Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
atmel-sha.c
Go to the documentation of this file.
1 /*
2  * Cryptographic API.
3  *
4  * Support for ATMEL SHA1/SHA256 HW acceleration.
5  *
6  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
7  * Author: Nicolas Royer <[email protected]>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as published
11  * by the Free Software Foundation.
12  *
13  * Some ideas are from omap-sham.c drivers.
14  */
15 
16 
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/clk.h>
22 #include <linux/io.h>
23 #include <linux/hw_random.h>
24 #include <linux/platform_device.h>
25 
26 #include <linux/device.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/irq.h>
31 #include <linux/scatterlist.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/delay.h>
34 #include <linux/crypto.h>
35 #include <linux/cryptohash.h>
36 #include <crypto/scatterwalk.h>
37 #include <crypto/algapi.h>
38 #include <crypto/sha.h>
39 #include <crypto/hash.h>
40 #include <crypto/internal/hash.h>
41 #include "atmel-sha-regs.h"
42 
43 /* SHA flags */
44 #define SHA_FLAGS_BUSY BIT(0)
45 #define SHA_FLAGS_FINAL BIT(1)
46 #define SHA_FLAGS_DMA_ACTIVE BIT(2)
47 #define SHA_FLAGS_OUTPUT_READY BIT(3)
48 #define SHA_FLAGS_INIT BIT(4)
49 #define SHA_FLAGS_CPU BIT(5)
50 #define SHA_FLAGS_DMA_READY BIT(6)
51 
52 #define SHA_FLAGS_FINUP BIT(16)
53 #define SHA_FLAGS_SG BIT(17)
54 #define SHA_FLAGS_SHA1 BIT(18)
55 #define SHA_FLAGS_SHA256 BIT(19)
56 #define SHA_FLAGS_ERROR BIT(20)
57 #define SHA_FLAGS_PAD BIT(21)
58 
59 #define SHA_FLAGS_DUALBUFF BIT(24)
60 
61 #define SHA_OP_UPDATE 1
62 #define SHA_OP_FINAL 2
63 
64 #define SHA_BUFFER_LEN PAGE_SIZE
65 
66 #define ATMEL_SHA_DMA_THRESHOLD 56
67 
68 
69 struct atmel_sha_dev;
70 
72  struct atmel_sha_dev *dd;
73  unsigned long flags;
74  unsigned long op;
75 
77  size_t digcnt;
78  size_t bufcnt;
79  size_t buflen;
81 
82  /* walk state */
83  struct scatterlist *sg;
84  unsigned int offset; /* offset in current sg */
85  unsigned int total; /* total request */
86 
87  u8 buffer[0] __aligned(sizeof(u32));
88 };
89 
90 struct atmel_sha_ctx {
91  struct atmel_sha_dev *dd;
92 
93  unsigned long flags;
94 
95  /* fallback stuff */
97 
98 };
99 
100 #define ATMEL_SHA_QUEUE_LENGTH 1
101 
103  struct list_head list;
104  unsigned long phys_base;
105  struct device *dev;
106  struct clk *iclk;
107  int irq;
109 
111  int err;
113 
114  unsigned long flags;
117 };
118 
122 };
123 
124 static struct atmel_sha_drv atmel_sha = {
125  .dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
126  .lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
127 };
128 
129 static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
130 {
131  return readl_relaxed(dd->io_base + offset);
132 }
133 
134 static inline void atmel_sha_write(struct atmel_sha_dev *dd,
135  u32 offset, u32 value)
136 {
137  writel_relaxed(value, dd->io_base + offset);
138 }
139 
140 static void atmel_sha_dualbuff_test(struct atmel_sha_dev *dd)
141 {
142  atmel_sha_write(dd, SHA_MR, SHA_MR_DUALBUFF);
143 
144  if (atmel_sha_read(dd, SHA_MR) & SHA_MR_DUALBUFF)
145  dd->flags |= SHA_FLAGS_DUALBUFF;
146 }
147 
148 static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
149 {
150  size_t count;
151 
152  while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
153  count = min(ctx->sg->length - ctx->offset, ctx->total);
154  count = min(count, ctx->buflen - ctx->bufcnt);
155 
156  if (count <= 0)
157  break;
158 
159  scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
160  ctx->offset, count, 0);
161 
162  ctx->bufcnt += count;
163  ctx->offset += count;
164  ctx->total -= count;
165 
166  if (ctx->offset == ctx->sg->length) {
167  ctx->sg = sg_next(ctx->sg);
168  if (ctx->sg)
169  ctx->offset = 0;
170  else
171  ctx->total = 0;
172  }
173  }
174 
175  return 0;
176 }
177 
178 /*
179  * The purpose of this padding is to ensure that the padded message
180  * is a multiple of 512 bits. The bit "1" is appended at the end of
181  * the message followed by "padlen-1" zero bits. Then a 64 bits block
182  * equals to the message length in bits is appended.
183  *
184  * padlen is calculated as followed:
185  * - if message length < 56 bytes then padlen = 56 - message length
186  * - else padlen = 64 + 56 - message length
187  */
188 static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
189 {
190  unsigned int index, padlen;
191  u64 bits;
192  u64 size;
193 
194  bits = (ctx->bufcnt + ctx->digcnt + length) << 3;
195  size = cpu_to_be64(bits);
196 
197  index = ctx->bufcnt & 0x3f;
198  padlen = (index < 56) ? (56 - index) : ((64+56) - index);
199  *(ctx->buffer + ctx->bufcnt) = 0x80;
200  memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
201  memcpy(ctx->buffer + ctx->bufcnt + padlen, &size, 8);
202  ctx->bufcnt += padlen + 8;
203  ctx->flags |= SHA_FLAGS_PAD;
204 }
205 
206 static int atmel_sha_init(struct ahash_request *req)
207 {
208  struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
209  struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
210  struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
211  struct atmel_sha_dev *dd = NULL;
212  struct atmel_sha_dev *tmp;
213 
214  spin_lock_bh(&atmel_sha.lock);
215  if (!tctx->dd) {
216  list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
217  dd = tmp;
218  break;
219  }
220  tctx->dd = dd;
221  } else {
222  dd = tctx->dd;
223  }
224 
225  spin_unlock_bh(&atmel_sha.lock);
226 
227  ctx->dd = dd;
228 
229  ctx->flags = 0;
230 
231  dev_dbg(dd->dev, "init: digest size: %d\n",
232  crypto_ahash_digestsize(tfm));
233 
234  if (crypto_ahash_digestsize(tfm) == SHA1_DIGEST_SIZE)
235  ctx->flags |= SHA_FLAGS_SHA1;
236  else if (crypto_ahash_digestsize(tfm) == SHA256_DIGEST_SIZE)
237  ctx->flags |= SHA_FLAGS_SHA256;
238 
239  ctx->bufcnt = 0;
240  ctx->digcnt = 0;
241  ctx->buflen = SHA_BUFFER_LEN;
242 
243  return 0;
244 }
245 
246 static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
247 {
248  struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
249  u32 valcr = 0, valmr = SHA_MR_MODE_AUTO;
250 
251  if (likely(dma)) {
252  atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
253  valmr = SHA_MR_MODE_PDC;
254  if (dd->flags & SHA_FLAGS_DUALBUFF)
255  valmr = SHA_MR_DUALBUFF;
256  } else {
257  atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
258  }
259 
260  if (ctx->flags & SHA_FLAGS_SHA256)
261  valmr |= SHA_MR_ALGO_SHA256;
262 
263  /* Setting CR_FIRST only for the first iteration */
264  if (!ctx->digcnt)
265  valcr = SHA_CR_FIRST;
266 
267  atmel_sha_write(dd, SHA_CR, valcr);
268  atmel_sha_write(dd, SHA_MR, valmr);
269 }
270 
271 static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
272  size_t length, int final)
273 {
274  struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
275  int count, len32;
276  const u32 *buffer = (const u32 *)buf;
277 
278  dev_dbg(dd->dev, "xmit_cpu: digcnt: %d, length: %d, final: %d\n",
279  ctx->digcnt, length, final);
280 
281  atmel_sha_write_ctrl(dd, 0);
282 
283  /* should be non-zero before next lines to disable clocks later */
284  ctx->digcnt += length;
285 
286  if (final)
287  dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
288 
289  len32 = DIV_ROUND_UP(length, sizeof(u32));
290 
291  dd->flags |= SHA_FLAGS_CPU;
292 
293  for (count = 0; count < len32; count++)
294  atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
295 
296  return -EINPROGRESS;
297 }
298 
299 static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
300  size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
301 {
302  struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
303  int len32;
304 
305  dev_dbg(dd->dev, "xmit_pdc: digcnt: %d, length: %d, final: %d\n",
306  ctx->digcnt, length1, final);
307 
308  len32 = DIV_ROUND_UP(length1, sizeof(u32));
309  atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
310  atmel_sha_write(dd, SHA_TPR, dma_addr1);
311  atmel_sha_write(dd, SHA_TCR, len32);
312 
313  len32 = DIV_ROUND_UP(length2, sizeof(u32));
314  atmel_sha_write(dd, SHA_TNPR, dma_addr2);
315  atmel_sha_write(dd, SHA_TNCR, len32);
316 
317  atmel_sha_write_ctrl(dd, 1);
318 
319  /* should be non-zero before next lines to disable clocks later */
320  ctx->digcnt += length1;
321 
322  if (final)
323  dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
324 
326 
327  /* Start DMA transfer */
328  atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
329 
330  return -EINPROGRESS;
331 }
332 
333 static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
334 {
335  struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
336  int bufcnt;
337 
338  atmel_sha_append_sg(ctx);
339  atmel_sha_fill_padding(ctx, 0);
340 
341  bufcnt = ctx->bufcnt;
342  ctx->bufcnt = 0;
343 
344  return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
345 }
346 
347 static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
348  struct atmel_sha_reqctx *ctx,
349  size_t length, int final)
350 {
351  ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
353  if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
354  dev_err(dd->dev, "dma %u bytes error\n", ctx->buflen +
356  return -EINVAL;
357  }
358 
359  ctx->flags &= ~SHA_FLAGS_SG;
360 
361  /* next call does not fail... so no unmap in the case of error */
362  return atmel_sha_xmit_pdc(dd, ctx->dma_addr, length, 0, 0, final);
363 }
364 
365 static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
366 {
367  struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
368  unsigned int final;
369  size_t count;
370 
371  atmel_sha_append_sg(ctx);
372 
373  final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
374 
375  dev_dbg(dd->dev, "slow: bufcnt: %u, digcnt: %d, final: %d\n",
376  ctx->bufcnt, ctx->digcnt, final);
377 
378  if (final)
379  atmel_sha_fill_padding(ctx, 0);
380 
381  if (final || (ctx->bufcnt == ctx->buflen && ctx->total)) {
382  count = ctx->bufcnt;
383  ctx->bufcnt = 0;
384  return atmel_sha_xmit_dma_map(dd, ctx, count, final);
385  }
386 
387  return 0;
388 }
389 
390 static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
391 {
392  struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
393  unsigned int length, final, tail;
394  struct scatterlist *sg;
395  unsigned int count;
396 
397  if (!ctx->total)
398  return 0;
399 
400  if (ctx->bufcnt || ctx->offset)
401  return atmel_sha_update_dma_slow(dd);
402 
403  dev_dbg(dd->dev, "fast: digcnt: %d, bufcnt: %u, total: %u\n",
404  ctx->digcnt, ctx->bufcnt, ctx->total);
405 
406  sg = ctx->sg;
407 
408  if (!IS_ALIGNED(sg->offset, sizeof(u32)))
409  return atmel_sha_update_dma_slow(dd);
410 
411  if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, SHA1_BLOCK_SIZE))
412  /* size is not SHA1_BLOCK_SIZE aligned */
413  return atmel_sha_update_dma_slow(dd);
414 
415  length = min(ctx->total, sg->length);
416 
417  if (sg_is_last(sg)) {
418  if (!(ctx->flags & SHA_FLAGS_FINUP)) {
419  /* not last sg must be SHA1_BLOCK_SIZE aligned */
420  tail = length & (SHA1_BLOCK_SIZE - 1);
421  length -= tail;
422  if (length == 0) {
423  /* offset where to start slow */
424  ctx->offset = length;
425  return atmel_sha_update_dma_slow(dd);
426  }
427  }
428  }
429 
430  ctx->total -= length;
431  ctx->offset = length; /* offset where to start slow */
432 
433  final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
434 
435  /* Add padding */
436  if (final) {
437  tail = length & (SHA1_BLOCK_SIZE - 1);
438  length -= tail;
439  ctx->total += tail;
440  ctx->offset = length; /* offset where to start slow */
441 
442  sg = ctx->sg;
443  atmel_sha_append_sg(ctx);
444 
445  atmel_sha_fill_padding(ctx, length);
446 
447  ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
449  if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
450  dev_err(dd->dev, "dma %u bytes error\n",
451  ctx->buflen + SHA1_BLOCK_SIZE);
452  return -EINVAL;
453  }
454 
455  if (length == 0) {
456  ctx->flags &= ~SHA_FLAGS_SG;
457  count = ctx->bufcnt;
458  ctx->bufcnt = 0;
459  return atmel_sha_xmit_pdc(dd, ctx->dma_addr, count, 0,
460  0, final);
461  } else {
462  ctx->sg = sg;
463  if (!dma_map_sg(dd->dev, ctx->sg, 1,
464  DMA_TO_DEVICE)) {
465  dev_err(dd->dev, "dma_map_sg error\n");
466  return -EINVAL;
467  }
468 
469  ctx->flags |= SHA_FLAGS_SG;
470 
471  count = ctx->bufcnt;
472  ctx->bufcnt = 0;
473  return atmel_sha_xmit_pdc(dd, sg_dma_address(ctx->sg),
474  length, ctx->dma_addr, count, final);
475  }
476  }
477 
478  if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
479  dev_err(dd->dev, "dma_map_sg error\n");
480  return -EINVAL;
481  }
482 
483  ctx->flags |= SHA_FLAGS_SG;
484 
485  /* next call does not fail... so no unmap in the case of error */
486  return atmel_sha_xmit_pdc(dd, sg_dma_address(ctx->sg), length, 0,
487  0, final);
488 }
489 
490 static int atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
491 {
492  struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
493 
494  if (ctx->flags & SHA_FLAGS_SG) {
495  dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
496  if (ctx->sg->length == ctx->offset) {
497  ctx->sg = sg_next(ctx->sg);
498  if (ctx->sg)
499  ctx->offset = 0;
500  }
501  if (ctx->flags & SHA_FLAGS_PAD)
502  dma_unmap_single(dd->dev, ctx->dma_addr,
504  } else {
505  dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
507  }
508 
509  return 0;
510 }
511 
512 static int atmel_sha_update_req(struct atmel_sha_dev *dd)
513 {
514  struct ahash_request *req = dd->req;
515  struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
516  int err;
517 
518  dev_dbg(dd->dev, "update_req: total: %u, digcnt: %d, finup: %d\n",
519  ctx->total, ctx->digcnt, (ctx->flags & SHA_FLAGS_FINUP) != 0);
520 
521  if (ctx->flags & SHA_FLAGS_CPU)
522  err = atmel_sha_update_cpu(dd);
523  else
524  err = atmel_sha_update_dma_start(dd);
525 
526  /* wait for dma completion before can take more data */
527  dev_dbg(dd->dev, "update: err: %d, digcnt: %d\n",
528  err, ctx->digcnt);
529 
530  return err;
531 }
532 
533 static int atmel_sha_final_req(struct atmel_sha_dev *dd)
534 {
535  struct ahash_request *req = dd->req;
536  struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
537  int err = 0;
538  int count;
539 
540  if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
541  atmel_sha_fill_padding(ctx, 0);
542  count = ctx->bufcnt;
543  ctx->bufcnt = 0;
544  err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
545  }
546  /* faster to handle last block with cpu */
547  else {
548  atmel_sha_fill_padding(ctx, 0);
549  count = ctx->bufcnt;
550  ctx->bufcnt = 0;
551  err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
552  }
553 
554  dev_dbg(dd->dev, "final_req: err: %d\n", err);
555 
556  return err;
557 }
558 
559 static void atmel_sha_copy_hash(struct ahash_request *req)
560 {
561  struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
562  u32 *hash = (u32 *)ctx->digest;
563  int i;
564 
565  if (likely(ctx->flags & SHA_FLAGS_SHA1))
566  for (i = 0; i < SHA1_DIGEST_SIZE / sizeof(u32); i++)
567  hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
568  else
569  for (i = 0; i < SHA256_DIGEST_SIZE / sizeof(u32); i++)
570  hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
571 }
572 
573 static void atmel_sha_copy_ready_hash(struct ahash_request *req)
574 {
575  struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
576 
577  if (!req->result)
578  return;
579 
580  if (likely(ctx->flags & SHA_FLAGS_SHA1))
581  memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
582  else
583  memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
584 }
585 
586 static int atmel_sha_finish(struct ahash_request *req)
587 {
588  struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
589  struct atmel_sha_dev *dd = ctx->dd;
590  int err = 0;
591 
592  if (ctx->digcnt)
593  atmel_sha_copy_ready_hash(req);
594 
595  dev_dbg(dd->dev, "digcnt: %d, bufcnt: %d\n", ctx->digcnt,
596  ctx->bufcnt);
597 
598  return err;
599 }
600 
601 static void atmel_sha_finish_req(struct ahash_request *req, int err)
602 {
603  struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
604  struct atmel_sha_dev *dd = ctx->dd;
605 
606  if (!err) {
607  atmel_sha_copy_hash(req);
608  if (SHA_FLAGS_FINAL & dd->flags)
609  err = atmel_sha_finish(req);
610  } else {
611  ctx->flags |= SHA_FLAGS_ERROR;
612  }
613 
614  /* atomic operation is not needed here */
617 
618  clk_disable_unprepare(dd->iclk);
619 
620  if (req->base.complete)
621  req->base.complete(&req->base, err);
622 
623  /* handle new request */
624  tasklet_schedule(&dd->done_task);
625 }
626 
627 static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
628 {
629  clk_prepare_enable(dd->iclk);
630 
631  if (SHA_FLAGS_INIT & dd->flags) {
632  atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
633  atmel_sha_dualbuff_test(dd);
634  dd->flags |= SHA_FLAGS_INIT;
635  dd->err = 0;
636  }
637 
638  return 0;
639 }
640 
641 static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
642  struct ahash_request *req)
643 {
644  struct crypto_async_request *async_req, *backlog;
645  struct atmel_sha_reqctx *ctx;
646  unsigned long flags;
647  int err = 0, ret = 0;
648 
649  spin_lock_irqsave(&dd->lock, flags);
650  if (req)
651  ret = ahash_enqueue_request(&dd->queue, req);
652 
653  if (SHA_FLAGS_BUSY & dd->flags) {
654  spin_unlock_irqrestore(&dd->lock, flags);
655  return ret;
656  }
657 
658  backlog = crypto_get_backlog(&dd->queue);
659  async_req = crypto_dequeue_request(&dd->queue);
660  if (async_req)
661  dd->flags |= SHA_FLAGS_BUSY;
662 
663  spin_unlock_irqrestore(&dd->lock, flags);
664 
665  if (!async_req)
666  return ret;
667 
668  if (backlog)
669  backlog->complete(backlog, -EINPROGRESS);
670 
671  req = ahash_request_cast(async_req);
672  dd->req = req;
673  ctx = ahash_request_ctx(req);
674 
675  dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
676  ctx->op, req->nbytes);
677 
678  err = atmel_sha_hw_init(dd);
679 
680  if (err)
681  goto err1;
682 
683  if (ctx->op == SHA_OP_UPDATE) {
684  err = atmel_sha_update_req(dd);
685  if (err != -EINPROGRESS && (ctx->flags & SHA_FLAGS_FINUP)) {
686  /* no final() after finup() */
687  err = atmel_sha_final_req(dd);
688  }
689  } else if (ctx->op == SHA_OP_FINAL) {
690  err = atmel_sha_final_req(dd);
691  }
692 
693 err1:
694  if (err != -EINPROGRESS)
695  /* done_task will not finish it, so do it here */
696  atmel_sha_finish_req(req, err);
697 
698  dev_dbg(dd->dev, "exit, err: %d\n", err);
699 
700  return ret;
701 }
702 
703 static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
704 {
705  struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
706  struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
707  struct atmel_sha_dev *dd = tctx->dd;
708 
709  ctx->op = op;
710 
711  return atmel_sha_handle_queue(dd, req);
712 }
713 
714 static int atmel_sha_update(struct ahash_request *req)
715 {
716  struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
717 
718  if (!req->nbytes)
719  return 0;
720 
721  ctx->total = req->nbytes;
722  ctx->sg = req->src;
723  ctx->offset = 0;
724 
725  if (ctx->flags & SHA_FLAGS_FINUP) {
726  if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
727  /* faster to use CPU for short transfers */
728  ctx->flags |= SHA_FLAGS_CPU;
729  } else if (ctx->bufcnt + ctx->total < ctx->buflen) {
730  atmel_sha_append_sg(ctx);
731  return 0;
732  }
733  return atmel_sha_enqueue(req, SHA_OP_UPDATE);
734 }
735 
736 static int atmel_sha_final(struct ahash_request *req)
737 {
738  struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
739  struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
740  struct atmel_sha_dev *dd = tctx->dd;
741 
742  int err = 0;
743 
744  ctx->flags |= SHA_FLAGS_FINUP;
745 
746  if (ctx->flags & SHA_FLAGS_ERROR)
747  return 0; /* uncompleted hash is not needed */
748 
749  if (ctx->bufcnt) {
750  return atmel_sha_enqueue(req, SHA_OP_FINAL);
751  } else if (!(ctx->flags & SHA_FLAGS_PAD)) { /* add padding */
752  err = atmel_sha_hw_init(dd);
753  if (err)
754  goto err1;
755 
756  dd->flags |= SHA_FLAGS_BUSY;
757  err = atmel_sha_final_req(dd);
758  } else {
759  /* copy ready hash (+ finalize hmac) */
760  return atmel_sha_finish(req);
761  }
762 
763 err1:
764  if (err != -EINPROGRESS)
765  /* done_task will not finish it, so do it here */
766  atmel_sha_finish_req(req, err);
767 
768  return err;
769 }
770 
771 static int atmel_sha_finup(struct ahash_request *req)
772 {
773  struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
774  int err1, err2;
775 
776  ctx->flags |= SHA_FLAGS_FINUP;
777 
778  err1 = atmel_sha_update(req);
779  if (err1 == -EINPROGRESS || err1 == -EBUSY)
780  return err1;
781 
782  /*
783  * final() has to be always called to cleanup resources
784  * even if udpate() failed, except EINPROGRESS
785  */
786  err2 = atmel_sha_final(req);
787 
788  return err1 ?: err2;
789 }
790 
791 static int atmel_sha_digest(struct ahash_request *req)
792 {
793  return atmel_sha_init(req) ?: atmel_sha_finup(req);
794 }
795 
796 static int atmel_sha_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base)
797 {
798  struct atmel_sha_ctx *tctx = crypto_tfm_ctx(tfm);
799  const char *alg_name = crypto_tfm_alg_name(tfm);
800 
801  /* Allocate a fallback and abort if it failed. */
802  tctx->fallback = crypto_alloc_shash(alg_name, 0,
804  if (IS_ERR(tctx->fallback)) {
805  pr_err("atmel-sha: fallback driver '%s' could not be loaded.\n",
806  alg_name);
807  return PTR_ERR(tctx->fallback);
808  }
809  crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
810  sizeof(struct atmel_sha_reqctx) +
812 
813  return 0;
814 }
815 
816 static int atmel_sha_cra_init(struct crypto_tfm *tfm)
817 {
818  return atmel_sha_cra_init_alg(tfm, NULL);
819 }
820 
821 static void atmel_sha_cra_exit(struct crypto_tfm *tfm)
822 {
823  struct atmel_sha_ctx *tctx = crypto_tfm_ctx(tfm);
824 
825  crypto_free_shash(tctx->fallback);
826  tctx->fallback = NULL;
827 }
828 
829 static struct ahash_alg sha_algs[] = {
830 {
831  .init = atmel_sha_init,
832  .update = atmel_sha_update,
833  .final = atmel_sha_final,
834  .finup = atmel_sha_finup,
835  .digest = atmel_sha_digest,
836  .halg = {
837  .digestsize = SHA1_DIGEST_SIZE,
838  .base = {
839  .cra_name = "sha1",
840  .cra_driver_name = "atmel-sha1",
841  .cra_priority = 100,
842  .cra_flags = CRYPTO_ALG_ASYNC |
844  .cra_blocksize = SHA1_BLOCK_SIZE,
845  .cra_ctxsize = sizeof(struct atmel_sha_ctx),
846  .cra_alignmask = 0,
847  .cra_module = THIS_MODULE,
848  .cra_init = atmel_sha_cra_init,
849  .cra_exit = atmel_sha_cra_exit,
850  }
851  }
852 },
853 {
854  .init = atmel_sha_init,
855  .update = atmel_sha_update,
856  .final = atmel_sha_final,
857  .finup = atmel_sha_finup,
858  .digest = atmel_sha_digest,
859  .halg = {
860  .digestsize = SHA256_DIGEST_SIZE,
861  .base = {
862  .cra_name = "sha256",
863  .cra_driver_name = "atmel-sha256",
864  .cra_priority = 100,
865  .cra_flags = CRYPTO_ALG_ASYNC |
867  .cra_blocksize = SHA256_BLOCK_SIZE,
868  .cra_ctxsize = sizeof(struct atmel_sha_ctx),
869  .cra_alignmask = 0,
870  .cra_module = THIS_MODULE,
871  .cra_init = atmel_sha_cra_init,
872  .cra_exit = atmel_sha_cra_exit,
873  }
874  }
875 },
876 };
877 
878 static void atmel_sha_done_task(unsigned long data)
879 {
880  struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
881  int err = 0;
882 
883  if (!(SHA_FLAGS_BUSY & dd->flags)) {
884  atmel_sha_handle_queue(dd, NULL);
885  return;
886  }
887 
888  if (SHA_FLAGS_CPU & dd->flags) {
889  if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
891  goto finish;
892  }
893  } else if (SHA_FLAGS_DMA_READY & dd->flags) {
894  if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
895  dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
896  atmel_sha_update_dma_stop(dd);
897  if (dd->err) {
898  err = dd->err;
899  goto finish;
900  }
901  }
902  if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
903  /* hash or semi-hash ready */
904  dd->flags &= ~(SHA_FLAGS_DMA_READY |
906  err = atmel_sha_update_dma_start(dd);
907  if (err != -EINPROGRESS)
908  goto finish;
909  }
910  }
911  return;
912 
913 finish:
914  /* finish curent request */
915  atmel_sha_finish_req(dd->req, err);
916 }
917 
918 static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
919 {
920  struct atmel_sha_dev *sha_dd = dev_id;
921  u32 reg;
922 
923  reg = atmel_sha_read(sha_dd, SHA_ISR);
924  if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
925  atmel_sha_write(sha_dd, SHA_IDR, reg);
926  if (SHA_FLAGS_BUSY & sha_dd->flags) {
927  sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
928  if (!(SHA_FLAGS_CPU & sha_dd->flags))
929  sha_dd->flags |= SHA_FLAGS_DMA_READY;
930  tasklet_schedule(&sha_dd->done_task);
931  } else {
932  dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
933  }
934  return IRQ_HANDLED;
935  }
936 
937  return IRQ_NONE;
938 }
939 
940 static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
941 {
942  int i;
943 
944  for (i = 0; i < ARRAY_SIZE(sha_algs); i++)
945  crypto_unregister_ahash(&sha_algs[i]);
946 }
947 
948 static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
949 {
950  int err, i, j;
951 
952  for (i = 0; i < ARRAY_SIZE(sha_algs); i++) {
953  err = crypto_register_ahash(&sha_algs[i]);
954  if (err)
955  goto err_sha_algs;
956  }
957 
958  return 0;
959 
960 err_sha_algs:
961  for (j = 0; j < i; j++)
962  crypto_unregister_ahash(&sha_algs[j]);
963 
964  return err;
965 }
966 
967 static int __devinit atmel_sha_probe(struct platform_device *pdev)
968 {
969  struct atmel_sha_dev *sha_dd;
970  struct device *dev = &pdev->dev;
971  struct resource *sha_res;
972  unsigned long sha_phys_size;
973  int err;
974 
975  sha_dd = kzalloc(sizeof(struct atmel_sha_dev), GFP_KERNEL);
976  if (sha_dd == NULL) {
977  dev_err(dev, "unable to alloc data struct.\n");
978  err = -ENOMEM;
979  goto sha_dd_err;
980  }
981 
982  sha_dd->dev = dev;
983 
984  platform_set_drvdata(pdev, sha_dd);
985 
986  INIT_LIST_HEAD(&sha_dd->list);
987 
988  tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
989  (unsigned long)sha_dd);
990 
992 
993  sha_dd->irq = -1;
994 
995  /* Get the base address */
996  sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
997  if (!sha_res) {
998  dev_err(dev, "no MEM resource info\n");
999  err = -ENODEV;
1000  goto res_err;
1001  }
1002  sha_dd->phys_base = sha_res->start;
1003  sha_phys_size = resource_size(sha_res);
1004 
1005  /* Get the IRQ */
1006  sha_dd->irq = platform_get_irq(pdev, 0);
1007  if (sha_dd->irq < 0) {
1008  dev_err(dev, "no IRQ resource info\n");
1009  err = sha_dd->irq;
1010  goto res_err;
1011  }
1012 
1013  err = request_irq(sha_dd->irq, atmel_sha_irq, IRQF_SHARED, "atmel-sha",
1014  sha_dd);
1015  if (err) {
1016  dev_err(dev, "unable to request sha irq.\n");
1017  goto res_err;
1018  }
1019 
1020  /* Initializing the clock */
1021  sha_dd->iclk = clk_get(&pdev->dev, NULL);
1022  if (IS_ERR(sha_dd->iclk)) {
1023  dev_err(dev, "clock intialization failed.\n");
1024  err = PTR_ERR(sha_dd->iclk);
1025  goto clk_err;
1026  }
1027 
1028  sha_dd->io_base = ioremap(sha_dd->phys_base, sha_phys_size);
1029  if (!sha_dd->io_base) {
1030  dev_err(dev, "can't ioremap\n");
1031  err = -ENOMEM;
1032  goto sha_io_err;
1033  }
1034 
1035  spin_lock(&atmel_sha.lock);
1036  list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
1037  spin_unlock(&atmel_sha.lock);
1038 
1039  err = atmel_sha_register_algs(sha_dd);
1040  if (err)
1041  goto err_algs;
1042 
1043  dev_info(dev, "Atmel SHA1/SHA256\n");
1044 
1045  return 0;
1046 
1047 err_algs:
1048  spin_lock(&atmel_sha.lock);
1049  list_del(&sha_dd->list);
1050  spin_unlock(&atmel_sha.lock);
1051  iounmap(sha_dd->io_base);
1052 sha_io_err:
1053  clk_put(sha_dd->iclk);
1054 clk_err:
1055  free_irq(sha_dd->irq, sha_dd);
1056 res_err:
1057  tasklet_kill(&sha_dd->done_task);
1058  kfree(sha_dd);
1059  sha_dd = NULL;
1060 sha_dd_err:
1061  dev_err(dev, "initialization failed.\n");
1062 
1063  return err;
1064 }
1065 
1066 static int __devexit atmel_sha_remove(struct platform_device *pdev)
1067 {
1068  static struct atmel_sha_dev *sha_dd;
1069 
1070  sha_dd = platform_get_drvdata(pdev);
1071  if (!sha_dd)
1072  return -ENODEV;
1073  spin_lock(&atmel_sha.lock);
1074  list_del(&sha_dd->list);
1075  spin_unlock(&atmel_sha.lock);
1076 
1077  atmel_sha_unregister_algs(sha_dd);
1078 
1079  tasklet_kill(&sha_dd->done_task);
1080 
1081  iounmap(sha_dd->io_base);
1082 
1083  clk_put(sha_dd->iclk);
1084 
1085  if (sha_dd->irq >= 0)
1086  free_irq(sha_dd->irq, sha_dd);
1087 
1088  kfree(sha_dd);
1089  sha_dd = NULL;
1090 
1091  return 0;
1092 }
1093 
1094 static struct platform_driver atmel_sha_driver = {
1095  .probe = atmel_sha_probe,
1096  .remove = __devexit_p(atmel_sha_remove),
1097  .driver = {
1098  .name = "atmel_sha",
1099  .owner = THIS_MODULE,
1100  },
1101 };
1102 
1103 module_platform_driver(atmel_sha_driver);
1104 
1105 MODULE_DESCRIPTION("Atmel SHA1/SHA256 hw acceleration support.");
1106 MODULE_LICENSE("GPL v2");
1107 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");