Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
rc.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2004 Video54 Technologies, Inc.
3  * Copyright (c) 2004-2011 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/slab.h>
19 #include <linux/export.h>
20 
21 #include "ath9k.h"
22 
23 static const struct ath_rate_table ar5416_11na_ratetable = {
24  68,
25  8, /* MCS start */
26  {
27  [0] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 6000,
28  5400, 0, 12 }, /* 6 Mb */
29  [1] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 9000,
30  7800, 1, 18 }, /* 9 Mb */
31  [2] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000,
32  10000, 2, 24 }, /* 12 Mb */
33  [3] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000,
34  13900, 3, 36 }, /* 18 Mb */
35  [4] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000,
36  17300, 4, 48 }, /* 24 Mb */
37  [5] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000,
38  23000, 5, 72 }, /* 36 Mb */
39  [6] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000,
40  27400, 6, 96 }, /* 48 Mb */
41  [7] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000,
42  29300, 7, 108 }, /* 54 Mb */
43  [8] = { RC_HT_SDT_2040, WLAN_RC_PHY_HT_20_SS, 6500,
44  6400, 0, 0 }, /* 6.5 Mb */
45  [9] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 13000,
46  12700, 1, 1 }, /* 13 Mb */
47  [10] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 19500,
48  18800, 2, 2 }, /* 19.5 Mb */
49  [11] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 26000,
50  25000, 3, 3 }, /* 26 Mb */
51  [12] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 39000,
52  36700, 4, 4 }, /* 39 Mb */
53  [13] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 52000,
54  48100, 5, 5 }, /* 52 Mb */
55  [14] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 58500,
56  53500, 6, 6 }, /* 58.5 Mb */
57  [15] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 65000,
58  59000, 7, 7 }, /* 65 Mb */
59  [16] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS_HGI, 72200,
60  65400, 7, 7 }, /* 75 Mb */
61  [17] = { RC_INVALID, WLAN_RC_PHY_HT_20_DS, 13000,
62  12700, 8, 8 }, /* 13 Mb */
63  [18] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 26000,
64  24800, 9, 9 }, /* 26 Mb */
65  [19] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 39000,
66  36600, 10, 10 }, /* 39 Mb */
67  [20] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 52000,
68  48100, 11, 11 }, /* 52 Mb */
69  [21] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 78000,
70  69500, 12, 12 }, /* 78 Mb */
71  [22] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 104000,
72  89500, 13, 13 }, /* 104 Mb */
73  [23] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 117000,
74  98900, 14, 14 }, /* 117 Mb */
75  [24] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 130000,
76  108300, 15, 15 }, /* 130 Mb */
77  [25] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS_HGI, 144400,
78  120000, 15, 15 }, /* 144.4 Mb */
79  [26] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 19500,
80  17400, 16, 16 }, /* 19.5 Mb */
81  [27] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 39000,
82  35100, 17, 17 }, /* 39 Mb */
83  [28] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 58500,
84  52600, 18, 18 }, /* 58.5 Mb */
85  [29] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 78000,
86  70400, 19, 19 }, /* 78 Mb */
87  [30] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 117000,
88  104900, 20, 20 }, /* 117 Mb */
89  [31] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS_HGI, 130000,
90  115800, 20, 20 }, /* 130 Mb*/
91  [32] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 156000,
92  137200, 21, 21 }, /* 156 Mb */
93  [33] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 173300,
94  151100, 21, 21 }, /* 173.3 Mb */
95  [34] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 175500,
96  152800, 22, 22 }, /* 175.5 Mb */
97  [35] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 195000,
98  168400, 22, 22 }, /* 195 Mb*/
99  [36] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 195000,
100  168400, 23, 23 }, /* 195 Mb */
101  [37] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 216700,
102  185000, 23, 23 }, /* 216.7 Mb */
103  [38] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 13500,
104  13200, 0, 0 }, /* 13.5 Mb*/
105  [39] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 27500,
106  25900, 1, 1 }, /* 27.0 Mb*/
107  [40] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 40500,
108  38600, 2, 2 }, /* 40.5 Mb*/
109  [41] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 54000,
110  49800, 3, 3 }, /* 54 Mb */
111  [42] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 81500,
112  72200, 4, 4 }, /* 81 Mb */
113  [43] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 108000,
114  92900, 5, 5 }, /* 108 Mb */
115  [44] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 121500,
116  102700, 6, 6 }, /* 121.5 Mb*/
117  [45] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 135000,
118  112000, 7, 7 }, /* 135 Mb */
119  [46] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000,
120  122000, 7, 7 }, /* 150 Mb */
121  [47] = { RC_INVALID, WLAN_RC_PHY_HT_40_DS, 27000,
122  25800, 8, 8 }, /* 27 Mb */
123  [48] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 54000,
124  49800, 9, 9 }, /* 54 Mb */
125  [49] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 81000,
126  71900, 10, 10 }, /* 81 Mb */
127  [50] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 108000,
128  92500, 11, 11 }, /* 108 Mb */
129  [51] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 162000,
130  130300, 12, 12 }, /* 162 Mb */
131  [52] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 216000,
132  162800, 13, 13 }, /* 216 Mb */
133  [53] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 243000,
134  178200, 14, 14 }, /* 243 Mb */
135  [54] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 270000,
136  192100, 15, 15 }, /* 270 Mb */
137  [55] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS_HGI, 300000,
138  207000, 15, 15 }, /* 300 Mb */
139  [56] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 40500,
140  36100, 16, 16 }, /* 40.5 Mb */
141  [57] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 81000,
142  72900, 17, 17 }, /* 81 Mb */
143  [58] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 121500,
144  108300, 18, 18 }, /* 121.5 Mb */
145  [59] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 162000,
146  142000, 19, 19 }, /* 162 Mb */
147  [60] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 243000,
148  205100, 20, 20 }, /* 243 Mb */
149  [61] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS_HGI, 270000,
150  224700, 20, 20 }, /* 270 Mb */
151  [62] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 324000,
152  263100, 21, 21 }, /* 324 Mb */
153  [63] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 360000,
154  288000, 21, 21 }, /* 360 Mb */
155  [64] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 364500,
156  290700, 22, 22 }, /* 364.5 Mb */
157  [65] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 405000,
158  317200, 22, 22 }, /* 405 Mb */
159  [66] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 405000,
160  317200, 23, 23 }, /* 405 Mb */
161  [67] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 450000,
162  346400, 23, 23 }, /* 450 Mb */
163  },
164  50, /* probe interval */
165  WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
166 };
167 
168 /* 4ms frame limit not used for NG mode. The values filled
169  * for HT are the 64K max aggregate limit */
170 
171 static const struct ath_rate_table ar5416_11ng_ratetable = {
172  72,
173  12, /* MCS start */
174  {
175  [0] = { RC_ALL, WLAN_RC_PHY_CCK, 1000,
176  900, 0, 2 }, /* 1 Mb */
177  [1] = { RC_ALL, WLAN_RC_PHY_CCK, 2000,
178  1900, 1, 4 }, /* 2 Mb */
179  [2] = { RC_ALL, WLAN_RC_PHY_CCK, 5500,
180  4900, 2, 11 }, /* 5.5 Mb */
181  [3] = { RC_ALL, WLAN_RC_PHY_CCK, 11000,
182  8100, 3, 22 }, /* 11 Mb */
183  [4] = { RC_INVALID, WLAN_RC_PHY_OFDM, 6000,
184  5400, 4, 12 }, /* 6 Mb */
185  [5] = { RC_INVALID, WLAN_RC_PHY_OFDM, 9000,
186  7800, 5, 18 }, /* 9 Mb */
187  [6] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000,
188  10100, 6, 24 }, /* 12 Mb */
189  [7] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000,
190  14100, 7, 36 }, /* 18 Mb */
191  [8] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000,
192  17700, 8, 48 }, /* 24 Mb */
193  [9] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000,
194  23700, 9, 72 }, /* 36 Mb */
195  [10] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000,
196  27400, 10, 96 }, /* 48 Mb */
197  [11] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000,
198  30900, 11, 108 }, /* 54 Mb */
199  [12] = { RC_INVALID, WLAN_RC_PHY_HT_20_SS, 6500,
200  6400, 0, 0 }, /* 6.5 Mb */
201  [13] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 13000,
202  12700, 1, 1 }, /* 13 Mb */
203  [14] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 19500,
204  18800, 2, 2 }, /* 19.5 Mb*/
205  [15] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 26000,
206  25000, 3, 3 }, /* 26 Mb */
207  [16] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 39000,
208  36700, 4, 4 }, /* 39 Mb */
209  [17] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 52000,
210  48100, 5, 5 }, /* 52 Mb */
211  [18] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 58500,
212  53500, 6, 6 }, /* 58.5 Mb */
213  [19] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 65000,
214  59000, 7, 7 }, /* 65 Mb */
215  [20] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS_HGI, 72200,
216  65400, 7, 7 }, /* 65 Mb*/
217  [21] = { RC_INVALID, WLAN_RC_PHY_HT_20_DS, 13000,
218  12700, 8, 8 }, /* 13 Mb */
219  [22] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 26000,
220  24800, 9, 9 }, /* 26 Mb */
221  [23] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 39000,
222  36600, 10, 10 }, /* 39 Mb */
223  [24] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 52000,
224  48100, 11, 11 }, /* 52 Mb */
225  [25] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 78000,
226  69500, 12, 12 }, /* 78 Mb */
227  [26] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 104000,
228  89500, 13, 13 }, /* 104 Mb */
229  [27] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 117000,
230  98900, 14, 14 }, /* 117 Mb */
231  [28] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 130000,
232  108300, 15, 15 }, /* 130 Mb */
233  [29] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS_HGI, 144400,
234  120000, 15, 15 }, /* 144.4 Mb */
235  [30] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 19500,
236  17400, 16, 16 }, /* 19.5 Mb */
237  [31] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 39000,
238  35100, 17, 17 }, /* 39 Mb */
239  [32] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 58500,
240  52600, 18, 18 }, /* 58.5 Mb */
241  [33] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 78000,
242  70400, 19, 19 }, /* 78 Mb */
243  [34] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 117000,
244  104900, 20, 20 }, /* 117 Mb */
245  [35] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS_HGI, 130000,
246  115800, 20, 20 }, /* 130 Mb */
247  [36] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 156000,
248  137200, 21, 21 }, /* 156 Mb */
249  [37] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 173300,
250  151100, 21, 21 }, /* 173.3 Mb */
251  [38] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 175500,
252  152800, 22, 22 }, /* 175.5 Mb */
253  [39] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 195000,
254  168400, 22, 22 }, /* 195 Mb */
255  [40] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 195000,
256  168400, 23, 23 }, /* 195 Mb */
257  [41] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 216700,
258  185000, 23, 23 }, /* 216.7 Mb */
259  [42] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 13500,
260  13200, 0, 0 }, /* 13.5 Mb */
261  [43] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 27500,
262  25900, 1, 1 }, /* 27.0 Mb */
263  [44] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 40500,
264  38600, 2, 2 }, /* 40.5 Mb */
265  [45] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 54000,
266  49800, 3, 3 }, /* 54 Mb */
267  [46] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 81500,
268  72200, 4, 4 }, /* 81 Mb */
269  [47] = { RC_HT_S_40 , WLAN_RC_PHY_HT_40_SS, 108000,
270  92900, 5, 5 }, /* 108 Mb */
271  [48] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 121500,
272  102700, 6, 6 }, /* 121.5 Mb */
273  [49] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 135000,
274  112000, 7, 7 }, /* 135 Mb */
275  [50] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000,
276  122000, 7, 7 }, /* 150 Mb */
277  [51] = { RC_INVALID, WLAN_RC_PHY_HT_40_DS, 27000,
278  25800, 8, 8 }, /* 27 Mb */
279  [52] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 54000,
280  49800, 9, 9 }, /* 54 Mb */
281  [53] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 81000,
282  71900, 10, 10 }, /* 81 Mb */
283  [54] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 108000,
284  92500, 11, 11 }, /* 108 Mb */
285  [55] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 162000,
286  130300, 12, 12 }, /* 162 Mb */
287  [56] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 216000,
288  162800, 13, 13 }, /* 216 Mb */
289  [57] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 243000,
290  178200, 14, 14 }, /* 243 Mb */
291  [58] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 270000,
292  192100, 15, 15 }, /* 270 Mb */
293  [59] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS_HGI, 300000,
294  207000, 15, 15 }, /* 300 Mb */
295  [60] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 40500,
296  36100, 16, 16 }, /* 40.5 Mb */
297  [61] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 81000,
298  72900, 17, 17 }, /* 81 Mb */
299  [62] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 121500,
300  108300, 18, 18 }, /* 121.5 Mb */
301  [63] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 162000,
302  142000, 19, 19 }, /* 162 Mb */
303  [64] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 243000,
304  205100, 20, 20 }, /* 243 Mb */
305  [65] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS_HGI, 270000,
306  224700, 20, 20 }, /* 270 Mb */
307  [66] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 324000,
308  263100, 21, 21 }, /* 324 Mb */
309  [67] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 360000,
310  288000, 21, 21 }, /* 360 Mb */
311  [68] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 364500,
312  290700, 22, 22 }, /* 364.5 Mb */
313  [69] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 405000,
314  317200, 22, 22 }, /* 405 Mb */
315  [70] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 405000,
316  317200, 23, 23 }, /* 405 Mb */
317  [71] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 450000,
318  346400, 23, 23 }, /* 450 Mb */
319  },
320  50, /* probe interval */
321  WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
322 };
323 
324 static const struct ath_rate_table ar5416_11a_ratetable = {
325  8,
326  0,
327  {
328  { RC_L_SDT, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
329  5400, 0, 12},
330  { RC_L_SDT, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
331  7800, 1, 18},
332  { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
