Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
book3s_hv.c
Go to the documentation of this file.
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <[email protected]>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  * Paul Mackerras <[email protected]>
7  * Alexander Graf <[email protected]>
8  * Kevin Wolf <[email protected]>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <[email protected]>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20 
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 
34 #include <asm/reg.h>
35 #include <asm/cputable.h>
36 #include <asm/cacheflush.h>
37 #include <asm/tlbflush.h>
38 #include <asm/uaccess.h>
39 #include <asm/io.h>
40 #include <asm/kvm_ppc.h>
41 #include <asm/kvm_book3s.h>
42 #include <asm/mmu_context.h>
43 #include <asm/lppaca.h>
44 #include <asm/processor.h>
45 #include <asm/cputhreads.h>
46 #include <asm/page.h>
47 #include <asm/hvcall.h>
48 #include <asm/switch_to.h>
49 #include <linux/gfp.h>
50 #include <linux/vmalloc.h>
51 #include <linux/highmem.h>
52 #include <linux/hugetlb.h>
53 
54 /* #define EXIT_DEBUG */
55 /* #define EXIT_DEBUG_SIMPLE */
56 /* #define EXIT_DEBUG_INT */
57 
58 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
59 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
60 
61 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
62 {
63  struct kvmppc_vcore *vc = vcpu->arch.vcore;
64 
65  local_paca->kvm_hstate.kvm_vcpu = vcpu;
66  local_paca->kvm_hstate.kvm_vcore = vc;
67  if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
68  vc->stolen_tb += mftb() - vc->preempt_tb;
69 }
70 
71 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
72 {
73  struct kvmppc_vcore *vc = vcpu->arch.vcore;
74 
75  if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
76  vc->preempt_tb = mftb();
77 }
78 
79 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
80 {
81  vcpu->arch.shregs.msr = msr;
82  kvmppc_end_cede(vcpu);
83 }
84 
85 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
86 {
87  vcpu->arch.pvr = pvr;
88 }
89 
90 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
91 {
92  int r;
93 
94  pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
95  pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
96  vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
97  for (r = 0; r < 16; ++r)
98  pr_err("r%2d = %.16lx r%d = %.16lx\n",
99  r, kvmppc_get_gpr(vcpu, r),
100  r+16, kvmppc_get_gpr(vcpu, r+16));
101  pr_err("ctr = %.16lx lr = %.16lx\n",
102  vcpu->arch.ctr, vcpu->arch.lr);
103  pr_err("srr0 = %.16llx srr1 = %.16llx\n",
104  vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
105  pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
106  vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
107  pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
108  vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
109  pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
110  vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
111  pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
112  pr_err("fault dar = %.16lx dsisr = %.8x\n",
113  vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
114  pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
115  for (r = 0; r < vcpu->arch.slb_max; ++r)
116  pr_err(" ESID = %.16llx VSID = %.16llx\n",
117  vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
118  pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
119  vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
120  vcpu->arch.last_inst);
121 }
122 
123 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
124 {
125  int r;
126  struct kvm_vcpu *v, *ret = NULL;
127 
128  mutex_lock(&kvm->lock);
129  kvm_for_each_vcpu(r, v, kvm) {
130  if (v->vcpu_id == id) {
131  ret = v;
132  break;
133  }
134  }
135  mutex_unlock(&kvm->lock);
136  return ret;
