Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
smp.c
Go to the documentation of this file.
1 /*
2  * arch/sh/kernel/smp.c
3  *
4  * SMP support for the SuperH processors.
5  *
6  * Copyright (C) 2002 - 2010 Paul Mundt
7  * Copyright (C) 2006 - 2007 Akio Idehara
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License. See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 #include <linux/err.h>
14 #include <linux/cache.h>
15 #include <linux/cpumask.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/cpu.h>
22 #include <linux/interrupt.h>
23 #include <linux/sched.h>
24 #include <linux/atomic.h>
25 #include <asm/processor.h>
26 #include <asm/mmu_context.h>
27 #include <asm/smp.h>
28 #include <asm/cacheflush.h>
29 #include <asm/sections.h>
30 #include <asm/setup.h>
31 
32 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */
33 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
34 
36 
37 /* State of each CPU */
38 DEFINE_PER_CPU(int, cpu_state) = { 0 };
39 
41 {
42  if (mp_ops)
43  printk(KERN_WARNING "Overriding previously set SMP ops\n");
44 
45  mp_ops = ops;
46 }
47 
48 static inline void __cpuinit smp_store_cpu_info(unsigned int cpu)
49 {
50  struct sh_cpuinfo *c = cpu_data + cpu;
51 
52  memcpy(c, &boot_cpu_data, sizeof(struct sh_cpuinfo));
53 
55 }
56 
57 void __init smp_prepare_cpus(unsigned int max_cpus)
58 {
59  unsigned int cpu = smp_processor_id();
60 
62  current_thread_info()->cpu = cpu;
63  mp_ops->prepare_cpus(max_cpus);
64 
65 #ifndef CONFIG_HOTPLUG_CPU
67 #endif
68 }
69 
71 {
72  unsigned int cpu = smp_processor_id();
73 
74  __cpu_number_map[0] = cpu;
76 
77  set_cpu_online(cpu, true);
78  set_cpu_possible(cpu, true);
79 
80  per_cpu(cpu_state, cpu) = CPU_ONLINE;
81 }
82 
83 #ifdef CONFIG_HOTPLUG_CPU
84 void native_cpu_die(unsigned int cpu)
85 {
86  unsigned int i;
87 
88  for (i = 0; i < 10; i++) {
89  smp_rmb();
90  if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
92  pr_info("CPU %u is now offline\n", cpu);
93 
94  return;
95  }
96 
97  msleep(100);
98  }
99 
100  pr_err("CPU %u didn't die...\n", cpu);
101 }
102 
103 int native_cpu_disable(unsigned int cpu)
104 {
105  return cpu == 0 ? -EPERM : 0;
106 }
107 
108 void play_dead_common(void)
109 {
110  idle_task_exit();
112  mb();
113 
114  __get_cpu_var(cpu_state) = CPU_DEAD;
116 }
117 
118 void native_play_dead(void)
119 {
120  play_dead_common();
121 }
122 
123 int __cpu_disable(void)
124 {
125  unsigned int cpu = smp_processor_id();
126  int ret;
127 
128  ret = mp_ops->cpu_disable(cpu);
129  if (ret)
130  return ret;
131 
132  /*
133  * Take this CPU offline. Once we clear this, we can't return,
134  * and we must not schedule until we're ready to give up the cpu.
135  */
136  set_cpu_online(cpu, false);
137 
138  /*
139  * OK - migrate IRQs away from this CPU
140  */
141  migrate_irqs();
142 
143  /*
144  * Stop the local timer for this CPU.
145  */
146  local_timer_stop(cpu);
147 
148  /*
149  * Flush user cache and TLB mappings, and then remove this CPU
150  * from the vm mask set of all processes.
