| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpsspw | Structured version Visualization version Unicode version | ||
| Description: A Cartesian product is included in the power of the power of the union of its arguments. (Contributed by NM, 13-Sep-2006.) |
| Ref | Expression |
|---|---|
| xpsspw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5227 |
. 2
| |
| 2 | opelxp 5146 |
. . 3
| |
| 3 | snssi 4339 |
. . . . . . . 8
| |
| 4 | ssun3 3778 |
. . . . . . . 8
| |
| 5 | 3, 4 | syl 17 |
. . . . . . 7
|
| 6 | snex 4908 |
. . . . . . . 8
| |
| 7 | 6 | elpw 4164 |
. . . . . . 7
|
| 8 | 5, 7 | sylibr 224 |
. . . . . 6
|
| 9 | 8 | adantr 481 |
. . . . 5
|
| 10 | df-pr 4180 |
. . . . . . 7
| |
| 11 | snssi 4339 |
. . . . . . . . . 10
| |
| 12 | ssun4 3779 |
. . . . . . . . . 10
| |
| 13 | 11, 12 | syl 17 |
. . . . . . . . 9
|
| 14 | 5, 13 | anim12i 590 |
. . . . . . . 8
|
| 15 | unss 3787 |
. . . . . . . 8
| |
| 16 | 14, 15 | sylib 208 |
. . . . . . 7
|
| 17 | 10, 16 | syl5eqss 3649 |
. . . . . 6
|
| 18 | zfpair2 4907 |
. . . . . . 7
| |
| 19 | 18 | elpw 4164 |
. . . . . 6
|
| 20 | 17, 19 | sylibr 224 |
. . . . 5
|
| 21 | 9, 20 | jca 554 |
. . . 4
|
| 22 | prex 4909 |
. . . . . 6
| |
| 23 | 22 | elpw 4164 |
. . . . 5
|
| 24 | vex 3203 |
. . . . . . 7
| |
| 25 | vex 3203 |
. . . . . . 7
| |
| 26 | 24, 25 | dfop 4401 |
. . . . . 6
|
| 27 | 26 | eleq1i 2692 |
. . . . 5
|
| 28 | 6, 18 | prss 4351 |
. . . . 5
|
| 29 | 23, 27, 28 | 3bitr4ri 293 |
. . . 4
|
| 30 | 21, 29 | sylib 208 |
. . 3
|
| 31 | 2, 30 | sylbi 207 |
. 2
|
| 32 | 1, 31 | relssi 5211 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-opab 4713 df-xp 5120 df-rel 5121 |
| This theorem is referenced by: unixpss 5234 xpexg 6960 rankxpu 8739 wunxp 9546 gruxp 9629 |
| Copyright terms: Public domain | W3C validator |