Step | Hyp | Ref
| Expression |
1 | | prdstopn.y |
. . . . . 6
⊢ 𝑌 = (𝑆Xs𝑅) |
2 | | prdstopn.s |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
3 | | prdstopn.r |
. . . . . . 7
⊢ (𝜑 → 𝑅 Fn 𝐼) |
4 | | prdstopn.i |
. . . . . . 7
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
5 | | fnex 6481 |
. . . . . . 7
⊢ ((𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑊) → 𝑅 ∈ V) |
6 | 3, 4, 5 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ V) |
7 | | eqid 2622 |
. . . . . 6
⊢
(Base‘𝑌) =
(Base‘𝑌) |
8 | | eqidd 2623 |
. . . . . 6
⊢ (𝜑 → dom 𝑅 = dom 𝑅) |
9 | | eqid 2622 |
. . . . . 6
⊢
(TopSet‘𝑌) =
(TopSet‘𝑌) |
10 | 1, 2, 6, 7, 8, 9 | prdstset 16126 |
. . . . 5
⊢ (𝜑 → (TopSet‘𝑌) =
(∏t‘(TopOpen ∘ 𝑅))) |
11 | | topnfn 16086 |
. . . . . . . . . . 11
⊢ TopOpen
Fn V |
12 | | dffn2 6047 |
. . . . . . . . . . . 12
⊢ (𝑅 Fn 𝐼 ↔ 𝑅:𝐼⟶V) |
13 | 3, 12 | sylib 208 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅:𝐼⟶V) |
14 | | fnfco 6069 |
. . . . . . . . . . 11
⊢ ((TopOpen
Fn V ∧ 𝑅:𝐼⟶V) → (TopOpen
∘ 𝑅) Fn 𝐼) |
15 | 11, 13, 14 | sylancr 695 |
. . . . . . . . . 10
⊢ (𝜑 → (TopOpen ∘ 𝑅) Fn 𝐼) |
16 | | eqid 2622 |
. . . . . . . . . . 11
⊢ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))} |
17 | 16 | ptval 21373 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑊 ∧ (TopOpen ∘ 𝑅) Fn 𝐼) → (∏t‘(TopOpen
∘ 𝑅)) =
(topGen‘{𝑥 ∣
∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))})) |
18 | 4, 15, 17 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 →
(∏t‘(TopOpen ∘ 𝑅)) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))})) |
19 | 18 | unieqd 4446 |
. . . . . . . 8
⊢ (𝜑 → ∪ (∏t‘(TopOpen ∘ 𝑅)) = ∪ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))})) |
20 | | simpl2 1065 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦)) → ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦)) |
21 | | fvco2 6273 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 Fn 𝐼 ∧ 𝑦 ∈ 𝐼) → ((TopOpen ∘ 𝑅)‘𝑦) = (TopOpen‘(𝑅‘𝑦))) |
22 | 3, 21 | sylan 488 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → ((TopOpen ∘ 𝑅)‘𝑦) = (TopOpen‘(𝑅‘𝑦))) |
23 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(Base‘(𝑅‘𝑦)) = (Base‘(𝑅‘𝑦)) |
24 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(TopSet‘(𝑅‘𝑦)) = (TopSet‘(𝑅‘𝑦)) |
25 | 23, 24 | topnval 16095 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((TopSet‘(𝑅‘𝑦)) ↾t (Base‘(𝑅‘𝑦))) = (TopOpen‘(𝑅‘𝑦)) |
26 | | restsspw 16092 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((TopSet‘(𝑅‘𝑦)) ↾t (Base‘(𝑅‘𝑦))) ⊆ 𝒫 (Base‘(𝑅‘𝑦)) |
27 | 25, 26 | eqsstr3i 3636 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(TopOpen‘(𝑅‘𝑦)) ⊆ 𝒫 (Base‘(𝑅‘𝑦)) |
28 | 22, 27 | syl6eqss 3655 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → ((TopOpen ∘ 𝑅)‘𝑦) ⊆ 𝒫 (Base‘(𝑅‘𝑦))) |
29 | 28 | sseld 3602 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → ((𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) → (𝑔‘𝑦) ∈ 𝒫 (Base‘(𝑅‘𝑦)))) |
30 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔‘𝑦) ∈ V |
31 | 30 | elpw 4164 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑔‘𝑦) ∈ 𝒫 (Base‘(𝑅‘𝑦)) ↔ (𝑔‘𝑦) ⊆ (Base‘(𝑅‘𝑦))) |
32 | 29, 31 | syl6ib 241 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → ((𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) → (𝑔‘𝑦) ⊆ (Base‘(𝑅‘𝑦)))) |
33 | 32 | ralimdva 2962 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) → ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ⊆ (Base‘(𝑅‘𝑦)))) |
