![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1oeq3 | Structured version Visualization version GIF version |
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.) |
Ref | Expression |
---|---|
f1oeq3 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1eq3 6098 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–1-1→𝐴 ↔ 𝐹:𝐶–1-1→𝐵)) | |
2 | foeq3 6113 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–onto→𝐴 ↔ 𝐹:𝐶–onto→𝐵)) | |
3 | 1, 2 | anbi12d 747 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹:𝐶–1-1→𝐴 ∧ 𝐹:𝐶–onto→𝐴) ↔ (𝐹:𝐶–1-1→𝐵 ∧ 𝐹:𝐶–onto→𝐵))) |
4 | df-f1o 5895 | . 2 ⊢ (𝐹:𝐶–1-1-onto→𝐴 ↔ (𝐹:𝐶–1-1→𝐴 ∧ 𝐹:𝐶–onto→𝐴)) | |
5 | df-f1o 5895 | . 2 ⊢ (𝐹:𝐶–1-1-onto→𝐵 ↔ (𝐹:𝐶–1-1→𝐵 ∧ 𝐹:𝐶–onto→𝐵)) | |
6 | 3, 4, 5 | 3bitr4g 303 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 –1-1→wf1 5885 –onto→wfo 5886 –1-1-onto→wf1o 5887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-in 3581 df-ss 3588 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 |
This theorem is referenced by: f1oeq23 6130 f1oeq123d 6133 f1oeq3d 6134 f1ores 6151 resin 6158 f1osng 6177 f1oresrab 6395 fveqf1o 6557 isoeq5 6571 isoini2 6589 ncanth 6609 oacomf1o 7645 mapsnf1o 7949 bren 7964 xpcomf1o 8049 domss2 8119 isinf 8173 wemapwe 8594 oef1o 8595 cnfcomlem 8596 cnfcom2 8599 cnfcom3 8601 cnfcom3clem 8602 infxpenc 8841 infxpenc2lem1 8842 infxpenc2 8845 fin1a2lem6 9227 hsmexlem1 9248 pwfseqlem5 9485 pwfseq 9486 hashgf1o 12770 axdc4uzlem 12782 sumeq1 14419 fsumss 14456 fsumcnv 14504 prodeq1f 14638 fprodss 14678 fprodcnv 14713 unbenlem 15612 4sqlem11 15659 pwssnf1o 16158 catcisolem 16756 yoniso 16925 gsumvalx 17270 gsumpropd 17272 gsumpropd2lem 17273 xpsmnd 17330 xpsgrp 17534 cayley 17834 cayleyth 17835 gsumval3lem1 18306 gsumval3lem2 18307 gsumcom2 18374 scmatrngiso 20342 m2cpmrngiso 20563 cncfcnvcn 22724 ovolicc2lem4 23288 logf1o2 24396 uspgrf1oedg 26068 wlkiswwlks2lem4 26758 clwwlksvbij 26922 adjbd1o 28944 rinvf1o 29432 eulerpartgbij 30434 eulerpartlemgh 30440 derangval 31149 subfacp1lem2a 31162 subfacp1lem3 31164 subfacp1lem5 31166 mrsubff1o 31412 msubff1o 31454 bj-finsumval0 33147 f1omptsnlem 33183 f1omptsn 33184 poimirlem4 33413 poimirlem9 33418 poimirlem15 33424 ismtyval 33599 ismrer1 33637 rngoisoval 33776 lautset 35368 pautsetN 35384 hvmap1o2 37054 pwfi2f1o 37666 imasgim 37670 uspgrsprfo 41756 |
Copyright terms: Public domain | W3C validator |