| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xppreima2 | Structured version Visualization version Unicode version | ||
| Description: The preimage of a Cartesian product is the intersection of the preimages of each component function. (Contributed by Thierry Arnoux, 7-Jun-2017.) |
| Ref | Expression |
|---|---|
| xppreima2.1 |
|
| xppreima2.2 |
|
| xppreima2.3 |
|
| Ref | Expression |
|---|---|
| xppreima2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xppreima2.3 |
. . . 4
| |
| 2 | 1 | funmpt2 5927 |
. . 3
|
| 3 | xppreima2.1 |
. . . . . . . 8
| |
| 4 | 3 | ffvelrnda 6359 |
. . . . . . 7
|
| 5 | xppreima2.2 |
. . . . . . . 8
| |
| 6 | 5 | ffvelrnda 6359 |
. . . . . . 7
|
| 7 | opelxp 5146 |
. . . . . . 7
| |
| 8 | 4, 6, 7 | sylanbrc 698 |
. . . . . 6
|
| 9 | 8, 1 | fmptd 6385 |
. . . . 5
|
| 10 | frn 6053 |
. . . . 5
| |
| 11 | 9, 10 | syl 17 |
. . . 4
|
| 12 | xpss 5226 |
. . . 4
| |
| 13 | 11, 12 | syl6ss 3615 |
. . 3
|
| 14 | xppreima 29449 |
. . 3
| |
| 15 | 2, 13, 14 | sylancr 695 |
. 2
|
| 16 | fo1st 7188 |
. . . . . . . . 9
| |
| 17 | fofn 6117 |
. . . . . . . . 9
| |
| 18 | 16, 17 | ax-mp 5 |
. . . . . . . 8
|
| 19 | opex 4932 |
. . . . . . . . 9
| |
| 20 | 19, 1 | fnmpti 6022 |
. . . . . . . 8
|
| 21 | ssv 3625 |
. . . . . . . 8
| |
| 22 | fnco 5999 |
. . . . . . . 8
| |
| 23 | 18, 20, 21, 22 | mp3an 1424 |
. . . . . . 7
|
| 24 | 23 | a1i 11 |
. . . . . 6
|
| 25 | ffn 6045 |
. . . . . . 7
| |
| 26 | 3, 25 | syl 17 |
. . . . . 6
|
| 27 | 2 | a1i 11 |
. . . . . . . . . 10
|
| 28 | 13 | adantr 481 |
. . . . . . . . . 10
|
| 29 | simpr 477 |
. . . . . . . . . . 11
| |
| 30 | 19, 1 | dmmpti 6023 |
. . . . . . . . . . 11
|
| 31 | 29, 30 | syl6eleqr 2712 |
. . . . . . . . . 10
|
| 32 | opfv 29448 |
. . . . . . . . . 10
| |
| 33 | 27, 28, 31, 32 | syl21anc 1325 |
. . . . . . . . 9
|
| 34 | 1 | fvmpt2 6291 |
. . . . . . . . . 10
|
| 35 | 29, 8, 34 | syl2anc 693 |
. . . . . . . . 9
|
| 36 | 33, 35 | eqtr3d 2658 |
. . . . . . . 8
|
| 37 | fvex 6201 |
. . . . . . . . 9
| |
| 38 | fvex 6201 |
. . . . . . . . 9
| |
| 39 | 37, 38 | opth 4945 |
. . . . . . . 8
|
| 40 | 36, 39 | sylib 208 |
. . . . . . 7
|
| 41 | 40 | simpld 475 |
. . . . . 6
|
| 42 | 24, 26, 41 | eqfnfvd 6314 |
. . . . 5
|
| 43 | 42 | cnveqd 5298 |
. . . 4
|
| 44 | 43 | imaeq1d 5465 |
. . 3
|
| 45 | fo2nd 7189 |
. . . . . . . . 9
| |
| 46 | fofn 6117 |
. . . . . . . . 9
| |
| 47 | 45, 46 | ax-mp 5 |
. . . . . . . 8
|
| 48 | fnco 5999 |
. . . . . . . 8
| |
| 49 | 47, 20, 21, 48 | mp3an 1424 |
. . . . . . 7
|
| 50 | 49 | a1i 11 |
. . . . . 6
|
| 51 | ffn 6045 |
. . . . . . 7
| |
| 52 | 5, 51 | syl 17 |
. . . . . 6
|
| 53 | 40 | simprd 479 |
. . . . . 6
|
| 54 | 50, 52, 53 | eqfnfvd 6314 |
. . . . 5
|
| 55 | 54 | cnveqd 5298 |
. . . 4
|
| 56 | 55 | imaeq1d 5465 |
. . 3
|
| 57 | 44, 56 | ineq12d 3815 |
. 2
|
| 58 | 15, 57 | eqtrd 2656 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fo 5894 df-fv 5896 df-1st 7168 df-2nd 7169 |
| This theorem is referenced by: mbfmco2 30327 |
| Copyright terms: Public domain | W3C validator |