MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardmin2 Structured version   Visualization version   GIF version

Theorem cardmin2 8824
Description: The smallest ordinal that strictly dominates a set is a cardinal, if it exists. (Contributed by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
cardmin2 (∃𝑥 ∈ On 𝐴𝑥 ↔ (card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem cardmin2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 onintrab2 7002 . . . 4 (∃𝑥 ∈ On 𝐴𝑥 {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On)
21biimpi 206 . . 3 (∃𝑥 ∈ On 𝐴𝑥 {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On)
32adantr 481 . . . . . 6 ((∃𝑥 ∈ On 𝐴𝑥𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On)
4 eloni 5733 . . . . . . . 8 ( {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On → Ord {𝑥 ∈ On ∣ 𝐴𝑥})
5 ordelss 5739 . . . . . . . 8 ((Ord {𝑥 ∈ On ∣ 𝐴𝑥} ∧ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
64, 5sylan 488 . . . . . . 7 (( {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On ∧ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
71, 6sylanb 489 . . . . . 6 ((∃𝑥 ∈ On 𝐴𝑥𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
8 ssdomg 8001 . . . . . 6 ( {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}))
93, 7, 8sylc 65 . . . . 5 ((∃𝑥 ∈ On 𝐴𝑥𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
10 onelon 5748 . . . . . . . 8 (( {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On ∧ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → 𝑦 ∈ On)
111, 10sylanb 489 . . . . . . 7 ((∃𝑥 ∈ On 𝐴𝑥𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → 𝑦 ∈ On)
12 nfcv 2764 . . . . . . . . . . . . . 14 𝑥𝐴
13 nfcv 2764 . . . . . . . . . . . . . 14 𝑥
14 nfrab1 3122 . . . . . . . . . . . . . . 15 𝑥{𝑥 ∈ On ∣ 𝐴𝑥}
1514nfint 4486 . . . . . . . . . . . . . 14 𝑥 {𝑥 ∈ On ∣ 𝐴𝑥}
1612, 13, 15nfbr 4699 . . . . . . . . . . . . 13 𝑥 𝐴 {𝑥 ∈ On ∣ 𝐴𝑥}
17 breq2 4657 . . . . . . . . . . . . 13 (𝑥 = {𝑥 ∈ On ∣ 𝐴𝑥} → (𝐴𝑥𝐴 {𝑥 ∈ On ∣ 𝐴𝑥}))
1816, 17onminsb 6999 . . . . . . . . . . . 12 (∃𝑥 ∈ On 𝐴𝑥𝐴 {𝑥 ∈ On ∣ 𝐴𝑥})
19 sdomentr 8094 . . . . . . . . . . . 12 ((𝐴 {𝑥 ∈ On ∣ 𝐴𝑥} ∧ {𝑥 ∈ On ∣ 𝐴𝑥} ≈ 𝑦) → 𝐴𝑦)
2018, 19sylan 488 . . . . . . . . . . 11 ((∃𝑥 ∈ On 𝐴𝑥 {𝑥 ∈ On ∣ 𝐴𝑥} ≈ 𝑦) → 𝐴𝑦)
21 breq2 4657 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
2221elrab 3363 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑥 ∈ On ∣ 𝐴𝑥} ↔ (𝑦 ∈ On ∧ 𝐴𝑦))
23 ssrab2 3687 . . . . . . . . . . . . . 14 {𝑥 ∈ On ∣ 𝐴𝑥} ⊆ On
24 onnmin 7003 . . . . . . . . . . . . . 14 (({𝑥 ∈ On ∣ 𝐴𝑥} ⊆ On ∧ 𝑦 ∈ {𝑥 ∈ On ∣ 𝐴𝑥}) → ¬ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
2523, 24mpan 706 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑥 ∈ On ∣ 𝐴𝑥} → ¬ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
2622, 25sylbir 225 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ 𝐴𝑦) → ¬ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
2726expcom 451 . . . . . . . . . . 11 (𝐴𝑦 → (𝑦 ∈ On → ¬ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}))
