MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unxpwdom Structured version   Visualization version   Unicode version

Theorem unxpwdom 8494
Description: If a Cartesian product is dominated by a union, then the base set is either weakly dominated by one factor of the union or dominated by the other. Extracted from Lemma 2.3 of [KanamoriPincus] p. 420. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
unxpwdom  |-  ( ( A  X.  A )  ~<_  ( B  u.  C
)  ->  ( A  ~<_*  B  \/  A  ~<_  C ) )

Proof of Theorem unxpwdom
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 reldom 7961 . . . . 5  |-  Rel  ~<_
21brrelex2i 5159 . . . 4  |-  ( ( A  X.  A )  ~<_  ( B  u.  C
)  ->  ( B  u.  C )  e.  _V )
3 domeng 7969 . . . 4  |-  ( ( B  u.  C )  e.  _V  ->  (
( A  X.  A
)  ~<_  ( B  u.  C )  <->  E. x
( ( A  X.  A )  ~~  x  /\  x  C_  ( B  u.  C ) ) ) )
42, 3syl 17 . . 3  |-  ( ( A  X.  A )  ~<_  ( B  u.  C
)  ->  ( ( A  X.  A )  ~<_  ( B  u.  C )  <->  E. x ( ( A  X.  A )  ~~  x  /\  x  C_  ( B  u.  C )
) ) )
54ibi 256 . 2  |-  ( ( A  X.  A )  ~<_  ( B  u.  C
)  ->  E. x
( ( A  X.  A )  ~~  x  /\  x  C_  ( B  u.  C ) ) )
6 simprl 794 . . . . 5  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( A  X.  A )  ~~  x
)
7 indi 3873 . . . . . 6  |-  ( x  i^i  ( B  u.  C ) )  =  ( ( x  i^i 
B )  u.  (
x  i^i  C )
)
8 simprr 796 . . . . . . 7  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  x  C_  ( B  u.  C )
)
9 df-ss 3588 . . . . . . 7  |-  ( x 
C_  ( B  u.  C )  <->  ( x  i^i  ( B  u.  C
) )  =  x )
108, 9sylib 208 . . . . . 6  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( x  i^i  ( B  u.  C
) )  =  x )
117, 10syl5eqr 2670 . . . . 5  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( ( x  i^i  B )  u.  ( x  i^i  C
) )  =  x )
126, 11breqtrrd 4681 . . . 4  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( A  X.  A )  ~~  (
( x  i^i  B
)  u.  ( x  i^i  C ) ) )
13 unxpwdom2 8493 . . . 4  |-  ( ( A  X.  A ) 
~~  ( ( x  i^i  B )  u.  ( x  i^i  C
) )  ->  ( A  ~<_*  ( x  i^i  B
)  \/  A  ~<_  ( x  i^i  C ) ) )
1412, 13syl 17 . . 3  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( A  ~<_*  (
x  i^i  B )  \/  A  ~<_  ( x  i^i  C ) ) )
15 ssun1 3776 . . . . . . . 8  |-  B  C_  ( B  u.  C
)
162adantr 481 . . . . . . . 8  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( B  u.  C )  e.  _V )
17 ssexg 4804 . . . . . . . 8  |-  ( ( B  C_  ( B  u.  C )  /\  ( B  u.  C )  e.  _V )  ->  B  e.  _V )
1815, 16, 17sylancr 695 . . . . . . 7  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  B  e.  _V )
19 inss2 3834 . . . . . . 7  |-  ( x  i^i  B )  C_  B
20 ssdomg 8001 . . . . . . 7  |-  ( B  e.  _V  ->  (
( x  i^i  B
)  C_  B  ->  ( x  i^i  B )  ~<_  B ) )
2118, 19, 20mpisyl 21 . . . . . 6  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( x  i^i 
B )  ~<_  B )
22 domwdom 8479 . . . . . 6  |-  ( ( x  i^i  B )  ~<_  B  ->  ( x  i^i  B )  ~<_*  B )
2321, 22syl 17 . . . . 5  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( x  i^i 
B )  ~<_*  B )
24 wdomtr 8480 . . . . . 6  |-  ( ( A  ~<_*  ( x  i^i  B
)  /\  ( x  i^i  B )  ~<_*  B )  ->  A  ~<_*  B )
2524expcom 451 . . . . 5  |-  ( ( x  i^i  B )  ~<_*  B  ->  ( A  ~<_*  (
x  i^i  B )  ->  A  ~<_*  B ) )
2623, 25syl 17 . . . 4  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( A  ~<_*  (
x  i^i  B )  ->  A  ~<_*  B ) )
27 ssun2 3777 . . . . . . 7  |-  C  C_  ( B  u.  C
)
28 ssexg 4804 . . . . . . 7  |-  ( ( C  C_  ( B  u.  C )  /\  ( B  u.  C )  e.  _V )  ->  C  e.  _V )
2927, 16, 28sylancr 695 . . . . . 6  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  C  e.  _V )
30 inss2 3834 . . . . . 6  |-  ( x  i^i  C )  C_  C
31 ssdomg 8001 . . . . . 6  |-  ( C  e.  _V  ->  (
( x  i^i  C
)  C_  C  ->  ( x  i^i  C )  ~<_  C ) )
3229, 30, 31mpisyl 21 . . . . 5  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( x  i^i 
C )  ~<_  C )
33 domtr 8009 . . . . . 6  |-  ( ( A  ~<_  ( x  i^i 
C )  /\  (
x  i^i  C )  ~<_  C )  ->  A  ~<_  C )
3433expcom 451 . . . . 5  |-  ( ( x  i^i  C )  ~<_  C  ->  ( A  ~<_  ( x  i^i  C )  ->  A  ~<_  C ) )
3532, 34syl 17 . . . 4  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( A  ~<_  ( x  i^i  C )  ->  A  ~<_  C ) )
3626, 35orim12d 883 . . 3  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( ( A  ~<_*  ( x  i^i  B )  \/  A  ~<_  ( x  i^i  C ) )  ->  ( A  ~<_*  B  \/  A  ~<_  C )
) )
3714, 36mpd 15 . 2  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( A  ~<_*  B  \/  A  ~<_  C )
)
385, 37exlimddv 1863 1  |-  ( ( A  X.  A )  ~<_  ( B  u.  C
)  ->  ( A  ~<_*  B  \/  A  ~<_  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200    u. cun 3572    i^i cin 3573    C_ wss 3574   class class class wbr 4653    X. cxp 5112    ~~ cen 7952    ~<_ cdom 7953    ~<_* cwdom 8462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-wdom 8464
This theorem is referenced by:  pwcdadom  9038
  Copyright terms: Public domain W3C validator