34 | 33 | imp 445 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦)) → ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ⊆ (Base‘(𝑅‘𝑦))) |
35 | 20, 34 | sylan2 491 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))) → ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ⊆ (Base‘(𝑅‘𝑦))) |
36 | | ss2ixp 7921 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑦 ∈
𝐼 (𝑔‘𝑦) ⊆ (Base‘(𝑅‘𝑦)) → X𝑦 ∈ 𝐼 (𝑔‘𝑦) ⊆ X𝑦 ∈ 𝐼 (Base‘(𝑅‘𝑦))) |
37 | 35, 36 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))) → X𝑦 ∈ 𝐼 (𝑔‘𝑦) ⊆ X𝑦 ∈ 𝐼 (Base‘(𝑅‘𝑦))) |
38 | | simprr 796 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))) → 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦)) |
39 | 1, 7, 2, 4, 3 | prdsbas2 16129 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (Base‘𝑌) = X𝑦 ∈
𝐼 (Base‘(𝑅‘𝑦))) |
40 | 39 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))) → (Base‘𝑌) = X𝑦 ∈ 𝐼 (Base‘(𝑅‘𝑦))) |
41 | 37, 38, 40 | 3sstr4d 3648 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))) → 𝑥 ⊆ (Base‘𝑌)) |
42 | 41 | ex 450 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦)) → 𝑥 ⊆ (Base‘𝑌))) |
43 | 42 | exlimdv 1861 |
. . . . . . . . . . 11
⊢ (𝜑 → (∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦)) → 𝑥 ⊆ (Base‘𝑌))) |
44 | | selpw 4165 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝒫
(Base‘𝑌) ↔ 𝑥 ⊆ (Base‘𝑌)) |
45 | 43, 44 | syl6ibr 242 |
. . . . . . . . . 10
⊢ (𝜑 → (∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦)) → 𝑥 ∈ 𝒫 (Base‘𝑌))) |
46 | 45 | abssdv 3676 |
. . . . . . . . 9
⊢ (𝜑 → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))} ⊆ 𝒫 (Base‘𝑌)) |
47 | | fvex 6201 |
. . . . . . . . . . 11
⊢
(Base‘𝑌)
∈ V |
48 | 47 | pwex 4848 |
. . . . . . . . . 10
⊢ 𝒫
(Base‘𝑌) ∈
V |
49 | 48 | ssex 4802 |
. . . . . . . . 9
⊢ ({𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))} ⊆ 𝒫 (Base‘𝑌) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))} ∈ V) |
50 | | unitg 20771 |
. . . . . . . . 9
⊢ ({𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))} ∈ V → ∪ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))}) = ∪ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))}) |
51 | 46, 49, 50 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → ∪ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))}) = ∪ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))}) |
52 | 19, 51 | eqtrd 2656 |
. . . . . . 7
⊢ (𝜑 → ∪ (∏t‘(TopOpen ∘ 𝑅)) = ∪ {𝑥
∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))}) |
53 | | sspwuni 4611 |
. . . . . . . 8
⊢ ({𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))} ⊆ 𝒫 (Base‘𝑌) ↔ ∪ {𝑥
∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))} ⊆ (Base‘𝑌)) |
54 | 46, 53 | sylib 208 |
. . . . . . 7
⊢ (𝜑 → ∪ {𝑥
∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))} ⊆ (Base‘𝑌)) |
55 | 52, 54 | eqsstrd 3639 |
. . . . . 6
⊢ (𝜑 → ∪ (∏t‘(TopOpen ∘ 𝑅)) ⊆ (Base‘𝑌)) |
56 | | sspwuni 4611 |
. . . . . 6
⊢
((∏t‘(TopOpen ∘ 𝑅)) ⊆ 𝒫 (Base‘𝑌) ↔ ∪ (∏t‘(TopOpen ∘ 𝑅)) ⊆ (Base‘𝑌)) |
57 | 55, 56 | sylibr 224 |
. . . . 5
⊢ (𝜑 →
(∏t‘(TopOpen ∘ 𝑅)) ⊆ 𝒫 (Base‘𝑌)) |
58 | 10, 57 | eqsstrd 3639 |
. . . 4
⊢ (𝜑 → (TopSet‘𝑌) ⊆ 𝒫
(Base‘𝑌)) |
59 | 7, 9 | topnid 16096 |
. . . 4
⊢
((TopSet‘𝑌)
⊆ 𝒫 (Base‘𝑌) → (TopSet‘𝑌) = (TopOpen‘𝑌)) |
60 | 58, 59 | syl 17 |
. . 3
⊢ (𝜑 → (TopSet‘𝑌) = (TopOpen‘𝑌)) |
61 | | prdstopn.o |
. . 3
⊢ 𝑂 = (TopOpen‘𝑌) |
62 | 60, 61 | syl6eqr 2674 |
. 2
⊢ (𝜑 → (TopSet‘𝑌) = 𝑂) |
63 | 62, 10 | eqtr3d 2658 |
1
⊢ (𝜑 → 𝑂 = (∏t‘(TopOpen
∘ 𝑅))) |