MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wereu2 Structured version   Visualization version   GIF version

Theorem wereu2 5111
Description: All nonempty (possibly proper) subclasses of 𝐴, which has a well-founded relation 𝑅, have 𝑅-minimal elements. Proposition 6.26 of [TakeutiZaring] p. 31. (Contributed by Scott Fenton, 29-Jan-2011.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
wereu2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦

Proof of Theorem wereu2
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 3931 . . . 4 (𝐵 ≠ ∅ ↔ ∃𝑧 𝑧𝐵)
2 rabeq0 3957 . . . . . . . 8 ({𝑤𝐵𝑤𝑅𝑧} = ∅ ↔ ∀𝑤𝐵 ¬ 𝑤𝑅𝑧)
3 breq1 4656 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → (𝑦𝑅𝑥𝑤𝑅𝑥))
43notbid 308 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑤𝑅𝑥))
54cbvralv 3171 . . . . . . . . . . . 12 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∀𝑤𝐵 ¬ 𝑤𝑅𝑥)
6 breq2 4657 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑤𝑅𝑥𝑤𝑅𝑧))
76notbid 308 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (¬ 𝑤𝑅𝑥 ↔ ¬ 𝑤𝑅𝑧))
87ralbidv 2986 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (∀𝑤𝐵 ¬ 𝑤𝑅𝑥 ↔ ∀𝑤𝐵 ¬ 𝑤𝑅𝑧))
95, 8syl5bb 272 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∀𝑤𝐵 ¬ 𝑤𝑅𝑧))
109rspcev 3309 . . . . . . . . . 10 ((𝑧𝐵 ∧ ∀𝑤𝐵 ¬ 𝑤𝑅𝑧) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
1110ex 450 . . . . . . . . 9 (𝑧𝐵 → (∀𝑤𝐵 ¬ 𝑤𝑅𝑧 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
1211ad2antll 765 . . . . . . . 8 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → (∀𝑤𝐵 ¬ 𝑤𝑅𝑧 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
132, 12syl5bi 232 . . . . . . 7 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → ({𝑤𝐵𝑤𝑅𝑧} = ∅ → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
14 simprl 794 . . . . . . . . . . 11 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → 𝐵𝐴)
15 simplr 792 . . . . . . . . . . 11 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → 𝑅 Se 𝐴)
16 sess2 5083 . . . . . . . . . . 11 (𝐵𝐴 → (𝑅 Se 𝐴𝑅 Se 𝐵))
1714, 15, 16sylc 65 . . . . . . . . . 10 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → 𝑅 Se 𝐵)
18 simprr 796 . . . . . . . . . 10 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → 𝑧𝐵)
19 seex 5077 . . . . . . . . . 10 ((𝑅 Se 𝐵𝑧𝐵) → {𝑤𝐵𝑤𝑅𝑧} ∈ V)
2017, 18, 19syl2anc 693 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → {𝑤𝐵𝑤𝑅𝑧} ∈ V)
21 wefr 5104 . . . . . . . . . 10 (𝑅 We 𝐴𝑅 Fr 𝐴)
2221ad2antrr 762 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → 𝑅 Fr 𝐴)
23 ssrab2 3687 . . . . . . . . . 10 {𝑤𝐵𝑤𝑅𝑧} ⊆ 𝐵
2423, 14syl5ss 3614 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → {𝑤𝐵𝑤𝑅𝑧} ⊆ 𝐴)
25 fri 5076 . . . . . . . . . 10 ((({𝑤𝐵𝑤𝑅𝑧} ∈ V ∧ 𝑅 Fr 𝐴) ∧ ({𝑤𝐵𝑤𝑅𝑧} ⊆ 𝐴 ∧ {𝑤𝐵𝑤𝑅𝑧} ≠ ∅)) → ∃𝑥 ∈ {𝑤𝐵𝑤𝑅𝑧}∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥)
2625expr 643 . . . . . . . . 9 ((({𝑤𝐵𝑤𝑅𝑧} ∈ V ∧ 𝑅 Fr 𝐴) ∧ {𝑤𝐵𝑤𝑅𝑧} ⊆ 𝐴) → ({𝑤𝐵𝑤𝑅𝑧} ≠ ∅ → ∃𝑥 ∈ {𝑤𝐵𝑤𝑅𝑧}∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥))
2720, 22, 24, 26syl21anc 1325 . . . . . . . 8 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → ({𝑤𝐵𝑤𝑅𝑧} ≠ ∅ → ∃𝑥 ∈ {𝑤𝐵𝑤𝑅𝑧}∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥))
28 breq1 4656 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝑤𝑅𝑧𝑥𝑅𝑧))
2928rexrab 3370 . . . . . . . . 9 (∃𝑥 ∈ {𝑤𝐵𝑤𝑅𝑧}∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥 ↔ ∃𝑥𝐵 (𝑥𝑅𝑧 ∧ ∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥))
30 breq1 4656 . . . . . . . . . . . . 13 (𝑤 = 𝑦 → (𝑤𝑅𝑧𝑦𝑅𝑧))
3130ralrab 3368 . . . . . . . . . . . 12 (∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥 ↔ ∀𝑦𝐵 (𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑥))
32 weso 5105 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 We 𝐴𝑅 Or 𝐴)
3332ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → 𝑅 Or 𝐴)
34 soss 5053 . . . . . . . . . . . . . . . . . . . . 21 (𝐵𝐴 → (𝑅 Or 𝐴𝑅 Or 𝐵))
3514, 33, 34sylc 65 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → 𝑅 Or 𝐵)
3635ad2antrr 762 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑅 Or 𝐵)
