![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > preq1d | Structured version Visualization version GIF version |
Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
Ref | Expression |
---|---|
preq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
preq1d | ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | preq1 4268 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 {cpr 4179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-sn 4178 df-pr 4180 |
This theorem is referenced by: propeqop 4970 opthwiener 4976 fprg 6422 fnpr2g 6474 dfac2 8953 symg2bas 17818 crctcshwlkn0lem6 26707 wwlksnredwwlkn 26790 wwlksnextprop 26807 clwlkclwwlklem2fv1 26896 clwlkclwwlklem2fv2 26897 clwlkclwwlklem2a 26899 clwlkclwwlklem3 26902 clwwlks1loop 26908 clwwlksn1loop 26909 clwwisshclwwslem 26927 frcond1 27130 frgr1v 27135 nfrgr2v 27136 frgr3v 27139 n4cyclfrgr 27155 fprb 31669 wopprc 37597 |
Copyright terms: Public domain | W3C validator |