Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wopprc Structured version   Visualization version   GIF version

Theorem wopprc 37597
Description: Unrelated: Wiener pairs treat proper classes symmetrically. (Contributed by Stefan O'Rear, 19-Sep-2014.)
Assertion
Ref Expression
wopprc ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ ¬ 1𝑜 ∈ {{{𝐴}, ∅}, {{𝐵}}})

Proof of Theorem wopprc
StepHypRef Expression
1 dfsn2 4190 . . . . . . . . 9 {∅} = {∅, ∅}
2 id 22 . . . . . . . . 9 ({∅} = {{𝐴}, ∅} → {∅} = {{𝐴}, ∅})
31, 2syl5reqr 2671 . . . . . . . 8 ({∅} = {{𝐴}, ∅} → {{𝐴}, ∅} = {∅, ∅})
4 snex 4908 . . . . . . . . 9 {𝐴} ∈ V
5 0ex 4790 . . . . . . . . 9 ∅ ∈ V
64, 5preqr1 4379 . . . . . . . 8 ({{𝐴}, ∅} = {∅, ∅} → {𝐴} = ∅)
73, 6syl 17 . . . . . . 7 ({∅} = {{𝐴}, ∅} → {𝐴} = ∅)
8 snprc 4253 . . . . . . 7 𝐴 ∈ V ↔ {𝐴} = ∅)
97, 8sylibr 224 . . . . . 6 ({∅} = {{𝐴}, ∅} → ¬ 𝐴 ∈ V)
108biimpi 206 . . . . . . . 8 𝐴 ∈ V → {𝐴} = ∅)
1110preq1d 4274 . . . . . . 7 𝐴 ∈ V → {{𝐴}, ∅} = {∅, ∅})
1211, 1syl6reqr 2675 . . . . . 6 𝐴 ∈ V → {∅} = {{𝐴}, ∅})
139, 12impbii 199 . . . . 5 ({∅} = {{𝐴}, ∅} ↔ ¬ 𝐴 ∈ V)
1413con2bii 347 . . . 4 (𝐴 ∈ V ↔ ¬ {∅} = {{𝐴}, ∅})
15 snprc 4253 . . . . . . 7 𝐵 ∈ V ↔ {𝐵} = ∅)
16 eqcom 2629 . . . . . . 7 ({𝐵} = ∅ ↔ ∅ = {𝐵})
1715, 16bitr2i 265 . . . . . 6 (∅ = {𝐵} ↔ ¬ 𝐵 ∈ V)
1817con2bii 347 . . . . 5 (𝐵 ∈ V ↔ ¬ ∅ = {𝐵})
195sneqr 4371 . . . . . 6 ({∅} = {{𝐵}} → ∅ = {𝐵})
20 sneq 4187 . . . . . 6 (∅ = {𝐵} → {∅} = {{𝐵}})
2119, 20impbii 199 . . . . 5 ({∅} = {{𝐵}} ↔ ∅ = {𝐵})
2218, 21xchbinxr 325 . . . 4 (𝐵 ∈ V ↔ ¬ {∅} = {{𝐵}})
2314, 22anbi12i 733 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (¬ {∅} = {{𝐴}, ∅} ∧ ¬ {∅} = {{𝐵}}))
24 pm4.56 516 . . . 4 ((¬ {∅} = {{𝐴}, ∅} ∧ ¬ {∅} = {{𝐵}}) ↔ ¬ ({∅} = {{𝐴}, ∅} ∨ {∅} = {{𝐵}}))
25 snex 4908 . . . . 5 {∅} ∈ V
2625elpr 4198 . . . 4 ({∅} ∈ {{{𝐴}, ∅}, {{𝐵}}} ↔ ({∅} = {{𝐴}, ∅} ∨ {∅} = {{𝐵}}))
2724, 26xchbinxr 325 . . 3 ((¬ {∅} = {{𝐴}, ∅} ∧ ¬ {∅} = {{𝐵}}) ↔ ¬ {∅} ∈ {{{𝐴}, ∅}, {{𝐵}}})
2823, 27bitri 264 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ ¬ {∅} ∈ {{{𝐴}, ∅}, {{𝐵}}})
29 df1o2 7572 . . 3 1𝑜 = {∅}
3029eleq1i 2692 . 2 (1𝑜 ∈ {{{𝐴}, ∅}, {{𝐵}}} ↔ {∅} ∈ {{{𝐴}, ∅}, {{𝐵}}})
3128, 30xchbinxr 325 1 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ ¬ 1𝑜 ∈ {{{𝐴}, ∅}, {{𝐵}}})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  c0 3915  {csn 4177  {cpr 4179  1𝑜c1o 7553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-un 3579  df-nul 3916  df-sn 4178  df-pr 4180  df-suc 5729  df-1o 7560
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator