Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
irq.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2003, Axis Communications AB.
3  */
4 
5 #include <asm/irq.h>
6 #include <linux/irq.h>
7 #include <linux/interrupt.h>
8 #include <linux/smp.h>
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/init.h>
12 #include <linux/profile.h>
13 #include <linux/proc_fs.h>
14 #include <linux/seq_file.h>
15 #include <linux/threads.h>
16 #include <linux/spinlock.h>
17 #include <linux/kernel_stat.h>
18 #include <hwregs/reg_map.h>
19 #include <hwregs/reg_rdwr.h>
20 #include <hwregs/intr_vect.h>
21 #include <hwregs/intr_vect_defs.h>
22 
23 #define CPU_FIXED -1
24 
25 /* IRQ masks (refer to comment for crisv32_do_multiple) */
26 #if TIMER0_INTR_VECT - FIRST_IRQ < 32
27 #define TIMER_MASK (1 << (TIMER0_INTR_VECT - FIRST_IRQ))
28 #undef TIMER_VECT1
29 #else
30 #define TIMER_MASK (1 << (TIMER0_INTR_VECT - FIRST_IRQ - 32))
31 #define TIMER_VECT1
32 #endif
33 #ifdef CONFIG_ETRAX_KGDB
34 #if defined(CONFIG_ETRAX_KGDB_PORT0)
35 #define IGNOREMASK (1 << (SER0_INTR_VECT - FIRST_IRQ))
36 #elif defined(CONFIG_ETRAX_KGDB_PORT1)
37 #define IGNOREMASK (1 << (SER1_INTR_VECT - FIRST_IRQ))
38 #elif defined(CONFIG_ETRAX_KGB_PORT2)
39 #define IGNOREMASK (1 << (SER2_INTR_VECT - FIRST_IRQ))
40 #elif defined(CONFIG_ETRAX_KGDB_PORT3)
41 #define IGNOREMASK (1 << (SER3_INTR_VECT - FIRST_IRQ))
42 #endif
43 #endif
44 
46 
48 {
49  int cpu; /* The CPU to which the IRQ is currently allocated. */
50  cpumask_t mask; /* The CPUs to which the IRQ may be allocated. */
51 };
52 
54  { [0 ... NR_REAL_IRQS - 1] = {0, CPU_MASK_ALL} };
55 
56 static unsigned long irq_regs[NR_CPUS] =
57 {
58  regi_irq,
59 #ifdef CONFIG_SMP
60  regi_irq2,
61 #endif
62 };
63 
64 #if NR_REAL_IRQS > 32
65 #define NBR_REGS 2
66 #else
67 #define NBR_REGS 1
68 #endif
69 
70 unsigned long cpu_irq_counters[NR_CPUS];
71 unsigned long irq_counters[NR_REAL_IRQS];
72 
73 /* From irq.c. */
74 extern void weird_irq(void);
75 
76 /* From entry.S. */
77 extern void system_call(void);
78 extern void nmi_interrupt(void);
79 extern void multiple_interrupt(void);
80 extern void gdb_handle_exception(void);
81 extern void i_mmu_refill(void);
82 extern void i_mmu_invalid(void);
83 extern void i_mmu_access(void);
84 extern void i_mmu_execute(void);
85 extern void d_mmu_refill(void);
86 extern void d_mmu_invalid(void);
87 extern void d_mmu_access(void);
88 extern void d_mmu_write(void);
89 
90 /* From kgdb.c. */
91 extern void kgdb_init(void);
92 extern void breakpoint(void);
93 
94 /* From traps.c. */
95 extern void breakh_BUG(void);
96 
97 /*
98  * Build the IRQ handler stubs using macros from irq.h.