151  */
152  flush_cache_all();
154 
155  clear_tasks_mm_cpumask(cpu);
156 
157  return 0;
158 }
159 #else /* ... !CONFIG_HOTPLUG_CPU */
160 int native_cpu_disable(unsigned int cpu)
161 {
162  return -ENOSYS;
163 }
164 
165 void native_cpu_die(unsigned int cpu)
166 {
167  /* We said "no" in __cpu_disable */
168  BUG();
169 }
170 
172 {
173  BUG();
174 }
175 #endif
176 
178 {
179  unsigned int cpu = smp_processor_id();
180  struct mm_struct *mm = &init_mm;
181 
182  enable_mmu();
183  atomic_inc(&mm->mm_count);
184  atomic_inc(&mm->mm_users);
185  current->active_mm = mm;
186  enter_lazy_tlb(mm, current);
188 
190 
191  preempt_disable();
192 
193  notify_cpu_starting(cpu);
194 
196 
197  /* Enable local timers */
198  local_timer_setup(cpu);
199  calibrate_delay();
200 
201  smp_store_cpu_info(cpu);
202 
203  set_cpu_online(cpu, true);
204  per_cpu(cpu_state, cpu) = CPU_ONLINE;
205 
206  cpu_idle();
207 }
208 
209 extern struct {
210  unsigned long sp;
211  unsigned long bss_start;
212  unsigned long bss_end;
214  void *cpu_init_fn;
215  void *thread_info;
216 } stack_start;
217 
218 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tsk)
219 {
220  unsigned long timeout;
221 
222  per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
223 
224  /* Fill in data in head.S for secondary cpus */
225  stack_start.sp = tsk->thread.sp;
226  stack_start.thread_info = tsk->stack;
227  stack_start.bss_start = 0; /* don't clear bss for secondary cpus */
228  stack_start.start_kernel_fn = start_secondary;
229 
230  flush_icache_range((unsigned long)&stack_start,
231  (unsigned long)&stack_start + sizeof(stack_start));
232  wmb();
233 
234  mp_ops->start_cpu(cpu, (unsigned long)_stext);
235 
236  timeout = jiffies + HZ;
237  while (time_before(jiffies, timeout)) {
238  if (cpu_online(cpu))
239  break;
240 
241  udelay(10);
242  barrier();
243  }
244 
245  if (cpu_online(cpu))
246  return 0;
247 
248  return -ENOENT;
249 }
250 
251 void __init smp_cpus_done(unsigned int max_cpus)
252 {
253  unsigned long bogosum = 0;
254  int cpu;
255 
257  bogosum += cpu_data[cpu].loops_per_jiffy;
258 
259  printk(KERN_INFO "SMP: Total of %d processors activated "
260  "(%lu.%02lu BogoMIPS).\n", num_online_cpus(),
261  bogosum / (500000/HZ),
262  (bogosum / (5000/HZ)) % 100);
263 }
264 
265 void smp_send_reschedule(int cpu)
266 {
267  mp_ops->send_ipi(cpu, SMP_MSG_RESCHEDULE);
268 }
269 
270 void smp_send_stop(void)
271 {
273 }
274 
276 {
277  int cpu;
278 
279  for_each_cpu(cpu, mask)
280  mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION);
281 }
282 
284 {
285  mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE);
286 }
287 
288 void smp_timer_broadcast(const struct cpumask *mask)
289 {
290  int cpu;
291 
292  for_each_cpu(cpu, mask)
293  mp_ops->send_ipi(cpu, SMP_MSG_TIMER);
294 }
295 
296 static void ipi_timer(void)
297 {
298  irq_enter();
300  irq_exit();
301 }
302 
303 void smp_message_recv(unsigned int msg)
304 {
305  switch (msg) {
306  case SMP_MSG_FUNCTION:
307  generic_smp_call_function_interrupt();
308  break;
309  case SMP_MSG_RESCHEDULE:
310  scheduler_ipi();
311  break;
312  case SMP_MSG_FUNCTION_SINGLE:
313  generic_smp_call_function_single_interrupt();
314  break;
315  case SMP_MSG_TIMER:
316  ipi_timer();
317  break;
318  default:
319  printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n",
320  smp_processor_id(), __func__, msg);
321  break;
322  }
323 }
324 
325 /* Not really SMP stuff ... */
326 int setup_profiling_timer(unsigned int multiplier)
327 {
328  return 0;
329 }
330 
331 static void flush_tlb_all_ipi(void *info)
332 {
334 }
335 
336 void flush_tlb_all(void)
337 {
338  on_each_cpu(flush_tlb_all_ipi, 0, 1);
339 }
340 
341 static void flush_tlb_mm_ipi(void *mm)
342 {
343  local_flush_tlb_mm((struct mm_struct *)mm);
344 }
345 
346 /*
347  * The following tlb flush calls are invoked when old translations are
348  * being torn down, or pte attributes are changing. For single threaded
349  * address spaces, a new context is obtained on the current cpu, and tlb
350  * context on other cpus are invalidated to force a new context allocation
351  * at switch_mm time, should the mm ever be used on other cpus. For
352  * multithreaded address spaces, intercpu interrupts have to be sent.
