MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrf1oedg Structured version   Visualization version   GIF version

Theorem uspgrf1oedg 26068
Description: The edge function of a simple pseudograph is a bijective function onto the edges of the graph. (Contributed by AV, 2-Jan-2020.) (Revised by AV, 15-Oct-2020.)
Hypothesis
Ref Expression
usgrf1o.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
uspgrf1oedg (𝐺 ∈ USPGraph → 𝐸:dom 𝐸1-1-onto→(Edg‘𝐺))

Proof of Theorem uspgrf1oedg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
2 usgrf1o.e . . 3 𝐸 = (iEdg‘𝐺)
31, 2uspgrf 26049 . 2 (𝐺 ∈ USPGraph → 𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
4 f1f1orn 6148 . . 3 (𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2} → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
52rneqi 5352 . . . . 5 ran 𝐸 = ran (iEdg‘𝐺)
6 edgval 25941 . . . . 5 (Edg‘𝐺) = ran (iEdg‘𝐺)
75, 6eqtr4i 2647 . . . 4 ran 𝐸 = (Edg‘𝐺)
8 f1oeq3 6129 . . . 4 (ran 𝐸 = (Edg‘𝐺) → (𝐸:dom 𝐸1-1-onto→ran 𝐸𝐸:dom 𝐸1-1-onto→(Edg‘𝐺)))
97, 8ax-mp 5 . . 3 (𝐸:dom 𝐸1-1-onto→ran 𝐸𝐸:dom 𝐸1-1-onto→(Edg‘𝐺))
104, 9sylib 208 . 2 (𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2} → 𝐸:dom 𝐸1-1-onto→(Edg‘𝐺))
113, 10syl 17 1 (𝐺 ∈ USPGraph → 𝐸:dom 𝐸1-1-onto→(Edg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wcel 1990  {crab 2916  cdif 3571  c0 3915  𝒫 cpw 4158  {csn 4177   class class class wbr 4653  dom cdm 5114  ran crn 5115  1-1wf1 5885  1-1-ontowf1o 5887  cfv 5888  cle 10075  2c2 11070  #chash 13117  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   USPGraph cuspgr 26043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-edg 25940  df-uspgr 26045
This theorem is referenced by:  uspgr2wlkeq  26542  wlkiswwlks2lem4  26758  wlkiswwlks2lem5  26759  clwlkclwwlk  26903
  Copyright terms: Public domain W3C validator