Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xppreima2 Structured version   Visualization version   Unicode version

Theorem xppreima2 29450
Description: The preimage of a Cartesian product is the intersection of the preimages of each component function. (Contributed by Thierry Arnoux, 7-Jun-2017.)
Hypotheses
Ref Expression
xppreima2.1  |-  ( ph  ->  F : A --> B )
xppreima2.2  |-  ( ph  ->  G : A --> C )
xppreima2.3  |-  H  =  ( x  e.  A  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
)
Assertion
Ref Expression
xppreima2  |-  ( ph  ->  ( `' H "
( Y  X.  Z
) )  =  ( ( `' F " Y )  i^i  ( `' G " Z ) ) )
Distinct variable groups:    x, A    x, B    x, C    x, F    x, G    x, H    ph, x
Allowed substitution hints:    Y( x)    Z( x)

Proof of Theorem xppreima2
StepHypRef Expression
1 xppreima2.3 . . . 4  |-  H  =  ( x  e.  A  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
)
21funmpt2 5927 . . 3  |-  Fun  H
3 xppreima2.1 . . . . . . . 8  |-  ( ph  ->  F : A --> B )
43ffvelrnda 6359 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  e.  B )
5 xppreima2.2 . . . . . . . 8  |-  ( ph  ->  G : A --> C )
65ffvelrnda 6359 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( G `  x )  e.  C )
7 opelxp 5146 . . . . . . 7  |-  ( <.
( F `  x
) ,  ( G `
 x ) >.  e.  ( B  X.  C
)  <->  ( ( F `
 x )  e.  B  /\  ( G `
 x )  e.  C ) )
84, 6, 7sylanbrc 698 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  <. ( F `  x ) ,  ( G `  x ) >.  e.  ( B  X.  C ) )
98, 1fmptd 6385 . . . . 5  |-  ( ph  ->  H : A --> ( B  X.  C ) )
10 frn 6053 . . . . 5  |-  ( H : A --> ( B  X.  C )  ->  ran  H  C_  ( B  X.  C ) )
119, 10syl 17 . . . 4  |-  ( ph  ->  ran  H  C_  ( B  X.  C ) )
12 xpss 5226 . . . 4  |-  ( B  X.  C )  C_  ( _V  X.  _V )
1311, 12syl6ss 3615 . . 3  |-  ( ph  ->  ran  H  C_  ( _V  X.  _V ) )
14 xppreima 29449 . . 3  |-  ( ( Fun  H  /\  ran  H 
C_  ( _V  X.  _V ) )  ->  ( `' H " ( Y  X.  Z ) )  =  ( ( `' ( 1st  o.  H
) " Y )  i^i  ( `' ( 2nd  o.  H )
" Z ) ) )
152, 13, 14sylancr 695 . 2  |-  ( ph  ->  ( `' H "
( Y  X.  Z
) )  =  ( ( `' ( 1st 
o.  H ) " Y )  i^i  ( `' ( 2nd  o.  H ) " Z
) ) )
16 fo1st 7188 . . . . . . . . 9  |-  1st : _V -onto-> _V
17 fofn 6117 . . . . . . . . 9  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
1816, 17ax-mp 5 . . . . . . . 8  |-  1st  Fn  _V
19 opex 4932 . . . . . . . . 9  |-  <. ( F `  x ) ,  ( G `  x ) >.  e.  _V
2019, 1fnmpti 6022 . . . . . . . 8  |-  H  Fn  A
21 ssv 3625 . . . . . . . 8  |-  ran  H  C_ 
_V
22 fnco 5999 . . . . . . . 8  |-  ( ( 1st  Fn  _V  /\  H  Fn  A  /\  ran  H  C_  _V )  ->  ( 1st  o.  H
)  Fn  A )
2318, 20, 21, 22mp3an 1424 . . . . . . 7  |-  ( 1st 
o.  H )  Fn  A
2423a1i 11 . . . . . 6  |-  ( ph  ->  ( 1st  o.  H
)  Fn  A )
25 ffn 6045 . . . . . . 7  |-  ( F : A --> B  ->  F  Fn  A )
263, 25syl 17 . . . . . 6  |-  ( ph  ->  F  Fn  A )
272a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  Fun  H )
2813adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ran  H 
C_  ( _V  X.  _V ) )
29 simpr 477 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
3019, 1dmmpti 6023 . . . . . . . . . . 11  |-  dom  H  =  A
3129, 30syl6eleqr 2712 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  dom  H )
32 opfv 29448 . . . . . . . . . 10  |-  ( ( ( Fun  H  /\  ran  H  C_  ( _V  X.  _V ) )  /\  x  e.  dom  H )  ->  ( H `  x )  =  <. ( ( 1st  o.  H
) `  x ) ,  ( ( 2nd 
o.  H ) `  x ) >. )
3327, 28, 31, 32syl21anc 1325 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( H `  x )  =  <. ( ( 1st 
o.  H ) `  x ) ,  ( ( 2nd  o.  H
) `  x ) >. )
341fvmpt2 6291 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  <.