99  */
100 #ifdef CONFIG_CRIS_MACH_ARTPEC3
101 BUILD_TIMER_IRQ(0x31, 0)
102 #else
103 BUILD_IRQ(0x31)
104 #endif
105 BUILD_IRQ(0x32)
106 BUILD_IRQ(0x33)
107 BUILD_IRQ(0x34)
108 BUILD_IRQ(0x35)
109 BUILD_IRQ(0x36)
110 BUILD_IRQ(0x37)
111 BUILD_IRQ(0x38)
112 BUILD_IRQ(0x39)
113 BUILD_IRQ(0x3a)
114 BUILD_IRQ(0x3b)
115 BUILD_IRQ(0x3c)
116 BUILD_IRQ(0x3d)
117 BUILD_IRQ(0x3e)
118 BUILD_IRQ(0x3f)
119 BUILD_IRQ(0x40)
120 BUILD_IRQ(0x41)
121 BUILD_IRQ(0x42)
122 BUILD_IRQ(0x43)
123 BUILD_IRQ(0x44)
124 BUILD_IRQ(0x45)
125 BUILD_IRQ(0x46)
126 BUILD_IRQ(0x47)
127 BUILD_IRQ(0x48)
128 BUILD_IRQ(0x49)
129 BUILD_IRQ(0x4a)
130 #ifdef CONFIG_ETRAXFS
131 BUILD_TIMER_IRQ(0x4b, 0)
132 #else
133 BUILD_IRQ(0x4b)
134 #endif
135 BUILD_IRQ(0x4c)
136 BUILD_IRQ(0x4d)
137 BUILD_IRQ(0x4e)
138 BUILD_IRQ(0x4f)
139 BUILD_IRQ(0x50)
140 #if MACH_IRQS > 32
141 BUILD_IRQ(0x51)
142 BUILD_IRQ(0x52)
143 BUILD_IRQ(0x53)
144 BUILD_IRQ(0x54)
145 BUILD_IRQ(0x55)
146 BUILD_IRQ(0x56)
147 BUILD_IRQ(0x57)
148 BUILD_IRQ(0x58)
149 BUILD_IRQ(0x59)
150 BUILD_IRQ(0x5a)
151 BUILD_IRQ(0x5b)
152 BUILD_IRQ(0x5c)
153 BUILD_IRQ(0x5d)
154 BUILD_IRQ(0x5e)
155 BUILD_IRQ(0x5f)
156 BUILD_IRQ(0x60)
157 BUILD_IRQ(0x61)
158 BUILD_IRQ(0x62)
159 BUILD_IRQ(0x63)
160 BUILD_IRQ(0x64)
161 BUILD_IRQ(0x65)
162 BUILD_IRQ(0x66)
163 BUILD_IRQ(0x67)
164 BUILD_IRQ(0x68)
165 BUILD_IRQ(0x69)
166 BUILD_IRQ(0x6a)
167 BUILD_IRQ(0x6b)
168 BUILD_IRQ(0x6c)
169 BUILD_IRQ(0x6d)
170 BUILD_IRQ(0x6e)
171 BUILD_IRQ(0x6f)
172 BUILD_IRQ(0x70)
173 #endif
174 
175 /* Pointers to the low-level handlers. */
176 static void (*interrupt[MACH_IRQS])(void) = {
177  IRQ0x31_interrupt, IRQ0x32_interrupt, IRQ0x33_interrupt,
178  IRQ0x34_interrupt, IRQ0x35_interrupt, IRQ0x36_interrupt,
179  IRQ0x37_interrupt, IRQ0x38_interrupt, IRQ0x39_interrupt,
180  IRQ0x3a_interrupt, IRQ0x3b_interrupt, IRQ0x3c_interrupt,
181  IRQ0x3d_interrupt, IRQ0x3e_interrupt, IRQ0x3f_interrupt,
182  IRQ0x40_interrupt, IRQ0x41_interrupt, IRQ0x42_interrupt,
183  IRQ0x43_interrupt, IRQ0x44_interrupt, IRQ0x45_interrupt,
184  IRQ0x46_interrupt, IRQ0x47_interrupt, IRQ0x48_interrupt,
185  IRQ0x49_interrupt, IRQ0x4a_interrupt, IRQ0x4b_interrupt,
186  IRQ0x4c_interrupt, IRQ0x4d_interrupt, IRQ0x4e_interrupt,
187  IRQ0x4f_interrupt, IRQ0x50_interrupt,
188 #if MACH_IRQS > 32
189  IRQ0x51_interrupt, IRQ0x52_interrupt, IRQ0x53_interrupt,
190  IRQ0x54_interrupt, IRQ0x55_interrupt, IRQ0x56_interrupt,
191  IRQ0x57_interrupt, IRQ0x58_interrupt, IRQ0x59_interrupt,
192  IRQ0x5a_interrupt, IRQ0x5b_interrupt, IRQ0x5c_interrupt,
193  IRQ0x5d_interrupt, IRQ0x5e_interrupt, IRQ0x5f_interrupt,
194  IRQ0x60_interrupt, IRQ0x61_interrupt, IRQ0x62_interrupt,
195  IRQ0x63_interrupt, IRQ0x64_interrupt, IRQ0x65_interrupt,
196  IRQ0x66_interrupt, IRQ0x67_interrupt, IRQ0x68_interrupt,
197  IRQ0x69_interrupt, IRQ0x6a_interrupt, IRQ0x6b_interrupt,
198  IRQ0x6c_interrupt, IRQ0x6d_interrupt, IRQ0x6e_interrupt,
199  IRQ0x6f_interrupt, IRQ0x70_interrupt,
200 #endif
201 };
202 
203 void
204 block_irq(int irq, int cpu)
205 {
206  int intr_mask;
207  unsigned long flags;
208 
209  spin_lock_irqsave(&irq_lock, flags);
210  /* Remember, 1 let thru, 0 block. */
211  if (irq - FIRST_IRQ < 32) {
212  intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu],
213  rw_mask, 0);
214  intr_mask &= ~(1 << (irq - FIRST_IRQ));
215  REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask,
216  0, intr_mask);
217  } else {
218  intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu],
219  rw_mask, 1);
220  intr_mask &= ~(1 << (irq - FIRST_IRQ - 32));
221  REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask,
222  1, intr_mask);
223  }
224  spin_unlock_irqrestore(&irq_lock, flags);
225 }
226 
227 void