137 }
138 
139 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
140 {
141  vpa->shared_proc = 1;
142  vpa->yield_count = 1;
143 }
144 
145 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
146 struct reg_vpa {
148  union {
151  } length;
152 };
153 
154 static int vpa_is_registered(struct kvmppc_vpa *vpap)
155 {
156  if (vpap->update_pending)
157  return vpap->next_gpa != 0;
158  return vpap->pinned_addr != NULL;
159 }
160 
161 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
162  unsigned long flags,
163  unsigned long vcpuid, unsigned long vpa)
164 {
165  struct kvm *kvm = vcpu->kvm;
166  unsigned long len, nb;
167  void *va;
168  struct kvm_vcpu *tvcpu;
169  int err;
170  int subfunc;
171  struct kvmppc_vpa *vpap;
172 
173  tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
174  if (!tvcpu)
175  return H_PARAMETER;
176 
177  subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
178  if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
179  subfunc == H_VPA_REG_SLB) {
180  /* Registering new area - address must be cache-line aligned */
181  if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
182  return H_PARAMETER;
183 
184  /* convert logical addr to kernel addr and read length */
185  va = kvmppc_pin_guest_page(kvm, vpa, &nb);
186  if (va == NULL)
187  return H_PARAMETER;
188  if (subfunc == H_VPA_REG_VPA)
189  len = ((struct reg_vpa *)va)->length.hword;
190  else
191  len = ((struct reg_vpa *)va)->length.word;
192  kvmppc_unpin_guest_page(kvm, va);
193 
194  /* Check length */
195  if (len > nb || len < sizeof(struct reg_vpa))
196  return H_PARAMETER;
197  } else {
198  vpa = 0;
199  len = 0;
200  }
201 
202  err = H_PARAMETER;
203  vpap = NULL;
204  spin_lock(&tvcpu->arch.vpa_update_lock);
205 
206  switch (subfunc) {
207  case H_VPA_REG_VPA: /* register VPA */
208  if (len < sizeof(struct lppaca))
209  break;
210  vpap = &tvcpu->arch.vpa;
211  err = 0;
212  break;
213 
214  case H_VPA_REG_DTL: /* register DTL */
215  if (len < sizeof(struct dtl_entry))
216  break;
217  len -= len % sizeof(struct dtl_entry);
218 
219  /* Check that they have previously registered a VPA */
220  err = H_RESOURCE;
221  if (!vpa_is_registered(&tvcpu->arch.vpa))
222  break;
223 
224  vpap = &tvcpu->arch.dtl;
225  err = 0;
226  break;
227 
228  case H_VPA_REG_SLB: /* register SLB shadow buffer */
229  /* Check that they have previously registered a VPA */
230  err = H_RESOURCE;
231  if (!vpa_is_registered(&tvcpu->arch.vpa))
232  break;
233 
234  vpap = &tvcpu->arch.slb_shadow;
235  err = 0;
236  break;
237 
238  case H_VPA_DEREG_VPA: /* deregister VPA */
239  /* Check they don't still have a DTL or SLB buf registered */
240  err = H_RESOURCE;
241  if (vpa_is_registered(&tvcpu->arch.dtl) ||
242  vpa_is_registered(&tvcpu->arch.slb_shadow))
243  break;
244 
245  vpap = &tvcpu->arch.vpa;
246  err = 0;
247  break;
248 
249  case H_VPA_DEREG_DTL: /* deregister DTL */
250  vpap = &tvcpu->arch.dtl;
251  err = 0;
252  break;
253 
254  case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
255  vpap = &tvcpu->arch.slb_shadow;
256  err = 0;
257  break;
258  }
259 
260  if (vpap) {
261  vpap->next_gpa = vpa;
262  vpap->len = len;
263  vpap->update_pending = 1;
264  }
265 
266  spin_unlock(&tvcpu->arch.vpa_update_lock);
267 
268  return err;
269 }
270 
271 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
272 {
273  struct kvm *kvm = vcpu->kvm;
274  void *va;
275  unsigned long nb;
276  unsigned long gpa;
277 
278  /*
279  * We need to pin the page pointed to by vpap->next_gpa,
280  * but we can't call kvmppc_pin_guest_page under the lock
281  * as it does get_user_pages() and down_read(). So we
282  * have to drop the lock, pin the page, then get the lock
283  * again and check that a new area didn't get registered
284  * in the meantime.
285  */
286  for (;;) {
287  gpa = vpap->next_gpa;
288  spin_unlock(&vcpu->arch.vpa_update_lock);
289  va = NULL;
290  nb = 0;
291  if (gpa)
292  va = kvmppc_pin_guest_page(kvm, vpap->next_gpa, &nb);
293  spin_lock(&vcpu->arch.vpa_update_lock);
294  if (gpa == vpap->next_gpa)
295  break;
296  /* sigh... unpin that one and try again */
297  if (va)
298  kvmppc_unpin_guest_page(kvm, va);
299  }
300 
301  vpap->update_pending = 0;
302  if (va && nb < vpap->len) {
303  /*
304  * If it's now too short, it must be that userspace
305  * has changed the mappings underlying guest memory,
306  * so unregister the region.
307  */
308  kvmppc_unpin_guest_page(kvm, va);
309  va = NULL;
310  }
311  if (vpap->pinned_addr)
313  vpap->pinned_addr = va;
314  if (va)
315  vpap->pinned_end = va + vpap->len;
316 }
317 
318 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
319 {
320  spin_lock(&vcpu->arch.vpa_update_lock);
321  if (vcpu->arch.vpa.update_pending) {
322  kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
323  init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
324  }
325  if (vcpu->arch.dtl.update_pending) {
326  kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
327  vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
328  vcpu->arch.dtl_index = 0;
329  }
330  if (vcpu->arch.slb_shadow.update_pending)
331  kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
332  spin_unlock(&vcpu->arch.vpa_update_lock);
333 }
334 
335 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
336  struct kvmppc_vcore *vc)
337 {
338  struct dtl_entry *dt;
339  struct lppaca *vpa;
340  unsigned long old_stolen;
341 
342  dt = vcpu->arch.dtl_ptr;
343  vpa = vcpu->arch.vpa.pinned_addr;
344  old_stolen = vcpu->arch.stolen_logged;
345  vcpu->arch.stolen_logged = vc->stolen_tb;
346  if (!dt || !vpa)
347  return;
348  memset(dt, 0, sizeof(struct dtl_entry));
349  dt->dispatch_reason = 7;
350  dt->processor_id = vc->pcpu + vcpu->arch.ptid;
351  dt->timebase = mftb();
352  dt->enqueue_to_dispatch_time = vc->stolen_tb - old_stolen;
353  dt->srr0 = kvmppc_get_pc(vcpu);
354  dt->srr1 = vcpu->arch.shregs.msr;
355  ++dt;
356  if (dt == vcpu->arch.dtl.pinned_end)
357  dt = vcpu->arch.dtl.pinned_addr;
358  vcpu->arch.dtl_ptr = dt;
359  /* order writing *dt vs. writing vpa->dtl_idx */
360  smp_wmb();
361  vpa->dtl_idx = ++vcpu->arch.dtl_index;
362 }
363 
365 {
366  unsigned long req = kvmppc_get_gpr(vcpu, 3);
367  unsigned long target, ret = H_SUCCESS;
368  struct kvm_vcpu *tvcpu;
369 
370  switch (req) {
371  case H_ENTER:
372  ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
373  kvmppc_get_gpr(vcpu, 5),
374  kvmppc_get_gpr(vcpu, 6),
375  kvmppc_get_gpr(vcpu, 7));
376  break;
377  case H_CEDE:
378  break;
379  case H_PROD:
380  target = kvmppc_get_gpr(vcpu, 4);
381  tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
382  if (!tvcpu) {
383  ret = H_PARAMETER;
384  break;
385  }
386  tvcpu->arch.prodded = 1;
387  smp_mb();
388  if (vcpu->arch.ceded) {
389  if (waitqueue_active(&vcpu->wq)) {
390  wake_up_interruptible(&vcpu->wq);
391  vcpu->stat.halt_wakeup++;
392  }
393  }
394  break;
395  case H_CONFER:
396  break;
397  case H_REGISTER_VPA:
398  ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
399  kvmppc_get_gpr(vcpu, 5),
400  kvmppc_get_gpr(vcpu, 6));
401  break;
402  default:
403  return RESUME_HOST;
404  }
405  kvmppc_set_gpr(vcpu, 3, ret);
406  vcpu->arch.hcall_needed = 0;
407  return RESUME_GUEST;
408 }
409 
410 static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
411  struct task_struct *tsk)
412 {
413  int r = RESUME_HOST;
414 
415  vcpu->stat.sum_exits++;
416 
419  switch (vcpu->arch.trap) {
420  /* We're good on these - the host merely wanted to get our attention */
422  vcpu->stat.dec_exits++;
423  r = RESUME_GUEST;
424  break;
426  vcpu->stat.ext_intr_exits++;
427  r = RESUME_GUEST;
428  break;
430  r = RESUME_GUEST;
431  break;
433  {
434  ulong flags;
435  /*
436  * Normally program interrupts are delivered directly
437  * to the guest by the hardware, but we can get here
438  * as a result of a hypervisor emulation interrupt
439  * (e40) getting turned into a 700 by BML RTAS.
440  */
441  flags = vcpu->arch.shregs.msr & 0x1f0000ull;
442  kvmppc_core_queue_program(vcpu, flags);
443  r = RESUME_GUEST;
444  break;
445  }
447  {
448  /* hcall - punt to userspace */
449  int i;
450 
451  if (vcpu->arch.shregs.msr & MSR_PR) {
452  /* sc 1 from userspace - reflect to guest syscall */
454  r = RESUME_GUEST;
455  break;
456  }
457  run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
458  for (i = 0; i < 9; ++i)
459  run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
461  vcpu->arch.hcall_needed = 1;
462  r = RESUME_HOST;
463  break;
464  }
465  /*
466  * We get these next two if the guest accesses a page which it thinks
467  * it has mapped but which is not actually present, either because
468  * it is for an emulated I/O device or because the corresonding
469  * host page has been paged out. Any other HDSI/HISI interrupts
470  * have been handled already.
471  */
473  r = kvmppc_book3s_hv_page_fault(run, vcpu,
474  vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
475  break;
477  r = kvmppc_book3s_hv_page_fault(run, vcpu,
478  kvmppc_get_pc(vcpu), 0);
479  break;
480  /*
481  * This occurs if the guest executes an illegal instruction.
482  * We just generate a program interrupt to the guest, since
483  * we don't emulate any guest instructions at this stage.
484  */
486  kvmppc_core_queue_program(vcpu, 0x80000);
487  r = RESUME_GUEST;
488  break;
489  default:
490  kvmppc_dump_regs(vcpu);
491  printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
492  vcpu->arch.trap, kvmppc_get_pc(vcpu),
493  vcpu->arch.shregs.msr);
494  r = RESUME_HOST;
495  BUG();
496  break;
497  }
498 
499  return r;
500 }
501 
503  struct kvm_sregs *sregs)
504 {
505  int i;
506 
507  sregs->pvr = vcpu->arch.pvr;
508 
509  memset(sregs, 0, sizeof(struct kvm_sregs));
510  for (i = 0; i < vcpu->arch.slb_max; i++) {
511  sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
512  sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
513  }
514 
515  return 0;
516 }
517 
519  struct kvm_sregs *sregs)
520 {
521  int i, j;
522 
523  kvmppc_set_pvr(vcpu, sregs->pvr);
524 
525  j = 0;
526  for (i = 0; i < vcpu->arch.slb_nr; i++) {
527  if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
528  vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
529  vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
530  ++j;
531  }
532  }
533  vcpu->arch.slb_max = j;
534 
535  return 0;
536 }
537 
539 {
540  int r = -EINVAL;
541 
542  switch (reg->id) {
543  case KVM_REG_PPC_HIOR:
544  r = put_user(0, (u64 __user *)reg->addr);
545  break;
546  default:
547  break;
548  }
549 
550  return r;
551 }
552 
554 {
555  int r = -EINVAL;
556 
557  switch (reg->id) {
558  case KVM_REG_PPC_HIOR:
559  {
560  u64 hior;
561  /* Only allow this to be set to zero */
562  r = get_user(hior, (u64 __user *)reg->addr);
563  if (!r && (hior != 0))
564  r = -EINVAL;
565  break;
566  }
567  default:
568  break;
569  }
570 
571  return r;
572 }
573 
575 {
577  return 0;
578  return -EIO;
579 }
580 
581 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
582 {
583  struct kvm_vcpu *vcpu;
584  int err = -EINVAL;
585  int core;
586  struct kvmppc_vcore *vcore;
587 
588  core = id / threads_per_core;
589  if (core >= KVM_MAX_VCORES)
590  goto out;
591 
592  err = -ENOMEM;
593  vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
594  if (!vcpu)
595  goto out;
596 
597  err = kvm_vcpu_init(vcpu, kvm, id);
598  if (err)
599  goto free_vcpu;
600 
