MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unxpwdom Structured version   Visualization version   GIF version

Theorem unxpwdom 8494
Description: If a Cartesian product is dominated by a union, then the base set is either weakly dominated by one factor of the union or dominated by the other. Extracted from Lemma 2.3 of [KanamoriPincus] p. 420. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
unxpwdom ((𝐴 × 𝐴) ≼ (𝐵𝐶) → (𝐴* 𝐵𝐴𝐶))

Proof of Theorem unxpwdom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 reldom 7961 . . . . 5 Rel ≼
21brrelex2i 5159 . . . 4 ((𝐴 × 𝐴) ≼ (𝐵𝐶) → (𝐵𝐶) ∈ V)
3 domeng 7969 . . . 4 ((𝐵𝐶) ∈ V → ((𝐴 × 𝐴) ≼ (𝐵𝐶) ↔ ∃𝑥((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))))
42, 3syl 17 . . 3 ((𝐴 × 𝐴) ≼ (𝐵𝐶) → ((𝐴 × 𝐴) ≼ (𝐵𝐶) ↔ ∃𝑥((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))))
54ibi 256 . 2 ((𝐴 × 𝐴) ≼ (𝐵𝐶) → ∃𝑥((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶)))
6 simprl 794 . . . . 5 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐴 × 𝐴) ≈ 𝑥)
7 indi 3873 . . . . . 6 (𝑥 ∩ (𝐵𝐶)) = ((𝑥𝐵) ∪ (𝑥𝐶))
8 simprr 796 . . . . . . 7 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → 𝑥 ⊆ (𝐵𝐶))
9 df-ss 3588 . . . . . . 7 (𝑥 ⊆ (𝐵𝐶) ↔ (𝑥 ∩ (𝐵𝐶)) = 𝑥)
108, 9sylib 208 . . . . . 6 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝑥 ∩ (𝐵𝐶)) = 𝑥)
117, 10syl5eqr 2670 . . . . 5 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → ((𝑥𝐵) ∪ (𝑥𝐶)) = 𝑥)
126, 11breqtrrd 4681 . . . 4 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐴 × 𝐴) ≈ ((𝑥𝐵) ∪ (𝑥𝐶)))
13 unxpwdom2 8493 . . . 4 ((𝐴 × 𝐴) ≈ ((𝑥𝐵) ∪ (𝑥𝐶)) → (𝐴* (𝑥𝐵) ∨ 𝐴 ≼ (𝑥𝐶)))
1412, 13syl 17 . . 3 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐴* (𝑥𝐵) ∨ 𝐴 ≼ (𝑥𝐶)))
15 ssun1 3776 . . . . . . . 8 𝐵 ⊆ (𝐵𝐶)
162adantr 481 . . . . . . . 8 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐵𝐶) ∈ V)
17 ssexg 4804 . . . . . . . 8 ((𝐵 ⊆ (𝐵𝐶) ∧ (𝐵𝐶) ∈ V) → 𝐵 ∈ V)
1815, 16, 17sylancr 695 . . . . . . 7 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → 𝐵 ∈ V)
19 inss2 3834 . . . . . . 7 (𝑥𝐵) ⊆ 𝐵
20 ssdomg 8001 . . . . . . 7 (𝐵 ∈ V → ((𝑥𝐵) ⊆ 𝐵 → (𝑥𝐵) ≼ 𝐵))
2118, 19, 20mpisyl 21 . . . . . 6 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝑥𝐵) ≼ 𝐵)
22 domwdom 8479 . . . . . 6 ((𝑥𝐵) ≼ 𝐵 → (𝑥𝐵) ≼* 𝐵)
2321, 22syl 17 . . . . 5 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝑥𝐵) ≼* 𝐵)
24 wdomtr 8480 . . . . . 6 ((𝐴* (𝑥𝐵) ∧ (𝑥𝐵) ≼* 𝐵) → 𝐴* 𝐵)
2524expcom 451 . . . . 5 ((𝑥𝐵) ≼* 𝐵 → (𝐴* (𝑥𝐵) → 𝐴* 𝐵))
2623, 25syl 17 . . . 4 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐴* (𝑥𝐵) → 𝐴* 𝐵))
27 ssun2 3777 . . . . . . 7 𝐶 ⊆ (𝐵𝐶)
28 ssexg 4804 . . . . . . 7 ((𝐶 ⊆ (𝐵𝐶) ∧ (𝐵𝐶) ∈ V) → 𝐶 ∈ V)
2927, 16, 28sylancr 695 . . . . . 6 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → 𝐶 ∈ V)
30 inss2 3834 . . . . . 6 (𝑥𝐶) ⊆ 𝐶
31 ssdomg 8001 . . . . . 6 (𝐶 ∈ V → ((𝑥𝐶) ⊆ 𝐶 → (𝑥𝐶) ≼ 𝐶))
3229, 30, 31mpisyl 21 . . . . 5 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝑥𝐶) ≼ 𝐶)
33 domtr 8009 . . . . . 6 ((𝐴 ≼ (𝑥𝐶) ∧ (𝑥𝐶) ≼ 𝐶) → 𝐴𝐶)
3433expcom 451 . . . . 5 ((𝑥𝐶) ≼ 𝐶 → (𝐴 ≼ (𝑥𝐶) → 𝐴𝐶))
3532, 34syl 17 . . . 4 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐴 ≼ (𝑥𝐶) → 𝐴𝐶))
3626, 35orim12d 883 . . 3 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → ((𝐴* (𝑥𝐵) ∨ 𝐴 ≼ (𝑥𝐶)) → (𝐴* 𝐵𝐴𝐶)))
3714, 36mpd 15 . 2 (((𝐴 × 𝐴) ≼ (𝐵𝐶) ∧ ((𝐴 × 𝐴) ≈ 𝑥𝑥 ⊆ (𝐵𝐶))) → (𝐴* 𝐵𝐴𝐶))
385, 37exlimddv 1863 1 ((𝐴 × 𝐴) ≼ (𝐵𝐶) → (𝐴* 𝐵𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wex 1704  wcel 1990  Vcvv 3200  cun 3572  cin 3573  wss 3574   class class class wbr 4653   × cxp 5112  cen 7952  cdom 7953  * cwdom 8462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-wdom 8464
This theorem is referenced by:  pwcdadom  9038
  Copyright terms: Public domain W3C validator