228 unblock_irq(int irq, int cpu)
229 {
230  int intr_mask;
231  unsigned long flags;
232 
233  spin_lock_irqsave(&irq_lock, flags);
234  /* Remember, 1 let thru, 0 block. */
235  if (irq - FIRST_IRQ < 32) {
236  intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu],
237  rw_mask, 0);
238  intr_mask |= (1 << (irq - FIRST_IRQ));
239  REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask,
240  0, intr_mask);
241  } else {
242  intr_mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu],
243  rw_mask, 1);
244  intr_mask |= (1 << (irq - FIRST_IRQ - 32));
245  REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask,
246  1, intr_mask);
247  }
248  spin_unlock_irqrestore(&irq_lock, flags);
249 }
250 
251 /* Find out which CPU the irq should be allocated to. */
252 static int irq_cpu(int irq)
253 {
254  int cpu;
255  unsigned long flags;
256 
257  spin_lock_irqsave(&irq_lock, flags);
258  cpu = irq_allocations[irq - FIRST_IRQ].cpu;
259 
260  /* Fixed interrupts stay on the local CPU. */
261  if (cpu == CPU_FIXED)
262  {
263  spin_unlock_irqrestore(&irq_lock, flags);
264  return smp_processor_id();
265  }
266 
267 
268  /* Let the interrupt stay if possible */
269  if (cpumask_test_cpu(cpu, &irq_allocations[irq - FIRST_IRQ].mask))
270  goto out;
271 
272  /* IRQ must be moved to another CPU. */
273  cpu = cpumask_first(&irq_allocations[irq - FIRST_IRQ].mask);
274  irq_allocations[irq - FIRST_IRQ].cpu = cpu;
275 out:
276  spin_unlock_irqrestore(&irq_lock, flags);
277  return cpu;
278 }
279 
280 void crisv32_mask_irq(int irq)
281 {
282  int cpu;
283 
284  for (cpu = 0; cpu < NR_CPUS; cpu++)
285  block_irq(irq, cpu);
286 }
287 
288 void crisv32_unmask_irq(int irq)
289 {
290  unblock_irq(irq, irq_cpu(irq));
291 }
292 
293 
294 static void enable_crisv32_irq(struct irq_data *data)
295 {
296  crisv32_unmask_irq(data->irq);
297 }
298 
299 static void disable_crisv32_irq(struct irq_data *data)
300 {
301  crisv32_mask_irq(data->irq);
302 }
303 
304 static int set_affinity_crisv32_irq(struct irq_data *data,
305  const struct cpumask *dest, bool force)
306 {
307  unsigned long flags;
308 
309  spin_lock_irqsave(&irq_lock, flags);
310  irq_allocations[data->irq - FIRST_IRQ].mask = *dest;
311  spin_unlock_irqrestore(&irq_lock, flags);
312  return 0;
313 }
314 
315 static struct irq_chip crisv32_irq_type = {
316  .name = "CRISv32",
317  .irq_shutdown = disable_crisv32_irq,
318  .irq_enable = enable_crisv32_irq,
319  .irq_disable = disable_crisv32_irq,
320  .irq_set_affinity = set_affinity_crisv32_irq,
321 };
322 
323 void
325 {
326  etrax_irv->v[n] = (irqvectptr) addr;
327 }
328 
329 extern void do_IRQ(int irq, struct pt_regs * regs);
330 
331 void
332 crisv32_do_IRQ(int irq, int block, struct pt_regs* regs)
333 {
334  /* Interrupts that may not be moved to another CPU and
335  * are IRQF_DISABLED may skip blocking. This is currently
336  * only valid for the timer IRQ and the IPI and is used
337  * for the timer interrupt to avoid watchdog starvation.
338  */
339  if (!block) {
340  do_IRQ(irq, regs);
341  return;
342  }
343 
344  block_irq(irq, smp_processor_id());
345  do_IRQ(irq, regs);
346 
347  unblock_irq(irq, irq_cpu(irq));
348 }
349 
350 /* If multiple interrupts occur simultaneously we get a multiple
351  * interrupt from the CPU and software has to sort out which
352  * interrupts that happened. There are two special cases here:
353  *
354  * 1. Timer interrupts may never be blocked because of the
355  * watchdog (refer to comment in include/asr/arch/irq.h)
356  * 2. GDB serial port IRQs are unhandled here and will be handled
357  * as a single IRQ when it strikes again because the GDB
358  * stubb wants to save the registers in its own fashion.
