ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑣))) |
| 111 | 110 | ralbidv 2986 |
. . . 4
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → (∀𝑢 ∈ 𝒫
(topGen‘𝐵)(∪ (topGen‘𝐵) = ∪ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)∪ (topGen‘𝐵) = ∪ 𝑣) ↔ ∀𝑢 ∈ 𝒫
(topGen‘𝐵)(𝑋 = ∪
𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑣))) |
| 112 | 106, 111 | bitrd 268 |
. . 3
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) →
((topGen‘𝐵) ∈
Comp ↔ ∀𝑢
∈ 𝒫 (topGen‘𝐵)(𝑋 = ∪ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)𝑋 = ∪ 𝑣))) |
| 113 | 101, 112 | sylibrd 249 |
. 2
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) → (∀𝑦 ∈ 𝒫 𝐵(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧) → (topGen‘𝐵) ∈ Comp)) |
| 114 | 19, 113 | impbid 202 |
1
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪
𝐵) →
((topGen‘𝐵) ∈
Comp ↔ ∀𝑦
∈ 𝒫 𝐵(𝑋 = ∪
𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |