Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
adxl34x.c
Go to the documentation of this file.
1 /*
2  * ADXL345/346 Three-Axis Digital Accelerometers
3  *
4  * Enter bugs at http://blackfin.uclinux.org/
5  *
6  * Copyright (C) 2009 Michael Hennerich, Analog Devices Inc.
7  * Licensed under the GPL-2 or later.
8  */
9 
10 #include <linux/device.h>
11 #include <linux/init.h>
12 #include <linux/delay.h>
13 #include <linux/input.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/input/adxl34x.h>
19 #include <linux/module.h>
20 
21 #include "adxl34x.h"
22 
23 /* ADXL345/6 Register Map */
24 #define DEVID 0x00 /* R Device ID */
25 #define THRESH_TAP 0x1D /* R/W Tap threshold */
26 #define OFSX 0x1E /* R/W X-axis offset */
27 #define OFSY 0x1F /* R/W Y-axis offset */
28 #define OFSZ 0x20 /* R/W Z-axis offset */
29 #define DUR 0x21 /* R/W Tap duration */
30 #define LATENT 0x22 /* R/W Tap latency */
31 #define WINDOW 0x23 /* R/W Tap window */
32 #define THRESH_ACT 0x24 /* R/W Activity threshold */
33 #define THRESH_INACT 0x25 /* R/W Inactivity threshold */
34 #define TIME_INACT 0x26 /* R/W Inactivity time */
35 #define ACT_INACT_CTL 0x27 /* R/W Axis enable control for activity and */
36  /* inactivity detection */
37 #define THRESH_FF 0x28 /* R/W Free-fall threshold */
38 #define TIME_FF 0x29 /* R/W Free-fall time */
39 #define TAP_AXES 0x2A /* R/W Axis control for tap/double tap */
40 #define ACT_TAP_STATUS 0x2B /* R Source of tap/double tap */
41 #define BW_RATE 0x2C /* R/W Data rate and power mode control */
42 #define POWER_CTL 0x2D /* R/W Power saving features control */
43 #define INT_ENABLE 0x2E /* R/W Interrupt enable control */
44 #define INT_MAP 0x2F /* R/W Interrupt mapping control */
45 #define INT_SOURCE 0x30 /* R Source of interrupts */
46 #define DATA_FORMAT 0x31 /* R/W Data format control */
47 #define DATAX0 0x32 /* R X-Axis Data 0 */
48 #define DATAX1 0x33 /* R X-Axis Data 1 */
49 #define DATAY0 0x34 /* R Y-Axis Data 0 */
50 #define DATAY1 0x35 /* R Y-Axis Data 1 */
51 #define DATAZ0 0x36 /* R Z-Axis Data 0 */
52 #define DATAZ1 0x37 /* R Z-Axis Data 1 */
53 #define FIFO_CTL 0x38 /* R/W FIFO control */
54 #define FIFO_STATUS 0x39 /* R FIFO status */
55 #define TAP_SIGN 0x3A /* R Sign and source for tap/double tap */
56 /* Orientation ADXL346 only */
57 #define ORIENT_CONF 0x3B /* R/W Orientation configuration */
58 #define ORIENT 0x3C /* R Orientation status */
59 
60 /* DEVIDs */
61 #define ID_ADXL345 0xE5
62 #define ID_ADXL346 0xE6
63 
64 /* INT_ENABLE/INT_MAP/INT_SOURCE Bits */
65 #define DATA_READY (1 << 7)
66 #define SINGLE_TAP (1 << 6)
67 #define DOUBLE_TAP (1 << 5)
68 #define ACTIVITY (1 << 4)
69 #define INACTIVITY (1 << 3)
70 #define FREE_FALL (1 << 2)
71 #define WATERMARK (1 << 1)
72 #define OVERRUN (1 << 0)
73 
74 /* ACT_INACT_CONTROL Bits */
75 #define ACT_ACDC (1 << 7)
76 #define ACT_X_EN (1 << 6)
77 #define ACT_Y_EN (1 << 5)
78 #define ACT_Z_EN (1 << 4)
79 #define INACT_ACDC (1 << 3)
80 #define INACT_X_EN (1 << 2)
81 #define INACT_Y_EN (1 << 1)
82 #define INACT_Z_EN (1 << 0)
83 
84 /* TAP_AXES Bits */
85 #define SUPPRESS (1 << 3)
86 #define TAP_X_EN (1 << 2)
87 #define TAP_Y_EN (1 << 1)
88 #define TAP_Z_EN (1 << 0)
89 
90 /* ACT_TAP_STATUS Bits */
91 #define ACT_X_SRC (1 << 6)
92 #define ACT_Y_SRC (1 << 5)
93 #define ACT_Z_SRC (1 << 4)
94 #define ASLEEP (1 << 3)
95 #define TAP_X_SRC (1 << 2)
96 #define TAP_Y_SRC (1 << 1)
97 #define TAP_Z_SRC (1 << 0)
98 
99 /* BW_RATE Bits */
100 #define LOW_POWER (1 << 4)
101 #define RATE(x) ((x) & 0xF)
102 
103 /* POWER_CTL Bits */
104 #define PCTL_LINK (1 << 5)
105 #define PCTL_AUTO_SLEEP (1 << 4)
106 #define PCTL_MEASURE (1 << 3)
107 #define PCTL_SLEEP (1 << 2)
108 #define PCTL_WAKEUP(x) ((x) & 0x3)
109 
110 /* DATA_FORMAT Bits */
111 #define SELF_TEST (1 << 7)
112 #define SPI (1 << 6)
113 #define INT_INVERT (1 << 5)
114 #define FULL_RES (1 << 3)
115 #define JUSTIFY (1 << 2)
116 #define RANGE(x) ((x) & 0x3)
117 #define RANGE_PM_2g 0
118 #define RANGE_PM_4g 1
119 #define RANGE_PM_8g 2
120 #define RANGE_PM_16g 3
121 
122 /*
123  * Maximum value our axis may get in full res mode for the input device
124  * (signed 13 bits)
125  */
126 #define ADXL_FULLRES_MAX_VAL 4096
127 
128 /*
129  * Maximum value our axis may get in fixed res mode for the input device
130  * (signed 10 bits)
131  */
132 #define ADXL_FIXEDRES_MAX_VAL 512
133 
134 /* FIFO_CTL Bits */
135 #define FIFO_MODE(x) (((x) & 0x3) << 6)
136 #define FIFO_BYPASS 0
137 #define FIFO_FIFO 1
138 #define FIFO_STREAM 2
139 #define FIFO_TRIGGER 3
140 #define TRIGGER (1 << 5)
141 #define SAMPLES(x) ((x) & 0x1F)
142 
143 /* FIFO_STATUS Bits */
144 #define FIFO_TRIG (1 << 7)
145 #define ENTRIES(x) ((x) & 0x3F)
146 
147 /* TAP_SIGN Bits ADXL346 only */
148 #define XSIGN (1 << 6)
149 #define YSIGN (1 << 5)
150 #define ZSIGN (1 << 4)
151 #define XTAP (1 << 3)
152 #define YTAP (1 << 2)
153 #define ZTAP (1 << 1)
154 
155 /* ORIENT_CONF ADXL346 only */
156 #define ORIENT_DEADZONE(x) (((x) & 0x7) << 4)
157 #define ORIENT_DIVISOR(x) ((x) & 0x7)
158 
159 /* ORIENT ADXL346 only */
160 #define ADXL346_2D_VALID (1 << 6)
161 #define ADXL346_2D_ORIENT(x) (((x) & 0x3) >> 4)
162 #define ADXL346_3D_VALID (1 << 3)
163 #define ADXL346_3D_ORIENT(x) ((x) & 0x7)
164 #define ADXL346_2D_PORTRAIT_POS 0 /* +X */
165 #define ADXL346_2D_PORTRAIT_NEG 1 /* -X */
166 #define ADXL346_2D_LANDSCAPE_POS 2 /* +Y */
167 #define ADXL346_2D_LANDSCAPE_NEG 3 /* -Y */
168 
169 #define ADXL346_3D_FRONT 3 /* +X */
170 #define ADXL346_3D_BACK 4 /* -X */
171 #define ADXL346_3D_RIGHT 2 /* +Y */
172 #define ADXL346_3D_LEFT 5 /* -Y */
173 #define ADXL346_3D_TOP 1 /* +Z */
174 #define ADXL346_3D_BOTTOM 6 /* -Z */
175 
176 #undef ADXL_DEBUG
177 
178 #define ADXL_X_AXIS 0
179 #define ADXL_Y_AXIS 1
180 #define ADXL_Z_AXIS 2
181 
182 #define AC_READ(ac, reg) ((ac)->bops->read((ac)->dev, reg))
183 #define AC_WRITE(ac, reg, val) ((ac)->bops->write((ac)->dev, reg, val))
184 
185 struct axis_triple {
186  int x;
187  int y;
188  int z;
189 };
190 
191 struct adxl34x {
192  struct device *dev;
193  struct input_dev *input;
194  struct mutex mutex; /* reentrant protection for struct */
199  char phys[32];
200  unsigned orient2d_saved;
201  unsigned orient3d_saved;
202  bool disabled; /* P: mutex */
203  bool opened; /* P: mutex */
204  bool suspended; /* P: mutex */
206  int irq;
207  unsigned model;
208  unsigned int_mask;
209 
210  const struct adxl34x_bus_ops *bops;
211 };
212 
213 static const struct adxl34x_platform_data adxl34x_default_init = {
214  .tap_threshold = 35,
215  .tap_duration = 3,
216  .tap_latency = 20,
217  .tap_window = 20,
218  .tap_axis_control = ADXL_TAP_X_EN | ADXL_TAP_Y_EN | ADXL_TAP_Z_EN,
219  .act_axis_control = 0xFF,
220  .activity_threshold = 6,
221  .inactivity_threshold = 4,
222  .inactivity_time = 3,
223  .free_fall_threshold = 8,
224  .free_fall_time = 0x20,
225  .data_rate = 8,
226  .data_range = ADXL_FULL_RES,
227 
228  .ev_type = EV_ABS,
229  .ev_code_x = ABS_X, /* EV_REL */
230  .ev_code_y = ABS_Y, /* EV_REL */
231  .ev_code_z = ABS_Z, /* EV_REL */
232 
233  .ev_code_tap = {BTN_TOUCH, BTN_TOUCH, BTN_TOUCH}, /* EV_KEY {x,y,z} */
234  .power_mode = ADXL_AUTO_SLEEP | ADXL_LINK,
235  .fifo_mode = FIFO_STREAM,
236  .watermark = 0,
237 };
238 
239 static void adxl34x_get_triple(struct adxl34x *ac, struct axis_triple *axis)
240 {
241  short buf[3];
242 
243  ac->bops->read_block(ac->dev, DATAX0, DATAZ1 - DATAX0 + 1, buf);
244 
245  mutex_lock(&ac->mutex);
246  ac->saved.x = (s16) le16_to_cpu(buf[0]);
247  axis->x = ac->saved.x;
248 
249  ac->saved.y = (s16) le16_to_cpu(buf[1]);
250  axis->y = ac->saved.y;
251 
252  ac->saved.z = (s16) le16_to_cpu(buf[2]);
253  axis->z = ac->saved.z;
254  mutex_unlock(&ac->mutex);
255 }
256 
257 static void adxl34x_service_ev_fifo(struct adxl34x *ac)
258 {
259  struct adxl34x_platform_data *pdata = &ac->pdata;
260  struct axis_triple axis;
261 
262  adxl34x_get_triple(ac, &axis);
263 
264  input_event(ac->input, pdata->ev_type, pdata->ev_code_x,
265  axis.x - ac->swcal.x);
266  input_event(ac->input, pdata->ev_type, pdata->ev_code_y,
267  axis.y - ac->swcal.y);
268  input_event(ac->input, pdata->ev_type, pdata->ev_code_z,
269  axis.z - ac->swcal.z);
270 }
271 
272 static void adxl34x_report_key_single(struct input_dev *input, int key)
273 {
274  input_report_key(input, key, true);
275  input_sync(input);
276  input_report_key(input, key, false);
277 }
278 
279 static void adxl34x_send_key_events(struct adxl34x *ac,
280  struct adxl34x_platform_data *pdata, int status, int press)
281 {
282  int i;
283 
284  for (i = ADXL_X_AXIS; i <= ADXL_Z_AXIS; i++) {
285  if (status & (1 << (ADXL_Z_AXIS - i)))
286  input_report_key(ac->input,
287  pdata->ev_code_tap[i], press);
288  }
289 }
290 
291 static void adxl34x_do_tap(struct adxl34x *ac,
292  struct adxl34x_platform_data *pdata, int status)
293 {
294  adxl34x_send_key_events(ac, pdata, status, true);
295  input_sync(ac->input);
296  adxl34x_send_key_events(ac, pdata, status, false);
297 }
298 
299 static irqreturn_t adxl34x_irq(int irq, void *handle)
300 {
301  struct adxl34x *ac = handle;
302  struct adxl34x_platform_data *pdata = &ac->pdata;
303  int int_stat, tap_stat, samples, orient, orient_code;
304 
305  /*
306  * ACT_TAP_STATUS should be read before clearing the interrupt
307  * Avoid reading ACT_TAP_STATUS in case TAP detection is disabled
308  */
309 
310  if (pdata->tap_axis_control & (TAP_X_EN | TAP_Y_EN | TAP_Z_EN))
311  tap_stat = AC_READ(ac, ACT_TAP_STATUS);
312  else
313  tap_stat = 0;
314 
315  int_stat = AC_READ(ac, INT_SOURCE);
316 
317  if (int_stat & FREE_FALL)
318  adxl34x_report_key_single(ac->input, pdata->ev_code_ff);
319 
320  if (int_stat & OVERRUN)
321  dev_dbg(ac->dev, "OVERRUN\n");
322 
323  if (int_stat & (SINGLE_TAP | DOUBLE_TAP)) {
324  adxl34x_do_tap(ac, pdata, tap_stat);
325 
326  if (int_stat & DOUBLE_TAP)
327  adxl34x_do_tap(ac, pdata, tap_stat);
328  }
329 
330  if (pdata->ev_code_act_inactivity) {
331  if (int_stat & ACTIVITY)
332  input_report_key(ac->input,
333  pdata->ev_code_act_inactivity, 1);
334  if (int_stat & INACTIVITY)
335  input_report_key(ac->input,
336  pdata->ev_code_act_inactivity, 0);
337  }
338 
339  /*
340  * ORIENTATION SENSING ADXL346 only
341  */
342  if (pdata->orientation_enable) {
343  orient = AC_READ(ac, ORIENT);
345  (orient & ADXL346_2D_VALID)) {
346 
347  orient_code = ADXL346_2D_ORIENT(orient);
348  /* Report orientation only when it changes */
349  if (ac->orient2d_saved != orient_code) {
350  ac->orient2d_saved = orient_code;
351  adxl34x_report_key_single(ac->input,
352  pdata->ev_codes_orient_2d[orient_code]);
353  }
354  }
355 
357  (orient & ADXL346_3D_VALID)) {
358 
359  orient_code = ADXL346_3D_ORIENT(orient) - 1;
360  /* Report orientation only when it changes */
361  if (ac->orient3d_saved != orient_code) {
362  ac->orient3d_saved = orient_code;
363  adxl34x_report_key_single(ac->input,
364  pdata->ev_codes_orient_3d[orient_code]);
365  }
366  }
367  }
368 
369  if (int_stat & (DATA_READY | WATERMARK)) {
370 
371  if (pdata->fifo_mode)
372  samples = ENTRIES(AC_READ(ac, FIFO_STATUS)) + 1;
373  else
374  samples = 1;
375 
376  for (; samples > 0; samples--) {
377  adxl34x_service_ev_fifo(ac);
378  /*
379  * To ensure that the FIFO has
380  * completely popped, there must be at least 5 us between
381  * the end of reading the data registers, signified by the
382  * transition to register 0x38 from 0x37 or the CS pin
383  * going high, and the start of new reads of the FIFO or
384  * reading the FIFO_STATUS register. For SPI operation at
385  * 1.5 MHz or lower, the register addressing portion of the
386  * transmission is sufficient delay to ensure the FIFO has
387  * completely popped. It is necessary for SPI operation
388  * greater than 1.5 MHz to de-assert the CS pin to ensure a
389  * total of 5 us, which is at most 3.4 us at 5 MHz
390  * operation.
391  */
392  if (ac->fifo_delay && (samples > 1))
393  udelay(3);
394  }
395  }
396 
397  input_sync(ac->input);
398 
399  return IRQ_HANDLED;
400 }
401 
402 static void __adxl34x_disable(struct adxl34x *ac)
403 {
404  /*
405  * A '0' places the ADXL34x into standby mode
406  * with minimum power consumption.
407  */
408  AC_WRITE(ac, POWER_CTL, 0);
409 }
410 
411 static void __adxl34x_enable(struct adxl34x *ac)
412 {
413  AC_WRITE(ac, POWER_CTL, ac->pdata.power_mode | PCTL_MEASURE);
414 }
415 
416 void adxl34x_suspend(struct adxl34x *ac)
417 {
418  mutex_lock(&ac->mutex);
419 
420  if (!ac->suspended && !ac->disabled && ac->opened)
421  __adxl34x_disable(ac);
422 
423  ac->suspended = true;
424 
425  mutex_unlock(&ac->mutex);
426 }
428 
429 void adxl34x_resume(struct adxl34x *ac)
430 {
431  mutex_lock(&ac->mutex);
432 
433  if (ac->suspended && !ac->disabled && ac->opened)
434  __adxl34x_enable(ac);
435 
436  ac->suspended = false;
437 
438  mutex_unlock(&ac->mutex);
439 }
441 
442 static ssize_t adxl34x_disable_show(struct device *dev,
443  struct device_attribute *attr, char *buf)
444 {
445  struct adxl34x *ac = dev_get_drvdata(dev);
446 
447  return sprintf(buf, "%u\n", ac->disabled);
448 }
449 
450 static ssize_t adxl34x_disable_store(struct device *dev,
451  struct device_attribute *attr,
452  const char *buf, size_t count)
453 {
454  struct adxl34x *ac = dev_get_drvdata(dev);
455  unsigned int val;
456  int error;
457 
458  error = kstrtouint(buf, 10, &val);
459  if (error)
460  return error;
461 
462  mutex_lock(&ac->mutex);
463 
464  if (!ac->suspended && ac->opened) {
465  if (val) {
466  if (!ac->disabled)
467  __adxl34x_disable(ac);
468  } else {
469  if (ac->disabled)
470  __adxl34x_enable(ac);
471  }
472  }
473 
474  ac->disabled = !!val;
475 
476  mutex_unlock(&ac->mutex);
477 
478  return count;
479 }
480 
481 static DEVICE_ATTR(disable, 0664, adxl34x_disable_show, adxl34x_disable_store);
482 
483 static ssize_t adxl34x_calibrate_show(struct device *dev,
484  struct device_attribute *attr, char *buf)
485 {
486  struct adxl34x *ac = dev_get_drvdata(dev);
487  ssize_t count;
488 
489  mutex_lock(&ac->mutex);
490  count = sprintf(buf, "%d,%d,%d\n",
491  ac->hwcal.x * 4 + ac->swcal.x,
492  ac->hwcal.y * 4 + ac->swcal.y,
493  ac->hwcal.z * 4 + ac->swcal.z);
494  mutex_unlock(&ac->mutex);
495 
496  return count;
497 }
498 
499 static ssize_t adxl34x_calibrate_store(struct device *dev,
500  struct device_attribute *attr,
501  const char *buf, size_t count)
502 {
503  struct adxl34x *ac = dev_get_drvdata(dev);
504 
505  /*
506  * Hardware offset calibration has a resolution of 15.6 mg/LSB.
507  * We use HW calibration and handle the remaining bits in SW. (4mg/LSB)
508  */
509 
510  mutex_lock(&ac->mutex);
511  ac->hwcal.x -= (ac->saved.x / 4);
512  ac->swcal.x = ac->saved.x % 4;
513 
514  ac->hwcal.y -= (ac->saved.y / 4);
515  ac->swcal.y = ac->saved.y % 4;
516 
517  ac->hwcal.z -= (ac->saved.z / 4);
518  ac->swcal.z = ac->saved.z % 4;
519 
520  AC_WRITE(ac, OFSX, (s8) ac->hwcal.x);
521  AC_WRITE(ac, OFSY, (s8) ac->hwcal.y);
522  AC_WRITE(ac, OFSZ, (s8) ac->hwcal.z);
523  mutex_unlock(&ac->mutex);
524 
525  return count;
526 }
527 
528 static DEVICE_ATTR(calibrate, 0664,
529  adxl34x_calibrate_show, adxl34x_calibrate_store);
530 
531 static ssize_t adxl34x_rate_show(struct device *dev,
532  struct device_attribute *attr, char *buf)
533 {
534  struct adxl34x *ac = dev_get_drvdata(dev);
535 
536  return sprintf(buf, "%u\n", RATE(ac->pdata.data_rate));
537 }
538 
539 static ssize_t adxl34x_rate_store(struct device *dev,
540  struct device_attribute *attr,
541  const char *buf, size_t count)
542 {
543  struct adxl34x *ac = dev_get_drvdata(dev);
544  unsigned char val;
545  int error;
546 
547  error = kstrtou8(buf, 10, &val);
548  if (error)
549  return error;
550 
551  mutex_lock(&ac->mutex);
552 
553  ac->pdata.data_rate = RATE(val);
554  AC_WRITE(ac, BW_RATE,
555  ac->pdata.data_rate |
556  (ac->pdata.low_power_mode ? LOW_POWER : 0));
557 
558  mutex_unlock(&ac->mutex);
559 
560  return count;
561 }
562 
563 static DEVICE_ATTR(rate, 0664, adxl34x_rate_show, adxl34x_rate_store);
564 
565 static ssize_t adxl34x_autosleep_show(struct device *dev,
566  struct device_attribute *attr, char *buf)
567 {
568  struct adxl34x *ac = dev_get_drvdata(dev);
569 
570  return sprintf(buf, "%u\n",
571  ac->pdata.power_mode & (PCTL_AUTO_SLEEP | PCTL_LINK) ? 1 : 0);
572 }
573 
574 static ssize_t adxl34x_autosleep_store(struct device *dev,
575  struct device_attribute *attr,
576  const char *buf, size_t count)
577 {
578  struct adxl34x *ac = dev_get_drvdata(dev);
579  unsigned int val;
580  int error;
581 
582  error = kstrtouint(buf, 10, &val);
583  if (error)
584  return error;
585 
586  mutex_lock(&ac->mutex);
587 
588  if (val)
589  ac->pdata.power_mode |= (PCTL_AUTO_SLEEP | PCTL_LINK);
590  else
591  ac->pdata.power_mode &= ~(PCTL_AUTO_SLEEP | PCTL_LINK);
592 
593  if (!ac->disabled && !ac->suspended && ac->opened)
594  AC_WRITE(ac, POWER_CTL, ac->pdata.power_mode | PCTL_MEASURE);
595 
596  mutex_unlock(&ac->mutex);
597 
598  return count;
599 }
600 
601 static DEVICE_ATTR(autosleep, 0664,
602  adxl34x_autosleep_show, adxl34x_autosleep_store);
603 
604 static ssize_t adxl34x_position_show(struct device *dev,
605  struct device_attribute *attr, char *buf)
606 {
607  struct adxl34x *ac = dev_get_drvdata(dev);
608  ssize_t count;
609 
610  mutex_lock(&ac->mutex);
611  count = sprintf(buf, "(%d, %d, %d)\n",
612  ac->saved.x, ac->saved.y, ac->saved.z);
613  mutex_unlock(&ac->mutex);
614 
615  return count;
616 }
617 
618 static DEVICE_ATTR(position, S_IRUGO, adxl34x_position_show, NULL);
619 
620 #ifdef ADXL_DEBUG
621 static ssize_t adxl34x_write_store(struct device *dev,
622  struct device_attribute *attr,
623  const char *buf, size_t count)
624 {
625  struct adxl34x *ac = dev_get_drvdata(dev);
626  unsigned int val;
627  int error;
628 
629  /*
630  * This allows basic ADXL register write access for debug purposes.
631  */
632  error = kstrtouint(buf, 16, &val);
633  if (error)
634  return error;
635 
636  mutex_lock(&ac->mutex);
637  AC_WRITE(ac, val >> 8, val & 0xFF);
638  mutex_unlock(&ac->mutex);
639 
640  return count;
641 }
642 
643 static DEVICE_ATTR(write, 0664, NULL, adxl34x_write_store);
644 #endif
645 
646 static struct attribute *adxl34x_attributes[] = {
647  &dev_attr_disable.attr,
648  &dev_attr_calibrate.attr,
649  &dev_attr_rate.attr,
650  &dev_attr_autosleep.attr,
651  &dev_attr_position.attr,
652 #ifdef ADXL_DEBUG
653  &dev_attr_write.attr,
654 #endif
655  NULL
656 };
657 
658 static const struct attribute_group adxl34x_attr_group = {
659  .attrs = adxl34x_attributes,
660 };
661 
662 static int adxl34x_input_open(struct input_dev *input)
663 {
664  struct adxl34x *ac = input_get_drvdata(input);
665 
666  mutex_lock(&ac->mutex);
667 
668  if (!ac->suspended && !ac->disabled)
669  __adxl34x_enable(ac);
670 
671  ac->opened = true;
672 
673  mutex_unlock(&ac->mutex);
674 
675  return 0;
676 }
677 
678 static void adxl34x_input_close(struct input_dev *input)
679 {
680  struct adxl34x *ac = input_get_drvdata(input);
681 
682  mutex_lock(&ac->mutex);
683 
684  if (!ac->suspended && !ac->disabled)
685  __adxl34x_disable(ac);
686 
687  ac->opened = false;
688 
689  mutex_unlock(&ac->mutex);
690 }
691 
692 struct adxl34x *adxl34x_probe(struct device *dev, int irq,
693  bool fifo_delay_default,
694  const struct adxl34x_bus_ops *bops)
695 {
696  struct adxl34x *ac;
697  struct input_dev *input_dev;
698  const struct adxl34x_platform_data *pdata;
699  int err, range, i;
700  unsigned char revid;
701 
702  if (!irq) {
703  dev_err(dev, "no IRQ?\n");
704  err = -ENODEV;
705  goto err_out;
706  }
707 
708  ac = kzalloc(sizeof(*ac), GFP_KERNEL);
709  input_dev = input_allocate_device();
710  if (!ac || !input_dev) {
711  err = -ENOMEM;
712  goto err_free_mem;
713  }
714 
715  ac->fifo_delay = fifo_delay_default;
716 
717  pdata = dev->platform_data;
718  if (!pdata) {
719  dev_dbg(dev,
720  "No platform data: Using default initialization\n");
721  pdata = &adxl34x_default_init;
722  }
723 
724  ac->pdata = *pdata;
725  pdata = &ac->pdata;
726 
727  ac->input = input_dev;
728  ac->dev = dev;
729  ac->irq = irq;
730  ac->bops = bops;
731 
732  mutex_init(&ac->mutex);
733 
734  input_dev->name = "ADXL34x accelerometer";
735  revid = ac->bops->read(dev, DEVID);
736 
737  switch (revid) {
738  case ID_ADXL345:
739  ac->model = 345;
740  break;
741  case ID_ADXL346:
742  ac->model = 346;
743  break;
744  default:
745  dev_err(dev, "Failed to probe %s\n", input_dev->name);
746  err = -ENODEV;
747  goto err_free_mem;
748  }
749 
750  snprintf(ac->phys, sizeof(ac->phys), "%s/input0", dev_name(dev));
751 
752  input_dev->phys = ac->phys;
753  input_dev->dev.parent = dev;
754  input_dev->id.product = ac->model;
755  input_dev->id.bustype = bops->bustype;
756  input_dev->open = adxl34x_input_open;
757  input_dev->close = adxl34x_input_close;
758 
759  input_set_drvdata(input_dev, ac);
760 
761  __set_bit(ac->pdata.ev_type, input_dev->evbit);
762 
763  if (ac->pdata.ev_type == EV_REL) {
764  __set_bit(REL_X, input_dev->relbit);
765  __set_bit(REL_Y, input_dev->relbit);
766  __set_bit(REL_Z, input_dev->relbit);
767  } else {
768  /* EV_ABS */
769  __set_bit(ABS_X, input_dev->absbit);
770  __set_bit(ABS_Y, input_dev->absbit);
771  __set_bit(ABS_Z, input_dev->absbit);
772 
773  if (pdata->data_range & FULL_RES)
774  range = ADXL_FULLRES_MAX_VAL; /* Signed 13-bit */
775  else
776  range = ADXL_FIXEDRES_MAX_VAL; /* Signed 10-bit */
777 
778  input_set_abs_params(input_dev, ABS_X, -range, range, 3, 3);
779  input_set_abs_params(input_dev, ABS_Y, -range, range, 3, 3);
780  input_set_abs_params(input_dev, ABS_Z, -range, range, 3, 3);
781  }
782 
783  __set_bit(EV_KEY, input_dev->evbit);
784  __set_bit(pdata->ev_code_tap[ADXL_X_AXIS], input_dev->keybit);
785  __set_bit(pdata->ev_code_tap[ADXL_Y_AXIS], input_dev->keybit);
786  __set_bit(pdata->ev_code_tap[ADXL_Z_AXIS], input_dev->keybit);
787 
788  if (pdata->ev_code_ff) {
789  ac->int_mask = FREE_FALL;
790  __set_bit(pdata->ev_code_ff, input_dev->keybit);
791  }
792 
793  if (pdata->ev_code_act_inactivity)
794  __set_bit(pdata->ev_code_act_inactivity, input_dev->keybit);
795 
796  ac->int_mask |= ACTIVITY | INACTIVITY;
797 
798  if (pdata->watermark) {
799  ac->int_mask |= WATERMARK;
800  if (!FIFO_MODE(pdata->fifo_mode))
801  ac->pdata.fifo_mode |= FIFO_STREAM;
802  } else {
803  ac->int_mask |= DATA_READY;
804  }
805 
806  if (pdata->tap_axis_control & (TAP_X_EN | TAP_Y_EN | TAP_Z_EN))
807  ac->int_mask |= SINGLE_TAP | DOUBLE_TAP;
808 
809  if (FIFO_MODE(pdata->fifo_mode) == FIFO_BYPASS)
810  ac->fifo_delay = false;
811 
812  ac->bops->write(dev, POWER_CTL, 0);
813 
814  err = request_threaded_irq(ac->irq, NULL, adxl34x_irq,
816  dev_name(dev), ac);
817  if (err) {
818  dev_err(dev, "irq %d busy?\n", ac->irq);
819  goto err_free_mem;
820  }
821 
822  err = sysfs_create_group(&dev->kobj, &adxl34x_attr_group);
823  if (err)
824  goto err_free_irq;
825 
826  err = input_register_device(input_dev);
827  if (err)
828  goto err_remove_attr;
829 
830  AC_WRITE(ac, THRESH_TAP, pdata->tap_threshold);
831  AC_WRITE(ac, OFSX, pdata->x_axis_offset);
832  ac->hwcal.x = pdata->x_axis_offset;
833  AC_WRITE(ac, OFSY, pdata->y_axis_offset);
834  ac->hwcal.y = pdata->y_axis_offset;
835  AC_WRITE(ac, OFSZ, pdata->z_axis_offset);
836  ac->hwcal.z = pdata->z_axis_offset;
837  AC_WRITE(ac, THRESH_TAP, pdata->tap_threshold);
838  AC_WRITE(ac, DUR, pdata->tap_duration);
839  AC_WRITE(ac, LATENT, pdata->tap_latency);
840  AC_WRITE(ac, WINDOW, pdata->tap_window);
843  AC_WRITE(ac, TIME_INACT, pdata->inactivity_time);
845  AC_WRITE(ac, TIME_FF, pdata->free_fall_time);
846  AC_WRITE(ac, TAP_AXES, pdata->tap_axis_control);
848  AC_WRITE(ac, BW_RATE, RATE(ac->pdata.data_rate) |
849  (pdata->low_power_mode ? LOW_POWER : 0));
850  AC_WRITE(ac, DATA_FORMAT, pdata->data_range);
851  AC_WRITE(ac, FIFO_CTL, FIFO_MODE(pdata->fifo_mode) |
852  SAMPLES(pdata->watermark));
853 
854  if (pdata->use_int2) {
855  /* Map all INTs to INT2 */
856  AC_WRITE(ac, INT_MAP, ac->int_mask | OVERRUN);
857  } else {
858  /* Map all INTs to INT1 */
859  AC_WRITE(ac, INT_MAP, 0);
860  }
861 
862  if (ac->model == 346 && ac->pdata.orientation_enable) {
863  AC_WRITE(ac, ORIENT_CONF,
864  ORIENT_DEADZONE(ac->pdata.deadzone_angle) |
865  ORIENT_DIVISOR(ac->pdata.divisor_length));
866 
867  ac->orient2d_saved = 1234;
868  ac->orient3d_saved = 1234;
869 
871  for (i = 0; i < ARRAY_SIZE(pdata->ev_codes_orient_3d); i++)
872  __set_bit(pdata->ev_codes_orient_3d[i],
873  input_dev->keybit);
874 
876  for (i = 0; i < ARRAY_SIZE(pdata->ev_codes_orient_2d); i++)
877  __set_bit(pdata->ev_codes_orient_2d[i],
878  input_dev->keybit);
879  } else {
880  ac->pdata.orientation_enable = 0;
881  }
882 
883  AC_WRITE(ac, INT_ENABLE, ac->int_mask | OVERRUN);
884 
885  ac->pdata.power_mode &= (PCTL_AUTO_SLEEP | PCTL_LINK);
886 
887  return ac;
888 
889  err_remove_attr:
890  sysfs_remove_group(&dev->kobj, &adxl34x_attr_group);
891  err_free_irq:
892  free_irq(ac->irq, ac);
893  err_free_mem:
894  input_free_device(input_dev);
895  kfree(ac);
896  err_out:
897  return ERR_PTR(err);
898 }
900 
901 int adxl34x_remove(struct adxl34x *ac)
902 {
903  sysfs_remove_group(&ac->dev->kobj, &adxl34x_attr_group);
904  free_irq(ac->irq, ac);
905  input_unregister_device(ac->input);
906  dev_dbg(ac->dev, "unregistered accelerometer\n");
907  kfree(ac);
908 
909  return 0;
910 }
912 
913 MODULE_AUTHOR("Michael Hennerich <[email protected]>");
914 MODULE_DESCRIPTION("ADXL345/346 Three-Axis Digital Accelerometer Driver");
915 MODULE_LICENSE("GPL");