601  vcpu->arch.shared = &vcpu->arch.shregs;
602  vcpu->arch.last_cpu = -1;
603  vcpu->arch.mmcr[0] = MMCR0_FC;
604  vcpu->arch.ctrl = CTRL_RUNLATCH;
605  /* default to host PVR, since we can't spoof it */
606  vcpu->arch.pvr = mfspr(SPRN_PVR);
607  kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
608  spin_lock_init(&vcpu->arch.vpa_update_lock);
609 
611 
612  /*
613  * We consider the vcpu stopped until we see the first run ioctl for it.
614  */
615  vcpu->arch.state = KVMPPC_VCPU_STOPPED;
616 
617  init_waitqueue_head(&vcpu->arch.cpu_run);
618 
619  mutex_lock(&kvm->lock);
620  vcore = kvm->arch.vcores[core];
621  if (!vcore) {
622  vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
623  if (vcore) {
624  INIT_LIST_HEAD(&vcore->runnable_threads);
625  spin_lock_init(&vcore->lock);
626  init_waitqueue_head(&vcore->wq);
627  vcore->preempt_tb = mftb();
628  }
629  kvm->arch.vcores[core] = vcore;
630  }
631  mutex_unlock(&kvm->lock);
632 
633  if (!vcore)
634  goto free_vcpu;
635 
636  spin_lock(&vcore->lock);
637  ++vcore->num_threads;
638  spin_unlock(&vcore->lock);
639  vcpu->arch.vcore = vcore;
640  vcpu->arch.stolen_logged = vcore->stolen_tb;
641 
642  vcpu->arch.cpu_type = KVM_CPU_3S_64;
643  kvmppc_sanity_check(vcpu);
644 
645  return vcpu;
646 
647 free_vcpu:
649 out:
650  return ERR_PTR(err);
651 }
652 
653 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
654 {
655  spin_lock(&vcpu->arch.vpa_update_lock);
656  if (vcpu->arch.dtl.pinned_addr)
657  kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.dtl.pinned_addr);
658  if (vcpu->arch.slb_shadow.pinned_addr)
659  kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.slb_shadow.pinned_addr);
660  if (vcpu->arch.vpa.pinned_addr)
661  kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.vpa.pinned_addr);
662  spin_unlock(&vcpu->arch.vpa_update_lock);
663  kvm_vcpu_uninit(vcpu);
665 }
666 
667 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
668 {
669  unsigned long dec_nsec, now;
670 
671  now = get_tb();
672  if (now > vcpu->arch.dec_expires) {
673  /* decrementer has already gone negative */
674  kvmppc_core_queue_dec(vcpu);
676  return;
677  }
678  dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
680  hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
682  vcpu->arch.timer_running = 1;
683 }
684 
685 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
686 {
687  vcpu->arch.ceded = 0;
688  if (vcpu->arch.timer_running) {
689  hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
690  vcpu->arch.timer_running = 0;
691  }
692 }
693 
694 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
695 extern void xics_wake_cpu(int cpu);
696 
697 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
698  struct kvm_vcpu *vcpu)
699 {
700  struct kvm_vcpu *v;
701 
702  if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
703  return;
704  vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
705  --vc->n_runnable;
706  ++vc->n_busy;
707  /* decrement the physical thread id of each following vcpu */
708  v = vcpu;
710  --v->arch.ptid;
711  list_del(&vcpu->arch.run_list);
712 }
713 
714 static int kvmppc_grab_hwthread(int cpu)
715 {
716  struct paca_struct *tpaca;
717  long timeout = 1000;
718 
719  tpaca = &paca[cpu];
720 
721  /* Ensure the thread won't go into the kernel if it wakes */
722  tpaca->kvm_hstate.hwthread_req = 1;
723 
724  /*
725  * If the thread is already executing in the kernel (e.g. handling
726  * a stray interrupt), wait for it to get back to nap mode.