2820, 27syl 17 . . . . . . . . . 10 ((∃𝑥 ∈ On 𝐴𝑥 {𝑥 ∈ On ∣ 𝐴𝑥} ≈ 𝑦) → (𝑦 ∈ On → ¬ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}))
2928impancom 456 . . . . . . . . 9 ((∃𝑥 ∈ On 𝐴𝑥𝑦 ∈ On) → ( {𝑥 ∈ On ∣ 𝐴𝑥} ≈ 𝑦 → ¬ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}))
3029con2d 129 . . . . . . . 8 ((∃𝑥 ∈ On 𝐴𝑥𝑦 ∈ On) → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → ¬ {𝑥 ∈ On ∣ 𝐴𝑥} ≈ 𝑦))
3130impancom 456 . . . . . . 7 ((∃𝑥 ∈ On 𝐴𝑥𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → (𝑦 ∈ On → ¬ {𝑥 ∈ On ∣ 𝐴𝑥} ≈ 𝑦))
3211, 31mpd 15 . . . . . 6 ((∃𝑥 ∈ On 𝐴𝑥𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → ¬ {𝑥 ∈ On ∣ 𝐴𝑥} ≈ 𝑦)
33 ensym 8005 . . . . . 6 (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → {𝑥 ∈ On ∣ 𝐴𝑥} ≈ 𝑦)
3432, 33nsyl 135 . . . . 5 ((∃𝑥 ∈ On 𝐴𝑥𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → ¬ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
35 brsdom 7978 . . . . 5 (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} ↔ (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} ∧ ¬ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}))
369, 34, 35sylanbrc 698 . . . 4 ((∃𝑥 ∈ On 𝐴𝑥𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
3736ralrimiva 2966 . . 3 (∃𝑥 ∈ On 𝐴𝑥 → ∀𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
38 iscard 8801 . . 3 ((card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥} ↔ ( {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On ∧ ∀𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}))
392, 37, 38sylanbrc 698 . 2 (∃𝑥 ∈ On 𝐴𝑥 → (card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥})
40 vprc 4796 . . . . . 6 ¬ V ∈ V
41 inteq 4478 . . . . . . . 8 ({𝑥 ∈ On ∣ 𝐴𝑥} = ∅ → {𝑥 ∈ On ∣ 𝐴𝑥} = ∅)
42 int0 4490 . . . . . . . 8 ∅ = V
4341, 42syl6eq 2672 . . . . . . 7 ({𝑥 ∈ On ∣ 𝐴𝑥} = ∅ → {𝑥 ∈ On ∣ 𝐴𝑥} = V)
4443eleq1d 2686 . . . . . 6 ({𝑥 ∈ On ∣ 𝐴𝑥} = ∅ → ( {𝑥 ∈ On ∣ 𝐴𝑥} ∈ V ↔ V ∈ V))
4540, 44mtbiri 317 . . . . 5 ({𝑥 ∈ On ∣ 𝐴𝑥} = ∅ → ¬ {𝑥 ∈ On ∣ 𝐴𝑥} ∈ V)
46 fvex 6201 . . . . . 6 (card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) ∈ V
47 eleq1 2689 . . . . . 6 ((card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥} → ((card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) ∈ V ↔ {𝑥 ∈ On ∣ 𝐴𝑥} ∈ V))
4846, 47mpbii 223 . . . . 5 ((card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥} → {𝑥 ∈ On ∣ 𝐴𝑥} ∈ V)
4945, 48nsyl 135 . . . 4 ({𝑥 ∈ On ∣ 𝐴𝑥} = ∅ → ¬ (card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥})
5049necon2ai 2823 . . 3 ((card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥} → {𝑥 ∈ On ∣ 𝐴𝑥} ≠ ∅)
51 rabn0 3958 . . 3 ({𝑥 ∈ On ∣ 𝐴𝑥} ≠ ∅ ↔ ∃𝑥 ∈ On 𝐴𝑥)
5250, 51sylib 208 . 2 ((card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥} → ∃𝑥 ∈ On 𝐴𝑥)
5339, 52impbii 199 1 (∃𝑥 ∈ On 𝐴𝑥 ↔ (card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  wss 3574  c0 3915   cint 4475   class class class wbr 4653  Ord word 5722  Oncon0 5723  cfv 5888  cen 7952  cdom 7953  csdm 7954  cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-card 8765
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator