| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unxpwdom | Structured version Visualization version Unicode version | ||
| Description: If a Cartesian product is dominated by a union, then the base set is either weakly dominated by one factor of the union or dominated by the other. Extracted from Lemma 2.3 of [KanamoriPincus] p. 420. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| unxpwdom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 7961 |
. . . . 5
| |
| 2 | 1 | brrelex2i 5159 |
. . . 4
|
| 3 | domeng 7969 |
. . . 4
| |
| 4 | 2, 3 | syl 17 |
. . 3
|
| 5 | 4 | ibi 256 |
. 2
|
| 6 | simprl 794 |
. . . . 5
| |
| 7 | indi 3873 |
. . . . . 6
| |
| 8 | simprr 796 |
. . . . . . 7
| |
| 9 | df-ss 3588 |
. . . . . . 7
| |
| 10 | 8, 9 | sylib 208 |
. . . . . 6
|
| 11 | 7, 10 | syl5eqr 2670 |
. . . . 5
|
| 12 | 6, 11 | breqtrrd 4681 |
. . . 4
|
| 13 | unxpwdom2 8493 |
. . . 4
| |
| 14 | 12, 13 | syl 17 |
. . 3
|
| 15 | ssun1 3776 |
. . . . . . . 8
| |
| 16 | 2 | adantr 481 |
. . . . . . . 8
|
| 17 | ssexg 4804 |
. . . . . . . 8
| |
| 18 | 15, 16, 17 | sylancr 695 |
. . . . . . 7
|
| 19 | inss2 3834 |
. . . . . . 7
| |
| 20 | ssdomg 8001 |
. . . . . . 7
| |
| 21 | 18, 19, 20 | mpisyl 21 |
. . . . . 6
|
| 22 | domwdom 8479 |
. . . . . 6
| |
| 23 | 21, 22 | syl 17 |
. . . . 5
|
| 24 | wdomtr 8480 |
. . . . . 6
| |
| 25 | 24 | expcom 451 |
. . . . 5
|
| 26 | 23, 25 | syl 17 |
. . . 4
|
| 27 | ssun2 3777 |
. . . . . . 7
| |
| 28 | ssexg 4804 |
. . . . . . 7
| |
| 29 | 27, 16, 28 | sylancr 695 |
. . . . . 6
|
| 30 | inss2 3834 |
. . . . . 6
| |
| 31 | ssdomg 8001 |
. . . . . 6
| |
| 32 | 29, 30, 31 | mpisyl 21 |
. . . . 5
|
| 33 | domtr 8009 |
. . . . . 6
| |
| 34 | 33 | expcom 451 |
. . . . 5
|
| 35 | 32, 34 | syl 17 |
. . . 4
|
| 36 | 26, 35 | orim12d 883 |
. . 3
|
| 37 | 14, 36 | mpd 15 |
. 2
|
| 38 | 5, 37 | exlimddv 1863 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-1st 7168 df-2nd 7169 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-wdom 8464 |
| This theorem is referenced by: pwcdadom 9038 |
| Copyright terms: Public domain | W3C validator |