727  * The smp_mb() is to ensure that our setting of hwthread_req
728  * is visible before we look at hwthread_state, so if this
729  * races with the code at system_reset_pSeries and the thread
730  * misses our setting of hwthread_req, we are sure to see its
731  * setting of hwthread_state, and vice versa.
732  */
733  smp_mb();
734  while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
735  if (--timeout <= 0) {
736  pr_err("KVM: couldn't grab cpu %d\n", cpu);
737  return -EBUSY;
738  }
739  udelay(1);
740  }
741  return 0;
742 }
743 
744 static void kvmppc_release_hwthread(int cpu)
745 {
746  struct paca_struct *tpaca;
747 
748  tpaca = &paca[cpu];
749  tpaca->kvm_hstate.hwthread_req = 0;
750  tpaca->kvm_hstate.kvm_vcpu = NULL;
751 }
752 
753 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
754 {
755  int cpu;
756  struct paca_struct *tpaca;
757  struct kvmppc_vcore *vc = vcpu->arch.vcore;
758 
759  if (vcpu->arch.timer_running) {
760  hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
761  vcpu->arch.timer_running = 0;
762  }
763  cpu = vc->pcpu + vcpu->arch.ptid;
764  tpaca = &paca[cpu];
765  tpaca->kvm_hstate.kvm_vcpu = vcpu;
766  tpaca->kvm_hstate.kvm_vcore = vc;
767  tpaca->kvm_hstate.napping = 0;
768  vcpu->cpu = vc->pcpu;
769  smp_wmb();
770 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
771  if (vcpu->arch.ptid) {
772  kvmppc_grab_hwthread(cpu);
773  xics_wake_cpu(cpu);
774  ++vc->n_woken;
775  }
776 #endif
777 }
778 
779 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
780 {
781  int i;
782 
783  HMT_low();
784  i = 0;
785  while (vc->nap_count < vc->n_woken) {
786  if (++i >= 1000000) {
787  pr_err("kvmppc_wait_for_nap timeout %d %d\n",
788  vc->nap_count, vc->n_woken);
789  break;
790  }
791  cpu_relax();
792  }
793  HMT_medium();
794 }
795 
796 /*
797  * Check that we are on thread 0 and that any other threads in
798  * this core are off-line.
799  */
800 static int on_primary_thread(void)
801 {
802  int cpu = smp_processor_id();
803  int thr = cpu_thread_in_core(cpu);
804 
805  if (thr)
806  return 0;
807  while (++thr < threads_per_core)
808  if (cpu_online(cpu + thr))
809  return 0;
810  return 1;
811 }
812 
813 /*
814  * Run a set of guest threads on a physical core.
815  * Called with vc->lock held.
816  */
817 static int kvmppc_run_core(struct kvmppc_vcore *vc)
818 {
819  struct kvm_vcpu *vcpu, *vcpu0, *vnext;
820  long ret;
821  u64 now;
822  int ptid, i, need_vpa_update;
823 
824  /* don't start if any threads have a signal pending */
825  need_vpa_update = 0;
826  list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
827  if (signal_pending(vcpu->arch.run_task))
828  return 0;
829  need_vpa_update |= vcpu->arch.vpa.update_pending |
830  vcpu->arch.slb_shadow.update_pending |
831  vcpu->arch.dtl.update_pending;
832  }
833 
834  /*
835  * Initialize *vc, in particular vc->vcore_state, so we can
836  * drop the vcore lock if necessary.
837  */
838  vc->n_woken = 0;
839  vc->nap_count = 0;
840  vc->entry_exit_count = 0;
842  vc->in_guest = 0;
843  vc->napping_threads = 0;
844 
845  /*
846  * Updating any of the vpas requires calling kvmppc_pin_guest_page,
847  * which can't be called with any spinlocks held.
848  */
849  if (need_vpa_update) {
850  spin_unlock(&vc->lock);
851  list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
852  kvmppc_update_vpas(vcpu);
853  spin_lock(&vc->lock);
854  }
855 
856  /*
857  * Make sure we are running on thread 0, and that
858  * secondary threads are offline.
859  * XXX we should also block attempts to bring any
860  * secondary threads online.
861  */
862  if (threads_per_core > 1 && !on_primary_thread()) {
863  list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
864  vcpu->arch.ret = -EBUSY;
865  goto out;
866  }
867 
868  /*
869  * Assign physical thread IDs, first to non-ceded vcpus
870  * and then to ceded ones.
871  */
872  ptid = 0;
873  vcpu0 = NULL;
874  list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
875  if (!vcpu->arch.ceded) {
876  if (!ptid)
877  vcpu0 = vcpu;
878  vcpu->arch.ptid = ptid++;
879  }
880  }
881  if (!vcpu0)
882  return 0; /* nothing to run */
883  list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
884  if (vcpu->arch.ceded)
885  vcpu->arch.ptid = ptid++;
886 
887  vc->stolen_tb += mftb() - vc->preempt_tb;
888  vc->pcpu = smp_processor_id();
889  list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
890  kvmppc_start_thread(vcpu);
891  kvmppc_create_dtl_entry(vcpu, vc);
892  }
893  /* Grab any remaining hw threads so they can't go into the kernel */
894  for (i = ptid; i < threads_per_core; ++i)
895  kvmppc_grab_hwthread(vc->pcpu + i);
896 
897  preempt_disable();
898  spin_unlock(&vc->lock);
899 
900  kvm_guest_enter();
901  __kvmppc_vcore_entry(NULL, vcpu0);
902  for (i = 0; i < threads_per_core; ++i)
903  kvmppc_release_hwthread(vc->pcpu + i);
904 
905  spin_lock(&vc->lock);
906  /* disable sending of IPIs on virtual external irqs */
907  list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
908  vcpu->cpu = -1;
909  /* wait for secondary threads to finish writing their state to memory */
910  if (vc->nap_count < vc->n_woken)
911  kvmppc_wait_for_nap(vc);
912  /* prevent other vcpu threads from doing kvmppc_start_thread() now */
913  vc->vcore_state = VCORE_EXITING;
914  spin_unlock(&vc->lock);
915 
916  /* make sure updates to secondary vcpu structs are visible now */
917  smp_mb();
918  kvm_guest_exit();
919 
920  preempt_enable();
921  kvm_resched(vcpu);
922 
923  now = get_tb();
924  list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
925  /* cancel pending dec exception if dec is positive */
926  if (now < vcpu->arch.dec_expires &&
929 
930  ret = RESUME_GUEST;
931  if (vcpu->arch.trap)
932  ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
933  vcpu->arch.run_task);
934 
935  vcpu->arch.ret = ret;
936  vcpu->arch.trap = 0;
937 
938  if (vcpu->arch.ceded) {
939  if (ret != RESUME_GUEST)
940  kvmppc_end_cede(vcpu);
941  else
942  kvmppc_set_timer(vcpu);
943  }
944  }
945 
946  spin_lock(&vc->lock);
947  out:
948  vc->vcore_state = VCORE_INACTIVE;
949  vc->preempt_tb = mftb();
950  list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
951  arch.run_list) {
952  if (vcpu->arch.ret != RESUME_GUEST) {
953  kvmppc_remove_runnable(vc, vcpu);
954  wake_up(&vcpu->arch.cpu_run);
955  }
956  }
957 
958  return 1;
959 }
960 
961 /*
962  * Wait for some other vcpu thread to execute us, and
963  * wake us up when we need to handle something in the host.