( F `  x
) ,  ( G `
 x ) >.  e.  ( B  X.  C
) )  ->  ( H `  x )  =  <. ( F `  x ) ,  ( G `  x )
>. )
3529, 8, 34syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( H `  x )  =  <. ( F `  x ) ,  ( G `  x )
>. )
3633, 35eqtr3d 2658 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  <. (
( 1st  o.  H
) `  x ) ,  ( ( 2nd 
o.  H ) `  x ) >.  =  <. ( F `  x ) ,  ( G `  x ) >. )
37 fvex 6201 . . . . . . . . 9  |-  ( ( 1st  o.  H ) `
 x )  e. 
_V
38 fvex 6201 . . . . . . . . 9  |-  ( ( 2nd  o.  H ) `
 x )  e. 
_V
3937, 38opth 4945 . . . . . . . 8  |-  ( <.
( ( 1st  o.  H ) `  x
) ,  ( ( 2nd  o.  H ) `
 x ) >.  =  <. ( F `  x ) ,  ( G `  x )
>. 
<->  ( ( ( 1st 
o.  H ) `  x )  =  ( F `  x )  /\  ( ( 2nd 
o.  H ) `  x )  =  ( G `  x ) ) )
4036, 39sylib 208 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( 1st  o.  H ) `  x
)  =  ( F `
 x )  /\  ( ( 2nd  o.  H ) `  x
)  =  ( G `
 x ) ) )
4140simpld 475 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( 1st  o.  H
) `  x )  =  ( F `  x ) )
4224, 26, 41eqfnfvd 6314 . . . . 5  |-  ( ph  ->  ( 1st  o.  H
)  =  F )
4342cnveqd 5298 . . . 4  |-  ( ph  ->  `' ( 1st  o.  H )  =  `' F )
4443imaeq1d 5465 . . 3  |-  ( ph  ->  ( `' ( 1st 
o.  H ) " Y )  =  ( `' F " Y ) )
45 fo2nd 7189 . . . . . . . . 9  |-  2nd : _V -onto-> _V
46 fofn 6117 . . . . . . . . 9  |-  ( 2nd
: _V -onto-> _V  ->  2nd 
Fn  _V )
4745, 46ax-mp 5 . . . . . . . 8  |-  2nd  Fn  _V
48 fnco 5999 . . . . . . . 8  |-  ( ( 2nd  Fn  _V  /\  H  Fn  A  /\  ran  H  C_  _V )  ->  ( 2nd  o.  H
)  Fn  A )
4947, 20, 21, 48mp3an 1424 . . . . . . 7  |-  ( 2nd 
o.  H )  Fn  A
5049a1i 11 . . . . . 6  |-  ( ph  ->  ( 2nd  o.  H
)  Fn  A )
51 ffn 6045 . . . . . . 7  |-  ( G : A --> C  ->  G  Fn  A )
525, 51syl 17 . . . . . 6  |-  ( ph  ->  G  Fn  A )
5340simprd 479 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( 2nd  o.  H
) `  x )  =  ( G `  x ) )
5450, 52, 53eqfnfvd 6314 . . . . 5  |-  ( ph  ->  ( 2nd  o.  H
)  =  G )
5554cnveqd 5298 . . . 4  |-  ( ph  ->  `' ( 2nd  o.  H )  =  `' G )
5655imaeq1d 5465 . . 3  |-  ( ph  ->  ( `' ( 2nd 
o.  H ) " Z )  =  ( `' G " Z ) )
5744, 56ineq12d 3815 . 2  |-  ( ph  ->  ( ( `' ( 1st  o.  H )
" Y )  i^i  ( `' ( 2nd 
o.  H ) " Z ) )  =  ( ( `' F " Y )  i^i  ( `' G " Z ) ) )
5815, 57eqtrd 2656 1  |-  ( ph  ->  ( `' H "
( Y  X.  Z
) )  =  ( ( `' F " Y )  i^i  ( `' G " Z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574   <.cop 4183    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117    o. ccom 5118   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888   1stc1st 7166   2ndc2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-1st 7168  df-2nd 7169
This theorem is referenced by:  mbfmco2  30327
  Copyright terms: Public domain W3C validator