MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsspw Structured version   Visualization version   GIF version

Theorem xpsspw 5233
Description: A Cartesian product is included in the power of the power of the union of its arguments. (Contributed by NM, 13-Sep-2006.)
Assertion
Ref Expression
xpsspw (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵)

Proof of Theorem xpsspw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5227 . 2 Rel (𝐴 × 𝐵)
2 opelxp 5146 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
3 snssi 4339 . . . . . . . 8 (𝑥𝐴 → {𝑥} ⊆ 𝐴)
4 ssun3 3778 . . . . . . . 8 ({𝑥} ⊆ 𝐴 → {𝑥} ⊆ (𝐴𝐵))
53, 4syl 17 . . . . . . 7 (𝑥𝐴 → {𝑥} ⊆ (𝐴𝐵))
6 snex 4908 . . . . . . . 8 {𝑥} ∈ V
76elpw 4164 . . . . . . 7 ({𝑥} ∈ 𝒫 (𝐴𝐵) ↔ {𝑥} ⊆ (𝐴𝐵))
85, 7sylibr 224 . . . . . 6 (𝑥𝐴 → {𝑥} ∈ 𝒫 (𝐴𝐵))
98adantr 481 . . . . 5 ((𝑥𝐴𝑦𝐵) → {𝑥} ∈ 𝒫 (𝐴𝐵))
10 df-pr 4180 . . . . . . 7 {𝑥, 𝑦} = ({𝑥} ∪ {𝑦})
11 snssi 4339 . . . . . . . . . 10 (𝑦𝐵 → {𝑦} ⊆ 𝐵)
12 ssun4 3779 . . . . . . . . . 10 ({𝑦} ⊆ 𝐵 → {𝑦} ⊆ (𝐴𝐵))
1311, 12syl 17 . . . . . . . . 9 (𝑦𝐵 → {𝑦} ⊆ (𝐴𝐵))
145, 13anim12i 590 . . . . . . . 8 ((𝑥𝐴𝑦𝐵) → ({𝑥} ⊆ (𝐴𝐵) ∧ {𝑦} ⊆ (𝐴𝐵)))
15 unss 3787 . . . . . . . 8 (({𝑥} ⊆ (𝐴𝐵) ∧ {𝑦} ⊆ (𝐴𝐵)) ↔ ({𝑥} ∪ {𝑦}) ⊆ (𝐴𝐵))
1614, 15sylib 208 . . . . . . 7 ((𝑥𝐴𝑦𝐵) → ({𝑥} ∪ {𝑦}) ⊆ (𝐴𝐵))
1710, 16syl5eqss 3649 . . . . . 6 ((𝑥𝐴𝑦𝐵) → {𝑥, 𝑦} ⊆ (𝐴𝐵))
18 zfpair2 4907 . . . . . . 7 {𝑥, 𝑦} ∈ V
1918elpw 4164 . . . . . 6 ({𝑥, 𝑦} ∈ 𝒫 (𝐴𝐵) ↔ {𝑥, 𝑦} ⊆ (𝐴𝐵))
2017, 19sylibr 224 . . . . 5 ((𝑥𝐴𝑦𝐵) → {𝑥, 𝑦} ∈ 𝒫 (𝐴𝐵))
219, 20jca 554 . . . 4 ((𝑥𝐴𝑦𝐵) → ({𝑥} ∈ 𝒫 (𝐴𝐵) ∧ {𝑥, 𝑦} ∈ 𝒫 (𝐴𝐵)))
22 prex 4909 . . . . . 6 {{𝑥}, {𝑥, 𝑦}} ∈ V
2322elpw 4164 . . . . 5 ({{𝑥}, {𝑥, 𝑦}} ∈ 𝒫 𝒫 (𝐴𝐵) ↔ {{𝑥}, {𝑥, 𝑦}} ⊆ 𝒫 (𝐴𝐵))
24 vex 3203 . . . . . . 7 𝑥 ∈ V
25 vex 3203 . . . . . . 7 𝑦 ∈ V
2624, 25dfop 4401 . . . . . 6 𝑥, 𝑦⟩ = {{𝑥}, {𝑥, 𝑦}}
2726eleq1i 2692 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝒫 𝒫 (𝐴𝐵) ↔ {{𝑥}, {𝑥, 𝑦}} ∈ 𝒫 𝒫 (𝐴𝐵))
286, 18prss 4351 . . . . 5 (({𝑥} ∈ 𝒫 (𝐴𝐵) ∧ {𝑥, 𝑦} ∈ 𝒫 (𝐴𝐵)) ↔ {{𝑥}, {𝑥, 𝑦}} ⊆ 𝒫 (𝐴𝐵))
2923, 27, 283bitr4ri 293 . . . 4 (({𝑥} ∈ 𝒫 (𝐴𝐵) ∧ {𝑥, 𝑦} ∈ 𝒫 (𝐴𝐵)) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝒫 𝒫 (𝐴𝐵))
3021, 29sylib 208 . . 3 ((𝑥𝐴𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ 𝒫 𝒫 (𝐴𝐵))
312, 30sylbi 207 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ 𝒫 𝒫 (𝐴𝐵))
321, 31relssi 5211 1 (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 384  wcel 1990  cun 3572  wss 3574  𝒫 cpw 4158  {csn 4177  {cpr 4179  cop 4183   × cxp 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-xp 5120  df-rel 5121
This theorem is referenced by:  unixpss  5234  xpexg  6960  rankxpu  8739  wunxp  9546  gruxp  9629
  Copyright terms: Public domain W3C validator