333  10000, 2, 24},
334  { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
335  13900, 3, 36},
336  { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
337  17300, 4, 48},
338  { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
339  23000, 5, 72},
340  { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
341  27400, 6, 96},
342  { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
343  29300, 7, 108},
344  },
345  50, /* probe interval */
346  0, /* Phy rates allowed initially */
347 };
348 
349 static const struct ath_rate_table ar5416_11g_ratetable = {
350  12,
351  0,
352  {
353  { RC_L_SDT, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
354  900, 0, 2},
355  { RC_L_SDT, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
356  1900, 1, 4},
357  { RC_L_SDT, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
358  4900, 2, 11},
359  { RC_L_SDT, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
360  8100, 3, 22},
361  { RC_INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
362  5400, 4, 12},
363  { RC_INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
364  7800, 5, 18},
365  { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
366  10000, 6, 24},
367  { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
368  13900, 7, 36},
369  { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
370  17300, 8, 48},
371  { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
372  23000, 9, 72},
373  { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
374  27400, 10, 96},
375  { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
376  29300, 11, 108},
377  },
378  50, /* probe interval */
379  0, /* Phy rates allowed initially */
380 };
381 
382 static int ath_rc_get_rateindex(struct ath_rate_priv *ath_rc_priv,
383  struct ieee80211_tx_rate *rate)
384 {
385  const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
386  int rix, i, idx = 0;
387 
388  if (!(rate->flags & IEEE80211_TX_RC_MCS))
389  return rate->idx;
390 
391  for (i = 0; i < ath_rc_priv->max_valid_rate; i++) {
392  idx = ath_rc_priv->valid_rate_index[i];
393 
394  if (WLAN_RC_PHY_HT(rate_table->info[idx].phy) &&
395  rate_table->info[idx].ratecode == rate->idx)
396  break;
397  }
398 
399  rix = idx;
400 
401  if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
402  rix++;
403 
404  return rix;
405 }
406 
407 static void ath_rc_sort_validrates(struct ath_rate_priv *ath_rc_priv)
408 {
409  const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
410  u8 i, j, idx, idx_next;
411 
412  for (i = ath_rc_priv->max_valid_rate - 1; i > 0; i--) {
413  for (j = 0; j <= i-1; j++) {
414  idx = ath_rc_priv->valid_rate_index[j];
415  idx_next = ath_rc_priv->valid_rate_index[j+1];
416 
417  if (rate_table->info[idx].ratekbps >
418  rate_table->info[idx_next].ratekbps) {
419  ath_rc_priv->valid_rate_index[j] = idx_next;
420  ath_rc_priv->valid_rate_index[j+1] = idx;
421  }
422  }
423  }
424 }
425 
426 static inline
427 int ath_rc_get_nextvalid_txrate(const struct ath_rate_table *rate_table,
428  struct ath_rate_priv *ath_rc_priv,
429  u8 cur_valid_txrate,
430  u8 *next_idx)
431 {
432  u8 i;
433 
434  for (i = 0; i < ath_rc_priv->max_valid_rate - 1; i++) {
435  if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
436  *next_idx = ath_rc_priv->valid_rate_index[i+1];
437  return 1;
438  }
439  }
440 
441  /* No more valid rates */
442  *next_idx = 0;
443 
444  return 0;
445 }
446 
447 /* Return true only for single stream */
448 
449 static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw)
450 {
451  if (WLAN_RC_PHY_HT(phy) && !(capflag & WLAN_RC_HT_FLAG))
452  return 0;
453  if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG))
454  return 0;
455  if (WLAN_RC_PHY_TS(phy) && !(capflag & WLAN_RC_TS_FLAG))
456  return 0;
457  if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG))
458  return 0;
459  if (!ignore_cw && WLAN_RC_PHY_HT(phy))
460  if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG))
461  return 0;
462  return 1;
463 }
464 
465 static inline int
466 ath_rc_get_lower_rix(struct ath_rate_priv *ath_rc_priv,
467  u8 cur_valid_txrate, u8 *next_idx)
468 {
469  int8_t i;
470 
471  for (i = 1; i < ath_rc_priv->max_valid_rate ; i++) {
472  if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
473  *next_idx = ath_rc_priv->valid_rate_index[i-1];
474  return 1;
475  }
476  }
477 
478  return 0;
479 }
480 
481 static u8 ath_rc_init_validrates(struct ath_rate_priv *ath_rc_priv)
482 {
483  const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
484  u8 i, hi = 0;
485 
486  for (i = 0; i < rate_table->rate_cnt; i++) {
487  if (rate_table->info[i].rate_flags & RC_LEGACY) {
488  u32 phy = rate_table->info[i].phy;
489  u8 valid_rate_count = 0;
490 
491  if (!ath_rc_valid_phyrate(phy, ath_rc_priv->ht_cap, 0))
492  continue;
493 
494  valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy];
495 
496  ath_rc_priv->valid_phy_rateidx[phy][valid_rate_count] = i;
497  ath_rc_priv->valid_phy_ratecnt[phy] += 1;
498  ath_rc_priv->valid_rate_index[i] = true;
499  hi = i;
500  }
501  }
502 
503  return hi;
504 }
505 
506 static inline bool ath_rc_check_legacy(u8 rate, u8 dot11rate, u16 rate_flags,
507  u32 phy, u32 capflag)
508 {
509  if (rate != dot11rate || WLAN_RC_PHY_HT(phy))
510  return false;
511 
512  if ((rate_flags & WLAN_RC_CAP_MODE(capflag)) != WLAN_RC_CAP_MODE(capflag))
513  return false;
514 
515  if (!(rate_flags & WLAN_RC_CAP_STREAM(capflag)))
516  return false;
517 
518  return true;
519 }
520 
521 static inline bool ath_rc_check_ht(u8 rate, u8 dot11rate, u16 rate_flags,
522  u32 phy, u32 capflag)
523 {
524  if (rate != dot11rate || !WLAN_RC_PHY_HT(phy))
525  return false;
526 
527  if (!WLAN_RC_PHY_HT_VALID(rate_flags, capflag))
528  return false;
529 
530  if (!(rate_flags & WLAN_RC_CAP_STREAM(capflag)))
531  return false;
532 
533  return true;
534 }
535 
536 static u8 ath_rc_setvalid_rates(struct ath_rate_priv *ath_rc_priv, bool legacy)
537 {
538  const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
539  struct ath_rateset *rateset;
540  u32 phy, capflag = ath_rc_priv->ht_cap;
541  u16 rate_flags;
542  u8 i, j, hi = 0, rate, dot11rate, valid_rate_count;
543 
544  if (legacy)
545  rateset = &ath_rc_priv->neg_rates;
546  else
547  rateset = &ath_rc_priv->neg_ht_rates;
548 
549  for (i = 0; i < rateset->rs_nrates; i++) {
550  for (j = 0; j < rate_table->rate_cnt; j++) {
551  phy = rate_table->info[j].phy;
552  rate_flags = rate_table->info[j].rate_flags;
553  rate = rateset->rs_rates[i];
554  dot11rate = rate_table->info[j].dot11rate;
555 
556  if (legacy &&
557  !ath_rc_check_legacy(rate, dot11rate,
558  rate_flags, phy, capflag))
559  continue;
560 
561  if (!legacy &&
562  !ath_rc_check_ht(rate, dot11rate,
563  rate_flags, phy, capflag))
564  continue;
565 
566  if (!ath_rc_valid_phyrate(phy, capflag, 0))
567  continue;
568 
569  valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy];
570  ath_rc_priv->valid_phy_rateidx[phy][valid_rate_count] = j;
571  ath_rc_priv->valid_phy_ratecnt[phy] += 1;
572  ath_rc_priv->valid_rate_index[j] = true;
573  hi = max(hi, j);
574  }
575  }
576 
577  return hi;
578 }
579 
580 static u8 ath_rc_get_highest_rix(struct ath_rate_priv *ath_rc_priv,
581  int *is_probing)
582 {
583  const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
584  u32 best_thruput, this_thruput, now_msec;
585  u8 rate, next_rate, best_rate, maxindex, minindex;
586  int8_t index = 0;
587 
588  now_msec = jiffies_to_msecs(jiffies);
589  *is_probing = 0;
590  best_thruput = 0;
591  maxindex = ath_rc_priv->max_valid_rate-1;
592  minindex = 0;
593  best_rate = minindex;
594 
595  /*
596  * Try the higher rate first. It will reduce memory moving time
597  * if we have very good channel characteristics.
598  */
599  for (index = maxindex; index >= minindex ; index--) {
600  u8 per_thres;
601 
602  rate = ath_rc_priv->valid_rate_index[index];
603  if (rate > ath_rc_priv->rate_max_phy)
604  continue;
605 
606  /*
607  * For TCP the average collision rate is around 11%,
608  * so we ignore PERs less than this. This is to
609  * prevent the rate we are currently using (whose
610  * PER might be in the 10-15 range because of TCP
611  * collisions) looking worse than the next lower
612  * rate whose PER has decayed close to 0. If we
613  * used to next lower rate, its PER would grow to
614  * 10-15 and we would be worse off then staying
615  * at the current rate.
616  */
617  per_thres = ath_rc_priv->per[rate];
618  if (per_thres < 12)
619  per_thres = 12;
620 
621  this_thruput = rate_table->info[rate].user_ratekbps *
622  (100 - per_thres);
623 
624  if (best_thruput <= this_thruput) {
625  best_thruput = this_thruput;
626  best_rate = rate;
627  }
628  }
629 
630  rate = best_rate;
631 
632  /*
633  * Must check the actual rate (ratekbps) to account for
634  * non-monoticity of 11g's rate table
635  */
636 
637  if (rate >= ath_rc_priv->rate_max_phy) {
638  rate = ath_rc_priv->rate_max_phy;
639 
640  /* Probe the next allowed phy state */
641  if (ath_rc_get_nextvalid_txrate(rate_table,
642  ath_rc_priv, rate, &next_rate) &&
643  (now_msec - ath_rc_priv->probe_time >
644  rate_table->probe_interval) &&
645  (ath_rc_priv->hw_maxretry_pktcnt >= 1)) {
646  rate = next_rate;
647  ath_rc_priv->probe_rate = rate;
648  ath_rc_priv->probe_time = now_msec;
649  ath_rc_priv->hw_maxretry_pktcnt = 0;
650  *is_probing = 1;
651  }
652  }
653 
654  if (rate > (ath_rc_priv->rate_table_size - 1))
655  rate = ath_rc_priv->rate_table_size - 1;
656 
657  if (RC_TS_ONLY(rate_table->info[rate].rate_flags) &&
658  (ath_rc_priv->ht_cap & WLAN_RC_TS_FLAG))
659  return rate;
660 
661  if (RC_DS_OR_LATER(rate_table->info[rate].rate_flags) &&
662  (ath_rc_priv->ht_cap & (WLAN_RC_DS_FLAG | WLAN_RC_TS_FLAG)))
663  return rate;
664 
665  if (RC_SS_OR_LEGACY(rate_table->info[rate].rate_flags))
666  return rate;
667 
668  /* This should not happen */
669  WARN_ON_ONCE(1);
670 
671  rate = ath_rc_priv->valid_rate_index[0];
672 
673  return rate;
674 }
675 
676 static void ath_rc_rate_set_series(const struct ath_rate_table *rate_table,
677  struct ieee80211_tx_rate *rate,
678  struct ieee80211_tx_rate_control *txrc,
679  u8 tries, u8 rix, int rtsctsenable)
680 {
681  rate->count = tries;
682  rate->idx = rate_table->info[rix].ratecode;
683 
684  if (txrc->rts || rtsctsenable)
686 
687  if (WLAN_RC_PHY_HT(rate_table->info[rix].phy)) {
688  rate->flags |= IEEE80211_TX_RC_MCS;
689  if (WLAN_RC_PHY_40(rate_table->info[rix].phy) &&
690  conf_is_ht40(&txrc->hw->conf))
692  if (WLAN_RC_PHY_SGI(rate_table->info[rix].phy))
694  }
695 }
696 
697 static void ath_rc_rate_set_rtscts(struct ath_softc *sc,
698  const struct ath_rate_table *rate_table,
699  struct ieee80211_tx_info *tx_info)
700 {
701  struct ieee80211_bss_conf *bss_conf;
702 
703  if (!tx_info->control.vif)
704  return;
705  /*
706  * For legacy frames, mac80211 takes care of CTS protection.
707  */
708  if (!(tx_info->control.rates[0].flags & IEEE80211_TX_RC_MCS))
709  return;
710 
711  bss_conf = &tx_info->control.vif->bss_conf;
712 
713  if (!bss_conf->basic_rates)
714  return;
715 
716  /*
717  * For now, use the lowest allowed basic rate for HT frames.
718  */
719  tx_info->control.rts_cts_rate_idx = __ffs(bss_conf->basic_rates);
720 }
721 
722 static void ath_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
723  struct ieee80211_tx_rate_control *txrc)
724 {
725  struct ath_softc *sc = priv;
726  struct ath_rate_priv *ath_rc_priv = priv_sta;
727  const struct ath_rate_table *rate_table;
728  struct sk_buff *skb = txrc->skb;
729  struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
730  struct ieee80211_tx_rate *rates = tx_info->control.rates;
731  struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
732  __le16 fc = hdr->frame_control;
733  u8 try_per_rate, i = 0, rix;
734  int is_probe = 0;
735 
736  if (rate_control_send_low(sta, priv_sta, txrc))
737  return;
738 
739  /*
740  * For Multi Rate Retry we use a different number of
741  * retry attempt counts. This ends up looking like this:
742  *
743  * MRR[0] = 4
744  * MRR[1] = 4
745  * MRR[2] = 4
746  * MRR[3] = 8
747  *
748  */
749  try_per_rate = 4;
750 
751  rate_table = ath_rc_priv->rate_table;
752  rix = ath_rc_get_highest_rix(ath_rc_priv, &is_probe);
753 
754  if (conf_is_ht(&sc->hw->conf) &&
756  tx_info->flags |= IEEE80211_TX_CTL_LDPC;
757 
758  if (conf_is_ht(&sc->hw->conf) &&
759  (sta->ht_cap.cap & IEEE80211_HT_CAP_TX_STBC))
760  tx_info->flags |= (1 << IEEE80211_TX_CTL_STBC_SHIFT);
761 
762  if (is_probe) {
763  /*
764  * Set one try for probe rates. For the
765  * probes don't enable RTS.
766  */
767  ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
768  1, rix, 0);
769  /*
770  * Get the next tried/allowed rate.
771  * No RTS for the next series after the probe rate.
772  */
773  ath_rc_get_lower_rix(ath_rc_priv, rix, &rix);
774  ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
775  try_per_rate, rix, 0);
776 
778  } else {
779  /*
780  * Set the chosen rate. No RTS for first series entry.
781  */
782  ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
783  try_per_rate, rix, 0);
784  }
785 
786  for ( ; i < 4; i++) {
787  /*
788  * Use twice the number of tries for the last MRR segment.
789  */
790  if (i + 1 == 4)
791  try_per_rate = 8;
792 
793  ath_rc_get_lower_rix(ath_rc_priv, rix, &rix);
794 
795  /*
796  * All other rates in the series have RTS enabled.
797  */
798  ath_rc_rate_set_series(rate_table, &rates[i], txrc,
799  try_per_rate, rix, 1);
800  }
801 
802  /*
803  * NB:Change rate series to enable aggregation when operating
804  * at lower MCS rates. When first rate in series is MCS2
805  * in HT40 @ 2.4GHz, series should look like:
806  *
807  * {MCS2, MCS1, MCS0, MCS0}.
808  *
809  * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should
810  * look like:
811  *
812  * {MCS3, MCS2, MCS1, MCS1}
813  *
814  * So, set fourth rate in series to be same as third one for
815  * above conditions.
816  */
817  if ((sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ) &&
818  (conf_is_ht(&sc->hw->conf))) {
819  u8 dot11rate = rate_table->info[rix].dot11rate;
820  u8 phy = rate_table->info[rix].phy;
821  if (i == 4 &&
822  ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) ||
823  (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) {
824  rates[3].idx = rates[2].idx;
825  rates[3].flags = rates[2].flags;
826  }
827  }
828 
829  /*
830  * Force hardware to use computed duration for next
831  * fragment by disabling multi-rate retry, which
832  * updates duration based on the multi-rate duration table.
833  *
834  * FIXME: Fix duration
835  */
836  if (ieee80211_has_morefrags(fc) ||
838  rates[1].count = rates[2].count = rates[3].count = 0;
839  rates[1].idx = rates[2].idx = rates[3].idx = 0;
840  rates[0].count = ATH_TXMAXTRY;
841  }
842 
843  ath_rc_rate_set_rtscts(sc, rate_table, tx_info);
844 }
845 
846 static void ath_rc_update_per(struct ath_softc *sc,
847  const struct ath_rate_table *rate_table,
848  struct ath_rate_priv *ath_rc_priv,
849  struct ieee80211_tx_info *tx_info,
850  int tx_rate, int xretries, int retries,
851  u32 now_msec)
852 {
853  int count, n_bad_frames;
854  u8 last_per;
855  static const u32 nretry_to_per_lookup[10] = {
856  100 * 0 / 1,
857  100 * 1 / 4,
858  100 * 1 / 2,
859  100 * 3 / 4,
860  100 * 4 / 5,
861  100 * 5 / 6,
862  100 * 6 / 7,
863  100 * 7 / 8,
864  100 * 8 / 9,
865  100 * 9 / 10
866  };
867 
868  last_per = ath_rc_priv->per[tx_rate];
869  n_bad_frames = tx_info->status.ampdu_len - tx_info->status.ampdu_ack_len;
870 
871  if (xretries) {
872  if (xretries == 1) {
873  ath_rc_priv->per[tx_rate] += 30;
874  if (ath_rc_priv->per[tx_rate] > 100)
875  ath_rc_priv->per[tx_rate] = 100;
876  } else {
877  /* xretries == 2 */
878  count = ARRAY_SIZE(nretry_to_per_lookup);
879  if (retries >= count)
880  retries = count - 1;
881 
882  /* new_PER = 7/8*old_PER + 1/8*(currentPER) */
883  ath_rc_priv->per[tx_rate] =
884  (u8)(last_per - (last_per >> 3) + (100 >> 3));
885  }
886 
887  /* xretries == 1 or 2 */
888 
889  if (ath_rc_priv->probe_rate == tx_rate)
890  ath_rc_priv->probe_rate = 0;
891 
892  } else { /* xretries == 0 */
893  count = ARRAY_SIZE(nretry_to_per_lookup);
894  if (retries >= count)
895  retries = count - 1;
896 
897  if (n_bad_frames) {
898  /* new_PER = 7/8*old_PER + 1/8*(currentPER)
899  * Assuming that n_frames is not 0. The current PER
900  * from the retries is 100 * retries / (retries+1),
901  * since the first retries attempts failed, and the
902  * next one worked. For the one that worked,
903  * n_bad_frames subframes out of n_frames wored,
904  * so the PER for that part is
905  * 100 * n_bad_frames / n_frames, and it contributes
906  * 100 * n_bad_frames / (n_frames * (retries+1)) to
907  * the above PER. The expression below is a
908  * simplified version of the sum of these two terms.
909  */
910  if (tx_info->status.ampdu_len > 0) {
911  int n_frames, n_bad_tries;
912  u8 cur_per, new_per;
913 
914  n_bad_tries = retries * tx_info->status.ampdu_len +
915  n_bad_frames;
916  n_frames = tx_info->status.ampdu_len * (retries + 1);
917  cur_per = (100 * n_bad_tries / n_frames) >> 3;
918  new_per = (u8)(last_per - (last_per >> 3) + cur_per);
919  ath_rc_priv->per[tx_rate] = new_per;
920  }
921  } else {
922  ath_rc_priv->per[tx_rate] =
923  (u8)(last_per - (last_per >> 3) +
924  (nretry_to_per_lookup[retries] >> 3));
925  }
926 
927 
928  /*
929  * If we got at most one retry then increase the max rate if
930  * this was a probe. Otherwise, ignore the probe.
931  */
932  if (ath_rc_priv->probe_rate && ath_rc_priv->probe_rate == tx_rate) {
933  if (retries > 0 || 2 * n_bad_frames > tx_info->status.ampdu_len) {
934  /*
935  * Since we probed with just a single attempt,
936  * any retries means the probe failed. Also,
937  * if the attempt worked, but more than half
938  * the subframes were bad then also consider
939  * the probe a failure.
940  */
941  ath_rc_priv->probe_rate = 0;
942  } else {
943  u8 probe_rate = 0;
944 
945  ath_rc_priv->rate_max_phy =
946  ath_rc_priv->probe_rate;
947  probe_rate = ath_rc_priv->probe_rate;
948 
949  if (ath_rc_priv->per[probe_rate] > 30)
950  ath_rc_priv->per[probe_rate] = 20;
951 
952  ath_rc_priv->probe_rate = 0;
953 
954  /*
955  * Since this probe succeeded, we allow the next
956  * probe twice as soon. This allows the maxRate
957  * to move up faster if the probes are
958  * successful.
959  */
960  ath_rc_priv->probe_time =
961  now_msec - rate_table->probe_interval / 2;
962  }
963  }
964 
965  if (retries > 0) {
966  /*
967  * Don't update anything. We don't know if
968  * this was because of collisions or poor signal.
969  */
970  ath_rc_priv->hw_maxretry_pktcnt = 0;
971  } else {
972  /*
973  * It worked with no retries. First ignore bogus (small)
974  * rssi_ack values.
975  */
976  if (tx_rate == ath_rc_priv->rate_max_phy &&
977  ath_rc_priv->hw_maxretry_pktcnt < 255) {
978  ath_rc_priv->hw_maxretry_pktcnt++;
979  }
980 
981  }
982  }
983 }
984 
985 static void ath_debug_stat_retries(struct ath_rate_priv *rc, int rix,
986  int xretries, int retries, u8 per)
987 {
988  struct ath_rc_stats *stats = &rc->rcstats[rix];
989 
990  stats->xretries += xretries;
991  stats->retries += retries;
992  stats->per = per;
993 }
994 
995 static void ath_rc_update_ht(struct ath_softc *sc,
996  struct ath_rate_priv *ath_rc_priv,
997  struct ieee80211_tx_info *tx_info,
998  int tx_rate, int xretries, int retries)
999 {
1000  u32 now_msec = jiffies_to_msecs(jiffies);
1001  int rate;
1002  u8 last_per;
1003  const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
1004  int size = ath_rc_priv->rate_table_size;
1005 
1006  if ((tx_rate < 0) || (tx_rate > rate_table->rate_cnt))
1007  return;
1008 
1009  last_per = ath_rc_priv->per[tx_rate];
1010 
1011  /* Update PER first */
1012  ath_rc_update_per(sc, rate_table, ath_rc_priv,
1013  tx_info, tx_rate, xretries,
1014  retries, now_msec);
1015 
1016  /*
1017  * If this rate looks bad (high PER) then stop using it for
1018  * a while (except if we are probing).
1019  */
1020  if (ath_rc_priv->per[tx_rate] >= 55 && tx_rate > 0 &&
1021  rate_table->info[tx_rate].ratekbps <=
1022  rate_table->info[ath_rc_priv->rate_max_phy].ratekbps) {
1023  ath_rc_get_lower_rix(ath_rc_priv, (u8)tx_rate,
1024  &ath_rc_priv->rate_max_phy);
1025 
1026  /* Don't probe for a little while. */
1027  ath_rc_priv->probe_time = now_msec;
1028  }
1029 
1030  /* Make sure the rates below this have lower PER */
1031  /* Monotonicity is kept only for rates below the current rate. */
1032  if (ath_rc_priv->per[tx_rate] < last_per) {
1033  for (rate = tx_rate - 1; rate >= 0; rate--) {
1034 
1035  if (ath_rc_priv->per[rate] >
1036  ath_rc_priv->per[rate+1]) {
1037  ath_rc_priv->per[rate] =
1038  ath_rc_priv->per[rate+1];
1039  }
1040  }
1041  }
1042 
1043  /* Maintain monotonicity for rates above the current rate */
1044  for (rate = tx_rate; rate < size - 1; rate++) {
1045  if (ath_rc_priv->per[rate+1] <
1046  ath_rc_priv->per[rate])
1047  ath_rc_priv->per[rate+1] =
1048  ath_rc_priv->per[rate];
1049  }
1050 
1051  /* Every so often, we reduce the thresholds
1052  * and PER (different for CCK and OFDM). */
1053  if (now_msec - ath_rc_priv->per_down_time >=
1054  rate_table->probe_interval) {
1055  for (rate = 0; rate < size; rate++) {
1056  ath_rc_priv->per[rate] =
1057  7 * ath_rc_priv->per[rate] / 8;
1058  }
1059 
1060  ath_rc_priv->per_down_time = now_msec;
1061  }
1062 
1063  ath_debug_stat_retries(ath_rc_priv, tx_rate, xretries, retries,
1064  ath_rc_priv->per[tx_rate]);
1065 
1066 }
1067 
1068 static void ath_debug_stat_rc(struct ath_rate_priv *rc, int final_rate)
1069 {
1070  struct ath_rc_stats *stats;
1071 
1072  stats = &rc->rcstats[final_rate];
1073  stats->success++;
1074 }
1075 
1076 static void ath_rc_tx_status(struct ath_softc *sc,
1077  struct ath_rate_priv *ath_rc_priv,
1078  struct sk_buff *skb)
1079 {
1080  struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1081  struct ieee80211_tx_rate *rates = tx_info->status.rates;
1082  struct ieee80211_tx_rate *rate;
1083  int final_ts_idx = 0, xretries = 0, long_retry = 0;
1084  u8 flags;
1085  u32 i = 0, rix;
1086 
1087  for (i = 0; i < sc->hw->max_rates; i++) {
1088  rate = &tx_info->status.rates[i];
1089  if (rate->idx < 0 || !rate->count)
1090  break;
1091 
1092  final_ts_idx = i;
1093  long_retry = rate->count - 1;
1094  }
1095 
1096  if (!(tx_info->flags & IEEE80211_TX_STAT_ACK))
1097  xretries = 1;
1098 
1099  /*
1100  * If the first rate is not the final index, there
1101  * are intermediate rate failures to be processed.
1102  */
1103  if (final_ts_idx != 0) {
1104  for (i = 0; i < final_ts_idx ; i++) {
1105  if (rates[i].count != 0 && (rates[i].idx >= 0)) {
1106  flags = rates[i].flags;
1107 
1108  /* If HT40 and we have switched mode from
1109  * 40 to 20 => don't update */
1110 
1111  if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1112  !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
1113  return;
1114 
1115  rix = ath_rc_get_rateindex(ath_rc_priv, &rates[i]);
1116  ath_rc_update_ht(sc, ath_rc_priv, tx_info,
1117  rix, xretries ? 1 : 2,
1118  rates[i].count);
1119  }
1120  }
1121  }
1122 
1123  flags = rates[final_ts_idx].flags;
1124 
1125  /* If HT40 and we have switched mode from 40 to 20 => don't update */
1126  if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1127  !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
1128  return;
1129 
1130  rix = ath_rc_get_rateindex(ath_rc_priv, &rates[final_ts_idx]);
1131  ath_rc_update_ht(sc, ath_rc_priv, tx_info, rix, xretries, long_retry);
1132  ath_debug_stat_rc(ath_rc_priv, rix);
1133 }
1134 
1135 static const
1136 struct ath_rate_table *ath_choose_rate_table(struct ath_softc *sc,
1137  enum ieee80211_band band,
1138  bool is_ht)
1139 {
1140  switch(band) {
1141  case IEEE80211_BAND_2GHZ:
1142  if (is_ht)
1143  return &ar5416_11ng_ratetable;
1144  return &ar5416_11g_ratetable;
1145  case IEEE80211_BAND_5GHZ:
1146  if (is_ht)
1147  return &ar5416_11na_ratetable;
1148  return &ar5416_11a_ratetable;
1149  default:
1150  return NULL;
1151  }
1152 }
1153 
1154 static void ath_rc_init(struct ath_softc *sc,
1155  struct ath_rate_priv *ath_rc_priv)
1156 {
1157  const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
1158  struct ath_rateset *rateset = &ath_rc_priv->neg_rates;
1159  struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1160  u8 i, j, k, hi = 0, hthi = 0;
1161 
1162  ath_rc_priv->rate_table_size = RATE_TABLE_SIZE;
1163 
1164  for (i = 0 ; i < ath_rc_priv->rate_table_size; i++) {
1165  ath_rc_priv->per[i] = 0;
1166  ath_rc_priv->valid_rate_index[i] = 0;
1167  }
1168 
1169  for (i = 0; i < WLAN_RC_PHY_MAX; i++) {
1170  for (j = 0; j < RATE_TABLE_SIZE; j++)
1171  ath_rc_priv->valid_phy_rateidx[i][j] = 0;
1172  ath_rc_priv->valid_phy_ratecnt[i] = 0;
1173  }
1174 
1175  if (!rateset->rs_nrates) {
1176  hi = ath_rc_init_validrates(ath_rc_priv);
1177  } else {
1178  hi = ath_rc_setvalid_rates(ath_rc_priv, true);
1179 
1180  if (ath_rc_priv->ht_cap & WLAN_RC_HT_FLAG)
1181  hthi = ath_rc_setvalid_rates(ath_rc_priv, false);
1182 
1183  hi = max(hi, hthi);
1184  }
1185 
1186  ath_rc_priv->rate_table_size = hi + 1;
1187  ath_rc_priv->rate_max_phy = 0;
1188  WARN_ON(ath_rc_priv->rate_table_size > RATE_TABLE_SIZE);
1189 
1190  for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) {
1191  for (j = 0; j < ath_rc_priv->valid_phy_ratecnt[i]; j++) {
1192  ath_rc_priv->valid_rate_index[k++] =
1193  ath_rc_priv->valid_phy_rateidx[i][j];
1194  }
1195 
1196  if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, 1) ||
1197  !ath_rc_priv->valid_phy_ratecnt[i])
1198  continue;
1199 
1200  ath_rc_priv->rate_max_phy = ath_rc_priv->valid_phy_rateidx[i][j-1];
1201  }
1202  WARN_ON(ath_rc_priv->rate_table_size > RATE_TABLE_SIZE);
1203  WARN_ON(k > RATE_TABLE_SIZE);
1204 
1205  ath_rc_priv->max_valid_rate = k;
1206  ath_rc_sort_validrates(ath_rc_priv);
1207  ath_rc_priv->rate_max_phy = (k > 4) ?
1208  ath_rc_priv->valid_rate_index[k-4] :
1209  ath_rc_priv->valid_rate_index[k-1];
1210 
1211  ath_dbg(common, CONFIG, "RC Initialized with capabilities: 0x%x\n",
1212  ath_rc_priv->ht_cap);
1213 }
1214 
1215 static u8 ath_rc_build_ht_caps(struct ath_softc *sc, struct ieee80211_sta *sta)
1216 {
1217  u8 caps = 0;
1218 
1219  if (sta->ht_cap.ht_supported) {
1220  caps = WLAN_RC_HT_FLAG;
1221  if (sta->ht_cap.mcs.rx_mask[1] && sta->ht_cap.mcs.rx_mask[2])
1222  caps |= WLAN_RC_TS_FLAG | WLAN_RC_DS_FLAG;
1223  else if (sta->ht_cap.mcs.rx_mask[1])
1224  caps |= WLAN_RC_DS_FLAG;
1225  if (sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40) {
1226  caps |= WLAN_RC_40_FLAG;
1227  if (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40)
1228  caps |= WLAN_RC_SGI_FLAG;
1229  } else {
1230  if (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20)
1231  caps |= WLAN_RC_SGI_FLAG;
1232  }
1233  }
1234 
1235  return caps;
1236 }
1237 
1238 static bool ath_tx_aggr_check(struct ath_softc *sc, struct ieee80211_sta *sta,
1239  u8 tidno)
1240 {
1241  struct ath_node *an = (struct ath_node *)sta->drv_priv;
1242  struct ath_atx_tid *txtid;
1243 
1244  if (!sta->ht_cap.ht_supported)
1245  return false;
1246 
1247  txtid = ATH_AN_2_TID(an, tidno);
1248 
1249  if (!(txtid->state & (AGGR_ADDBA_COMPLETE | AGGR_ADDBA_PROGRESS)))
1250  return true;
1251  return false;
1252 }
1253 
1254 
1255 /***********************************/
1256 /* mac80211 Rate Control callbacks */
1257 /***********************************/
1258 
1259 static void ath_tx_status(void *priv, struct ieee80211_supported_band *sband,
1260  struct ieee80211_sta *sta, void *priv_sta,
1261  struct sk_buff *skb)
1262 {
1263  struct ath_softc *sc = priv;
1264  struct ath_rate_priv *ath_rc_priv = priv_sta;
1265  struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1266  struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1267  __le16 fc = hdr->frame_control;
1268 
1269  if (!priv_sta || !ieee80211_is_data(fc))
1270  return;
1271 
1272  /* This packet was aggregated but doesn't carry status info */
1273  if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) &&
1274  !(tx_info->flags & IEEE80211_TX_STAT_AMPDU))
1275  return;
1276 
1277  if (tx_info->flags & IEEE80211_TX_STAT_TX_FILTERED)
1278  return;
1279 
1280  ath_rc_tx_status(sc, ath_rc_priv, skb);
1281 
1282  /* Check if aggregation has to be enabled for this tid */
1283  if (conf_is_ht(&sc->hw->conf) &&
1284  !(skb->protocol == cpu_to_be16(ETH_P_PAE))) {
1285  if (ieee80211_is_data_qos(fc) &&
1286  skb_get_queue_mapping(skb) != IEEE80211_AC_VO) {
1287  u8 *qc, tid;
1288 
1289  qc = ieee80211_get_qos_ctl(hdr);
1290  tid = qc[0] & 0xf;
1291 
1292  if(ath_tx_aggr_check(sc, sta, tid))
1293  ieee80211_start_tx_ba_session(sta, tid, 0);
1294  }
1295  }
1296 }
1297 
1298 static void ath_rate_init(void *priv, struct ieee80211_supported_band *sband,
1299  struct ieee80211_sta *sta, void *priv_sta)
1300 {
1301  struct ath_softc *sc = priv;
1302  struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1303  struct ath_rate_priv *ath_rc_priv = priv_sta;
1304  int i, j = 0;
1305 
1306  for (i = 0; i < sband->n_bitrates; i++) {
1307  if (sta->supp_rates[sband->band] & BIT(i)) {
1308  ath_rc_priv->neg_rates.rs_rates[j]
1309  = (sband->bitrates[i].bitrate * 2) / 10;
1310  j++;
1311  }
1312  }
1313  ath_rc_priv->neg_rates.rs_nrates = j;
1314 
1315  if (sta->ht_cap.ht_supported) {
1316  for (i = 0, j = 0; i < 77; i++) {
1317  if (sta->ht_cap.mcs.rx_mask[i/8] & (1<<(i%8)))
1318  ath_rc_priv->neg_ht_rates.rs_rates[j++] = i;
1319  if (j == ATH_RATE_MAX)
1320  break;
1321  }
1322  ath_rc_priv->neg_ht_rates.rs_nrates = j;
1323  }
1324 
1325  ath_rc_priv->rate_table = ath_choose_rate_table(sc, sband->band,
1326  sta->ht_cap.ht_supported);
1327  if (!ath_rc_priv->rate_table) {
1328  ath_err(common, "No rate table chosen\n");
1329  return;
1330  }
1331 
1332  ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta);
1333  ath_rc_init(sc, priv_sta);
1334 }
1335 
1336 static void ath_rate_update(void *priv, struct ieee80211_supported_band *sband,
1337  struct ieee80211_sta *sta, void *priv_sta,
1338  u32 changed)
1339 {
1340  struct ath_softc *sc = priv;
1341  struct ath_rate_priv *ath_rc_priv = priv_sta;
1342 
1343  if (changed & IEEE80211_RC_BW_CHANGED) {
1344  ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta);
1345  ath_rc_init(sc, priv_sta);
1346 
1347  ath_dbg(ath9k_hw_common(sc->sc_ah), CONFIG,
1348  "Operating HT Bandwidth changed to: %d\n",
1349  sc->hw->conf.channel_type);
1350  }
1351 }
1352 
1353 #ifdef CONFIG_ATH9K_DEBUGFS
1354 
1355 static ssize_t read_file_rcstat(struct file *file, char __user *user_buf,
1356  size_t count, loff_t *ppos)
1357 {
1358  struct ath_rate_priv *rc = file->private_data;
1359  char *buf;
1360  unsigned int len = 0, max;
1361  int rix;
1362  ssize_t retval;
1363 
1364  if (rc->rate_table == NULL)
1365  return 0;
1366 
1367  max = 80 + rc->rate_table_size * 1024 + 1;
1368  buf = kmalloc(max, GFP_KERNEL);
1369  if (buf == NULL)
1370  return -ENOMEM;
1371 
1372  len += sprintf(buf, "%6s %6s %6s "
1373  "%10s %10s %10s %10s\n",
1374  "HT", "MCS", "Rate",
1375  "Success", "Retries", "XRetries", "PER");
1376 
1377  for (rix = 0; rix < rc->max_valid_rate; rix++) {
1378  u8 i = rc->valid_rate_index[rix];
1379  u32 ratekbps = rc->rate_table->info[i].ratekbps;
1380  struct ath_rc_stats *stats = &rc->rcstats[i];
1381  char mcs[5];
1382  char htmode[5];
1383  int used_mcs = 0, used_htmode = 0;
1384 
1385  if (WLAN_RC_PHY_HT(rc->rate_table->info[i].phy)) {
1386  used_mcs = snprintf(mcs, 5, "%d",
1387  rc->rate_table->info[i].ratecode);
1388 
1389  if (WLAN_RC_PHY_40(rc->rate_table->info[i].phy))
1390  used_htmode = snprintf(htmode, 5, "HT40");
1391  else if (WLAN_RC_PHY_20(rc->rate_table->info[i].phy))
1392  used_htmode = snprintf(htmode, 5, "HT20");
1393  else
1394  used_htmode = snprintf(htmode, 5, "????");
1395  }
1396 
1397  mcs[used_mcs] = '\0';
1398  htmode[used_htmode] = '\0';
1399 
1400  len += snprintf(buf + len, max - len,
1401  "%6s %6s %3u.%d: "
1402  "%10u %10u %10u %10u\n",
1403  htmode,
1404  mcs,
1405  ratekbps / 1000,
1406  (ratekbps % 1000) / 100,
1407  stats->success,
1408  stats->retries,
1409  stats->xretries,
1410  stats->per);
1411  }
1412 
1413  if (len > max)
1414  len = max;
1415 
1416  retval = simple_read_from_buffer(user_buf, count, ppos, buf, len);
1417  kfree(buf);
1418  return retval;
1419 }
1420 
1421 static const struct file_operations fops_rcstat = {
1422  .read = read_file_rcstat,
1423  .open = simple_open,
1424  .owner = THIS_MODULE
1425 };
1426 
1427 static void ath_rate_add_sta_debugfs(void *priv, void *priv_sta,
1428  struct dentry *dir)
1429 {
1430  struct ath_rate_priv *rc = priv_sta;
1431  debugfs_create_file("rc_stats", S_IRUGO, dir, rc, &fops_rcstat);
1432 }
1433 
1434 #endif /* CONFIG_ATH9K_DEBUGFS */
1435 
1436 static void *ath_rate_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
1437 {
1438  return hw->priv;
1439 }
1440 
1441 static void ath_rate_free(void *priv)
1442 {
1443  return;
1444 }
1445 
1446 static void *ath_rate_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
1447 {
1448  struct ath_softc *sc = priv;
1449  struct ath_rate_priv *rate_priv;
1450 
1451  rate_priv = kzalloc(sizeof(struct ath_rate_priv), gfp);
1452  if (!rate_priv) {
1453  ath_err(ath9k_hw_common(sc->sc_ah),
1454  "Unable to allocate private rc structure\n");
1455  return NULL;
1456  }
1457 
1458  return rate_priv;
1459 }
1460 
1461 static void ath_rate_free_sta(void *priv, struct ieee80211_sta *sta,
1462  void *priv_sta)
1463 {
1464  struct ath_rate_priv *rate_priv = priv_sta;
1465  kfree(rate_priv);
1466 }
1467 
1468 static struct rate_control_ops ath_rate_ops = {
1469  .module = NULL,
1470  .name = "ath9k_rate_control",
1471  .tx_status = ath_tx_status,
1472  .get_rate = ath_get_rate,
1473  .rate_init = ath_rate_init,
1474  .rate_update = ath_rate_update,
1475  .alloc = ath_rate_alloc,
1476  .free = ath_rate_free,
1477  .alloc_sta = ath_rate_alloc_sta,
1478  .free_sta = ath_rate_free_sta,
1479 #ifdef CONFIG_ATH9K_DEBUGFS
1480  .add_sta_debugfs = ath_rate_add_sta_debugfs,
1481 #endif
1482 };
1483 
1485 {
1486  return ieee80211_rate_control_register(&ath_rate_ops);
1487 }
1488 
1490 {
1491  ieee80211_rate_control_unregister(&ath_rate_ops);
1492 }