Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
pci.c
Go to the documentation of this file.
1 /*
2  * Copyright 2011 Tilera Corporation. All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation, version 2.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  * NON INFRINGEMENT. See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/delay.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 #include <linux/capability.h>
21 #include <linux/sched.h>
22 #include <linux/errno.h>
23 #include <linux/bootmem.h>
24 #include <linux/irq.h>
25 #include <linux/io.h>
26 #include <linux/uaccess.h>
27 #include <linux/export.h>
28 
29 #include <asm/processor.h>
30 #include <asm/sections.h>
31 #include <asm/byteorder.h>
32 #include <asm/hv_driver.h>
33 #include <hv/drv_pcie_rc_intf.h>
34 
35 
36 /*
37  * Initialization flow and process
38  * -------------------------------
39  *
40  * This files contains the routines to search for PCI buses,
41  * enumerate the buses, and configure any attached devices.
42  *
43  * There are two entry points here:
44  * 1) tile_pci_init
45  * This sets up the pci_controller structs, and opens the
46  * FDs to the hypervisor. This is called from setup_arch() early
47  * in the boot process.
48  * 2) pcibios_init
49  * This probes the PCI bus(es) for any attached hardware. It's
50  * called by subsys_initcall. All of the real work is done by the
51  * generic Linux PCI layer.
52  *
53  */
54 
55 /*
56  * This flag tells if the platform is TILEmpower that needs
57  * special configuration for the PLX switch chip.
58  */
60 
61 static struct pci_controller controllers[TILE_NUM_PCIE];
62 static int num_controllers;
63 static int pci_scan_flags[TILE_NUM_PCIE];
64 
65 static struct pci_ops tile_cfg_ops;
66 
67 
68 /*
69  * We don't need to worry about the alignment of resources.
70  */
73 {
74  return res->start;
75 }
77 
78 /*
79  * Open a FD to the hypervisor PCI device.
80  *
81  * controller_id is the controller number, config type is 0 or 1 for
82  * config0 or config1 operations.
83  */
84 static int __devinit tile_pcie_open(int controller_id, int config_type)
85 {
86  char filename[32];
87  int fd;
88 
89  sprintf(filename, "pcie/%d/config%d", controller_id, config_type);
90 
91  fd = hv_dev_open((HV_VirtAddr)filename, 0);
92 
93  return fd;
94 }
95 
96 
97 /*
98  * Get the IRQ numbers from the HV and set up the handlers for them.
99  */
100 static int __devinit tile_init_irqs(int controller_id,
101  struct pci_controller *controller)
102 {
103  char filename[32];
104  int fd;
105  int ret;
106  int x;
107  struct pcie_rc_config rc_config;
108 
109  sprintf(filename, "pcie/%d/ctl", controller_id);
110  fd = hv_dev_open((HV_VirtAddr)filename, 0);
111  if (fd < 0) {
112  pr_err("PCI: hv_dev_open(%s) failed\n", filename);
113  return -1;
114  }
115  ret = hv_dev_pread(fd, 0, (HV_VirtAddr)(&rc_config),
116  sizeof(rc_config), PCIE_RC_CONFIG_MASK_OFF);
117  hv_dev_close(fd);
118  if (ret != sizeof(rc_config)) {
119  pr_err("PCI: wanted %zd bytes, got %d\n",
120  sizeof(rc_config), ret);
121  return -1;
122  }
123  /* Record irq_base so that we can map INTx to IRQ # later. */
124  controller->irq_base = rc_config.intr;
125 
126  for (x = 0; x < 4; x++)
127  tile_irq_activate(rc_config.intr + x,
129 
130  if (rc_config.plx_gen1)
131  controller->plx_gen1 = 1;
132 
133  return 0;
134 }
135 
136 /*
137  * First initialization entry point, called from setup_arch().
138  *
139  * Find valid controllers and fill in pci_controller structs for each
140  * of them.
141  *
142  * Returns the number of controllers discovered.
143  */
145 {
146  int i;
147 
148  pr_info("PCI: Searching for controllers...\n");
149 
150  /* Re-init number of PCIe controllers to support hot-plug feature. */
151  num_controllers = 0;
152 
153  /* Do any configuration we need before using the PCIe */
154 
155  for (i = 0; i < TILE_NUM_PCIE; i++) {
156  /*
157  * To see whether we need a real config op based on
158  * the results of pcibios_init(), to support PCIe hot-plug.
159  */
160  if (pci_scan_flags[i] == 0) {
161  int hv_cfg_fd0 = -1;
162  int hv_cfg_fd1 = -1;
163  int hv_mem_fd = -1;
164  char name[32];
165  struct pci_controller *controller;
166 
167  /*
168  * Open the fd to the HV. If it fails then this
169  * device doesn't exist.
170  */
171  hv_cfg_fd0 = tile_pcie_open(i, 0);
172  if (hv_cfg_fd0 < 0)
173  continue;
174  hv_cfg_fd1 = tile_pcie_open(i, 1);
175  if (hv_cfg_fd1 < 0) {
176  pr_err("PCI: Couldn't open config fd to HV "
177  "for controller %d\n", i);
178  goto err_cont;
179  }
180 
181  sprintf(name, "pcie/%d/mem", i);
182  hv_mem_fd = hv_dev_open((HV_VirtAddr)name, 0);
183  if (hv_mem_fd < 0) {
184  pr_err("PCI: Could not open mem fd to HV!\n");
185  goto err_cont;
186  }
187 
188  pr_info("PCI: Found PCI controller #%d\n", i);
189 
190  controller = &controllers[i];
191 
192  controller->index = i;
193  controller->hv_cfg_fd[0] = hv_cfg_fd0;
194  controller->hv_cfg_fd[1] = hv_cfg_fd1;
195  controller->hv_mem_fd = hv_mem_fd;
196  controller->first_busno = 0;
197  controller->last_busno = 0xff;
198  controller->ops = &tile_cfg_ops;
199 
200  num_controllers++;
201  continue;
202 
203 err_cont:
204  if (hv_cfg_fd0 >= 0)
205  hv_dev_close(hv_cfg_fd0);
206  if (hv_cfg_fd1 >= 0)
207  hv_dev_close(hv_cfg_fd1);
208  if (hv_mem_fd >= 0)
209  hv_dev_close(hv_mem_fd);
210  continue;
211  }
212  }
213 
214  /*
215  * Before using the PCIe, see if we need to do any platform-specific
216  * configuration, such as the PLX switch Gen 1 issue on TILEmpower.
217  */
218  for (i = 0; i < num_controllers; i++) {
219  struct pci_controller *controller = &controllers[i];
220 
221  if (controller->plx_gen1)
222  tile_plx_gen1 = 1;
223  }
224 
225  return num_controllers;
226 }
227 
228 /*
229  * (pin - 1) converts from the PCI standard's [1:4] convention to
230  * a normal [0:3] range.
231  */
232 static int tile_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
233 {
234  struct pci_controller *controller =
235  (struct pci_controller *)dev->sysdata;
236  return (pin - 1) + controller->irq_base;
237 }
238 
239 
240 static void __devinit fixup_read_and_payload_sizes(void)
241 {
242  struct pci_dev *dev = NULL;
243  int smallest_max_payload = 0x1; /* Tile maxes out at 256 bytes. */
244  int max_read_size = 0x2; /* Limit to 512 byte reads. */
245  u16 new_values;
246 
247  /* Scan for the smallest maximum payload size. */
248  while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
249  u32 devcap;
250  int max_payload;
251 
252  if (!pci_is_pcie(dev))
253  continue;
254 
256  max_payload = devcap & PCI_EXP_DEVCAP_PAYLOAD;
257  if (max_payload < smallest_max_payload)
258  smallest_max_payload = max_payload;
259  }
260 
261  /* Now, set the max_payload_size for all devices to that value. */
262  new_values = (max_read_size << 12) | (smallest_max_payload << 5);
263  while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL)
266  new_values);
267 }
268 
269 
270 /*
271  * Second PCI initialization entry point, called by subsys_initcall.
272  *
273  * The controllers have been set up by the time we get here, by a call to
274  * tile_pci_init.
275  */
277 {
278  int i;
279 
280  pr_info("PCI: Probing PCI hardware\n");
281 
282  /*
283  * Delay a bit in case devices aren't ready. Some devices are
284  * known to require at least 20ms here, but we use a more
285  * conservative value.
286  */
287  mdelay(250);
288 
289  /* Scan all of the recorded PCI controllers. */
290  for (i = 0; i < TILE_NUM_PCIE; i++) {
291  /*
292  * Do real pcibios init ops if the controller is initialized
293  * by tile_pci_init() successfully and not initialized by
294  * pcibios_init() yet to support PCIe hot-plug.
295  */
296  if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) {
297  struct pci_controller *controller = &controllers[i];
298  struct pci_bus *bus;
300 
301  if (tile_init_irqs(i, controller)) {
302  pr_err("PCI: Could not initialize IRQs\n");
303  continue;
304  }
305 
306  pr_info("PCI: initializing controller #%d\n", i);
307 
308  /*
309  * This comes from the generic Linux PCI driver.
310  *
311  * It reads the PCI tree for this bus into the Linux
312  * data structures.
313  *
314  * This is inlined in linux/pci.h and calls into
315  * pci_scan_bus_parented() in probe.c.
316  */
319  bus = pci_scan_root_bus(NULL, 0, controller->ops, controller, &resources);
320  controller->root_bus = bus;
321  controller->last_busno = bus->busn_res.end;
322  }
323  }
324 
325  /* Do machine dependent PCI interrupt routing */
326  pci_fixup_irqs(pci_common_swizzle, tile_map_irq);
327 
328  /*
329  * This comes from the generic Linux PCI driver.
330  *
331  * It allocates all of the resources (I/O memory, etc)
332  * associated with the devices read in above.
333  */
335 
336  /* Configure the max_read_size and max_payload_size values. */
337  fixup_read_and_payload_sizes();
338 
339  /* Record the I/O resources in the PCI controller structure. */
340  for (i = 0; i < TILE_NUM_PCIE; i++) {
341  /*
342  * Do real pcibios init ops if the controller is initialized
343  * by tile_pci_init() successfully and not initialized by
344  * pcibios_init() yet to support PCIe hot-plug.
345  */
346  if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) {
347  struct pci_bus *root_bus = controllers[i].root_bus;
348  struct pci_bus *next_bus;
349  struct pci_dev *dev;
350 
351  list_for_each_entry(dev, &root_bus->devices, bus_list) {
352  /*
353  * Find the PCI host controller, ie. the 1st
354  * bridge.
355  */
356  if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI &&
357  (PCI_SLOT(dev->devfn) == 0)) {
358  next_bus = dev->subordinate;
359  controllers[i].mem_resources[0] =
360  *next_bus->resource[0];
361  controllers[i].mem_resources[1] =
362  *next_bus->resource[1];
363  controllers[i].mem_resources[2] =
364  *next_bus->resource[2];
365 
366  /* Setup flags. */
367  pci_scan_flags[i] = 1;
368 
369  break;
370  }
371  }
372  }
373  }
374 
375  return 0;
376 }
377 subsys_initcall(pcibios_init);
378 
379 /*
380  * No bus fixups needed.
381  */
383 {
384  /* Nothing needs to be done. */
385 }
386 
387 void pcibios_set_master(struct pci_dev *dev)
388 {
389  /* No special bus mastering setup handling. */
390 }
391 
392 /*
393  * Enable memory and/or address decoding, as appropriate, for the
394  * device described by the 'dev' struct.
395  *
396  * This is called from the generic PCI layer, and can be called
397  * for bridges or endpoints.
398  */
399 int pcibios_enable_device(struct pci_dev *dev, int mask)
400 {
401  u16 cmd, old_cmd;
402  u8 header_type;
403  int i;
404  struct resource *r;
405 
406  pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
407 
408  pci_read_config_word(dev, PCI_COMMAND, &cmd);
409  old_cmd = cmd;
410  if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
411  /*
412  * For bridges, we enable both memory and I/O decoding
413  * in call cases.
414  */
415  cmd |= PCI_COMMAND_IO;
416  cmd |= PCI_COMMAND_MEMORY;
417  } else {
418  /*
419  * For endpoints, we enable memory and/or I/O decoding
420  * only if they have a memory resource of that type.
421  */
422  for (i = 0; i < 6; i++) {
423  r = &dev->resource[i];
424  if (r->flags & IORESOURCE_UNSET) {
425  pr_err("PCI: Device %s not available "
426  "because of resource collisions\n",
427  pci_name(dev));
428  return -EINVAL;
429  }
430  if (r->flags & IORESOURCE_IO)
431  cmd |= PCI_COMMAND_IO;
432  if (r->flags & IORESOURCE_MEM)
433  cmd |= PCI_COMMAND_MEMORY;
434  }
435  }
436 
437  /*
438  * We only write the command if it changed.
439  */
440  if (cmd != old_cmd)
441  pci_write_config_word(dev, PCI_COMMAND, cmd);
442  return 0;
443 }
444 
445 /****************************************************************
446  *
447  * Tile PCI config space read/write routines
448  *
449  ****************************************************************/
450 
451 /*
452  * These are the normal read and write ops
453  * These are expanded with macros from pci_bus_read_config_byte() etc.
454  *
455  * devfn is the combined PCI slot & function.
456  *
457  * offset is in bytes, from the start of config space for the
458  * specified bus & slot.
459  */
460 
461 static int __devinit tile_cfg_read(struct pci_bus *bus,
462  unsigned int devfn,
463  int offset,
464  int size,
465  u32 *val)
466 {
467  struct pci_controller *controller = bus->sysdata;
468  int busnum = bus->number & 0xff;
469  int slot = (devfn >> 3) & 0x1f;
470  int function = devfn & 0x7;
471  u32 addr;
472  int config_mode = 1;
473 
474  /*
475  * There is no bridge between the Tile and bus 0, so we
476  * use config0 to talk to bus 0.
477  *
478  * If we're talking to a bus other than zero then we
479  * must have found a bridge.
480  */
481  if (busnum == 0) {
482  /*
483  * We fake an empty slot for (busnum == 0) && (slot > 0),
484  * since there is only one slot on bus 0.
485  */
486  if (slot) {
487  *val = 0xFFFFFFFF;
488  return 0;
489  }
490  config_mode = 0;
491  }
492 
493  addr = busnum << 20; /* Bus in 27:20 */
494  addr |= slot << 15; /* Slot (device) in 19:15 */
495  addr |= function << 12; /* Function is in 14:12 */
496  addr |= (offset & 0xFFF); /* byte address in 0:11 */
497 
498  return hv_dev_pread(controller->hv_cfg_fd[config_mode], 0,
499  (HV_VirtAddr)(val), size, addr);
500 }
501 
502 
503 /*
504  * See tile_cfg_read() for relevant comments.
505  * Note that "val" is the value to write, not a pointer to that value.
506  */
507 static int __devinit tile_cfg_write(struct pci_bus *bus,
508  unsigned int devfn,
509  int offset,
510  int size,
511  u32 val)
512 {
513  struct pci_controller *controller = bus->sysdata;
514  int busnum = bus->number & 0xff;
515  int slot = (devfn >> 3) & 0x1f;
516  int function = devfn & 0x7;
517  u32 addr;
518  int config_mode = 1;
519  HV_VirtAddr valp = (HV_VirtAddr)&val;
520 
521  /*
522  * For bus 0 slot 0 we use config 0 accesses.
523  */
524  if (busnum == 0) {
525  /*
526  * We fake an empty slot for (busnum == 0) && (slot > 0),
527  * since there is only one slot on bus 0.
528  */
529  if (slot)
530  return 0;
531  config_mode = 0;
532  }
533 
534  addr = busnum << 20; /* Bus in 27:20 */
535  addr |= slot << 15; /* Slot (device) in 19:15 */
536  addr |= function << 12; /* Function is in 14:12 */
537  addr |= (offset & 0xFFF); /* byte address in 0:11 */
538 
539 #ifdef __BIG_ENDIAN
540  /* Point to the correct part of the 32-bit "val". */
541  valp += 4 - size;
542 #endif
543 
544  return hv_dev_pwrite(controller->hv_cfg_fd[config_mode], 0,
545  valp, size, addr);
546 }
547 
548 
549 static struct pci_ops tile_cfg_ops = {
550  .read = tile_cfg_read,
551  .write = tile_cfg_write,
552 };
553 
554 
555 /*
556  * In the following, each PCI controller's mem_resources[1]
557  * represents its (non-prefetchable) PCI memory resource.
558  * mem_resources[0] and mem_resources[2] refer to its PCI I/O and
559  * prefetchable PCI memory resources, respectively.
560  * For more details, see pci_setup_bridge() in setup-bus.c.
561  * By comparing the target PCI memory address against the
562  * end address of controller 0, we can determine the controller
563  * that should accept the PCI memory access.
564  */
565 #define TILE_READ(size, type) \
566 type _tile_read##size(unsigned long addr) \
567 { \
568  type val; \
569  int idx = 0; \
570  if (addr > controllers[0].mem_resources[1].end && \
571  addr > controllers[0].mem_resources[2].end) \
572  idx = 1; \
573  if (hv_dev_pread(controllers[idx].hv_mem_fd, 0, \
574  (HV_VirtAddr)(&val), sizeof(type), addr)) \
575  pr_err("PCI: read %zd bytes at 0x%lX failed\n", \
576  sizeof(type), addr); \
577  return val; \
578 } \
579 EXPORT_SYMBOL(_tile_read##size)
580 
581 TILE_READ(b, u8);
582 TILE_READ(w, u16);
583 TILE_READ(l, u32);
584 TILE_READ(q, u64);
585 
586 #define TILE_WRITE(size, type) \
587 void _tile_write##size(type val, unsigned long addr) \
588 { \
589  int idx = 0; \
590  if (addr > controllers[0].mem_resources[1].end && \
591  addr > controllers[0].mem_resources[2].end) \
592  idx = 1; \
593  if (hv_dev_pwrite(controllers[idx].hv_mem_fd, 0, \
594  (HV_VirtAddr)(&val), sizeof(type), addr)) \
595  pr_err("PCI: write %zd bytes at 0x%lX failed\n", \
596  sizeof(type), addr); \
597 } \
598 EXPORT_SYMBOL(_tile_write##size)
599 
600 TILE_WRITE(b, u8);
601 TILE_WRITE(w, u16);
602 TILE_WRITE(l, u32);
603 TILE_WRITE(q, u64);