359  */
360 void
362 {
363  int cpu;
364  int mask;
365  int masked[NBR_REGS];
366  int bit;
367  int i;
368 
369  cpu = smp_processor_id();
370 
371  /* An extra irq_enter here to prevent softIRQs to run after
372  * each do_IRQ. This will decrease the interrupt latency.
373  */
374  irq_enter();
375 
376  for (i = 0; i < NBR_REGS; i++) {
377  /* Get which IRQs that happened. */
378  masked[i] = REG_RD_INT_VECT(intr_vect, irq_regs[cpu],
379  r_masked_vect, i);
380 
381  /* Calculate new IRQ mask with these IRQs disabled. */
382  mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i);
383  mask &= ~masked[i];
384 
385  /* Timer IRQ is never masked */
386 #ifdef TIMER_VECT1
387  if ((i == 1) && (masked[0] & TIMER_MASK))
388  mask |= TIMER_MASK;
389 #else
390  if ((i == 0) && (masked[0] & TIMER_MASK))
391  mask |= TIMER_MASK;
392 #endif
393  /* Block all the IRQs */
394  REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i, mask);
395 
396  /* Check for timer IRQ and handle it special. */
397 #ifdef TIMER_VECT1
398  if ((i == 1) && (masked[i] & TIMER_MASK)) {
399  masked[i] &= ~TIMER_MASK;
400  do_IRQ(TIMER0_INTR_VECT, regs);
401  }
402 #else
403  if ((i == 0) && (masked[i] & TIMER_MASK)) {
404  masked[i] &= ~TIMER_MASK;
405  do_IRQ(TIMER0_INTR_VECT, regs);
406  }
407 #endif
408  }
409 
410 #ifdef IGNORE_MASK
411  /* Remove IRQs that can't be handled as multiple. */
412  masked[0] &= ~IGNORE_MASK;
413 #endif
414 
415  /* Handle the rest of the IRQs. */
416  for (i = 0; i < NBR_REGS; i++) {
417  for (bit = 0; bit < 32; bit++) {
418  if (masked[i] & (1 << bit))
419  do_IRQ(bit + FIRST_IRQ + i*32, regs);
420  }
421  }
422 
423  /* Unblock all the IRQs. */
424  for (i = 0; i < NBR_REGS; i++) {
425  mask = REG_RD_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i);
426  mask |= masked[i];
427  REG_WR_INT_VECT(intr_vect, irq_regs[cpu], rw_mask, i, mask);
428  }
429 
430  /* This irq_exit() will trigger the soft IRQs. */
431  irq_exit();
432 }
433 
434 /*
435  * This is called by start_kernel. It fixes the IRQ masks and setup the
436  * interrupt vector table to point to bad_interrupt pointers.
437  */
438 void __init
439 init_IRQ(void)
440 {
441  int i;
442  int j;
443  reg_intr_vect_rw_mask vect_mask = {0};
444 
445  /* Clear all interrupts masks. */
446  for (i = 0; i < NBR_REGS; i++)
447  REG_WR_VECT(intr_vect, regi_irq, rw_mask, i, vect_mask);
448 
449  for (i = 0; i < 256; i++)
450  etrax_irv->v[i] = weird_irq;
451 
452  /* Point all IRQ's to bad handlers. */
453  for (i = FIRST_IRQ, j = 0; j < NR_IRQS; i++, j++) {
454  irq_set_chip_and_handler(j, &crisv32_irq_type,
457  }
458 
459  /* Mark Timer and IPI IRQs as CPU local */
460  irq_allocations[TIMER0_INTR_VECT - FIRST_IRQ].cpu = CPU_FIXED;
461  irq_set_status_flags(TIMER0_INTR_VECT, IRQ_PER_CPU);
462  irq_allocations[IPI_INTR_VECT - FIRST_IRQ].cpu = CPU_FIXED;
463  irq_set_status_flags(IPI_INTR_VECT, IRQ_PER_CPU);
464 
467 
468  /* Set up handler for various MMU bus faults. */
477 
478 #ifdef CONFIG_BUG
479  /* Break 14 handler, used to implement cheap BUG(). */
481 #endif
482 
483  /* The system-call trap is reached by "break 13". */
485 
486  /* Exception handlers for debugging, both user-mode and kernel-mode. */
487 
488  /* Break 8. */
490  /* Hardware single step. */
492  /* Hardware breakpoint. */
494 
495 #ifdef CONFIG_ETRAX_KGDB
496  kgdb_init();
497  /* Everything is set up; now trap the kernel. */
498  breakpoint();
499 #endif
500 }
501