37 simpr 477 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑦𝐵)
38 simplr 792 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑥𝐵)
3918ad2antrr 762 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑧𝐵)
40 sotr 5057 . . . . . . . . . . . . . . . . . . 19 ((𝑅 Or 𝐵 ∧ (𝑦𝐵𝑥𝐵𝑧𝐵)) → ((𝑦𝑅𝑥𝑥𝑅𝑧) → 𝑦𝑅𝑧))
4136, 37, 38, 39, 40syl13anc 1328 . . . . . . . . . . . . . . . . . 18 (((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((𝑦𝑅𝑥𝑥𝑅𝑧) → 𝑦𝑅𝑧))
4241ancomsd 470 . . . . . . . . . . . . . . . . 17 (((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((𝑥𝑅𝑧𝑦𝑅𝑥) → 𝑦𝑅𝑧))
4342expdimp 453 . . . . . . . . . . . . . . . 16 ((((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑥𝑅𝑧) → (𝑦𝑅𝑥𝑦𝑅𝑧))
4443an32s 846 . . . . . . . . . . . . . . 15 ((((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) ∧ 𝑦𝐵) → (𝑦𝑅𝑥𝑦𝑅𝑧))
4544con3d 148 . . . . . . . . . . . . . 14 ((((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) ∧ 𝑦𝐵) → (¬ 𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑥))
46 idd 24 . . . . . . . . . . . . . 14 ((((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) ∧ 𝑦𝐵) → (¬ 𝑦𝑅𝑥 → ¬ 𝑦𝑅𝑥))
4745, 46jad 174 . . . . . . . . . . . . 13 ((((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) ∧ 𝑦𝐵) → ((𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑥) → ¬ 𝑦𝑅𝑥))
4847ralimdva 2962 . . . . . . . . . . . 12 (((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) → (∀𝑦𝐵 (𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑥) → ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
4931, 48syl5bi 232 . . . . . . . . . . 11 (((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) → (∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥 → ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
5049expimpd 629 . . . . . . . . . 10 ((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) → ((𝑥𝑅𝑧 ∧ ∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥) → ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
5150reximdva 3017 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → (∃𝑥𝐵 (𝑥𝑅𝑧 ∧ ∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
5229, 51syl5bi 232 . . . . . . . 8 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → (∃𝑥 ∈ {𝑤𝐵𝑤𝑅𝑧}∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
5327, 52syld 47 . . . . . . 7 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → ({𝑤𝐵𝑤𝑅𝑧} ≠ ∅ → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
5413, 53pm2.61dne 2880 . . . . . 6 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
5554expr 643 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝐵𝐴) → (𝑧𝐵 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
5655exlimdv 1861 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝐵𝐴) → (∃𝑧 𝑧𝐵 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
571, 56syl5bi 232 . . 3 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝐵𝐴) → (𝐵 ≠ ∅ → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
5857impr 649 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
59 simprl 794 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → 𝐵𝐴)
6032ad2antrr 762 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → 𝑅 Or 𝐴)
6159, 60, 34sylc 65 . . 3 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → 𝑅 Or 𝐵)
62 somo 5069 . . 3 (𝑅 Or 𝐵 → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
6361, 62syl 17 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
64 reu5 3159 . 2 (∃!𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ (∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
6558, 63, 64sylanbrc 698 1 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  wrex 2913  ∃!wreu 2914  ∃*wrmo 2915  {crab 2916  Vcvv 3200  wss 3574  c0 3915   class class class wbr 4653   Or wor 5034   Fr wfr 5070   Se wse 5071   We wwe 5072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075
This theorem is referenced by:  tz6.26  5711  weniso  6604  ordtypelem3  8425  dfac8clem  8855
  Copyright terms: Public domain W3C validator