353  * Another case where intercpu interrupts are required is when the target
354  * mm might be active on another cpu (eg debuggers doing the flushes on
355  * behalf of debugees, kswapd stealing pages from another process etc).
356  * Kanoj 07/00.
357  */
358 void flush_tlb_mm(struct mm_struct *mm)
359 {
360  preempt_disable();
361 
362  if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
363  smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1);
364  } else {
365  int i;
366  for (i = 0; i < num_online_cpus(); i++)
367  if (smp_processor_id() != i)
368  cpu_context(i, mm) = 0;
369  }
370  local_flush_tlb_mm(mm);
371 
372  preempt_enable();
373 }
374 
375 struct flush_tlb_data {
376  struct vm_area_struct *vma;
377  unsigned long addr1;
378  unsigned long addr2;
379 };
380 
381 static void flush_tlb_range_ipi(void *info)
382 {
383  struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
384 
385  local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
386 }
387 
389  unsigned long start, unsigned long end)
390 {
391  struct mm_struct *mm = vma->vm_mm;
392 
393  preempt_disable();
394  if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
395  struct flush_tlb_data fd;
396 
397  fd.vma = vma;
398  fd.addr1 = start;
399  fd.addr2 = end;
400  smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1);
401  } else {
402  int i;
403  for (i = 0; i < num_online_cpus(); i++)
404  if (smp_processor_id() != i)
405  cpu_context(i, mm) = 0;
406  }
407  local_flush_tlb_range(vma, start, end);
408  preempt_enable();
409 }
410 
411 static void flush_tlb_kernel_range_ipi(void *info)
412 {
413  struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
414 
416 }
417 
418 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
419 {
420  struct flush_tlb_data fd;
421 
422  fd.addr1 = start;
423  fd.addr2 = end;
424  on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1);
425 }
426 
427 static void flush_tlb_page_ipi(void *info)
428 {
429  struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
430 
431  local_flush_tlb_page(fd->vma, fd->addr1);
432 }
433 
434 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
435 {
436  preempt_disable();
437  if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
438  (current->mm != vma->vm_mm)) {
439  struct flush_tlb_data fd;
440 
441  fd.vma = vma;
442  fd.addr1 = page;
443  smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1);
444  } else {
445  int i;
446  for (i = 0; i < num_online_cpus(); i++)
447  if (smp_processor_id() != i)
448  cpu_context(i, vma->vm_mm) = 0;
449  }
450  local_flush_tlb_page(vma, page);
451  preempt_enable();
452 }
453 
454 static void flush_tlb_one_ipi(void *info)
455 {
456  struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
457  local_flush_tlb_one(fd->addr1, fd->addr2);
458 }
459 
460 void flush_tlb_one(unsigned long asid, unsigned long vaddr)
461 {
462  struct flush_tlb_data fd;
463 
464  fd.addr1 = asid;
465  fd.addr2 = vaddr;
466 
467  smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1);
468  local_flush_tlb_one(asid, vaddr);
469 }