964  */
965 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
966 {
967  DEFINE_WAIT(wait);
968 
969  prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
970  if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
971  schedule();
972  finish_wait(&vcpu->arch.cpu_run, &wait);
973 }
974 
975 /*
976  * All the vcpus in this vcore are idle, so wait for a decrementer
977  * or external interrupt to one of the vcpus. vc->lock is held.
978  */
979 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
980 {
981  DEFINE_WAIT(wait);
982  struct kvm_vcpu *v;
983  int all_idle = 1;
984 
987  spin_unlock(&vc->lock);
988  list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
989  if (!v->arch.ceded || v->arch.pending_exceptions) {
990  all_idle = 0;
991  break;
992  }
993  }
994  if (all_idle)
995  schedule();
996  finish_wait(&vc->wq, &wait);
997  spin_lock(&vc->lock);
999 }
1000 
1001 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1002 {
1003  int n_ceded;
1004  int prev_state;
1005  struct kvmppc_vcore *vc;
1006  struct kvm_vcpu *v, *vn;
1007 
1008  kvm_run->exit_reason = 0;
1009  vcpu->arch.ret = RESUME_GUEST;
1010  vcpu->arch.trap = 0;
1011 
1012  /*
1013  * Synchronize with other threads in this virtual core
1014  */
1015  vc = vcpu->arch.vcore;
1016  spin_lock(&vc->lock);
1017  vcpu->arch.ceded = 0;
1018  vcpu->arch.run_task = current;
1019  vcpu->arch.kvm_run = kvm_run;
1020  prev_state = vcpu->arch.state;
1021  vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1022  list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
1023  ++vc->n_runnable;
1024 
1025  /*
1026  * This happens the first time this is called for a vcpu.
1027  * If the vcore is already running, we may be able to start
1028  * this thread straight away and have it join in.
1029  */
1030  if (prev_state == KVMPPC_VCPU_STOPPED) {
1031  if (vc->vcore_state == VCORE_RUNNING &&
1032  VCORE_EXIT_COUNT(vc) == 0) {
1033  vcpu->arch.ptid = vc->n_runnable - 1;
1034  kvmppc_start_thread(vcpu);
1035  }
1036 
1037  } else if (prev_state == KVMPPC_VCPU_BUSY_IN_HOST)
1038  --vc->n_busy;
1039 
1040  while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1041  !signal_pending(current)) {
1042  if (vc->n_busy || vc->vcore_state != VCORE_INACTIVE) {
1043  spin_unlock(&vc->lock);
1044  kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
1045  spin_lock(&vc->lock);
1046  continue;
1047  }
1048  vc->runner = vcpu;
1049  n_ceded = 0;
1050  list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
1051  n_ceded += v->arch.ceded;
1052  if (n_ceded == vc->n_runnable)
1053  kvmppc_vcore_blocked(vc);
1054  else
1055  kvmppc_run_core(vc);
1056 
1057  list_for_each_entry_safe(v, vn, &vc->runnable_threads,
1058  arch.run_list) {
1060  if (signal_pending(v->arch.run_task)) {
1061  kvmppc_remove_runnable(vc, v);
1062  v->stat.signal_exits++;
1063  v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
1064  v->arch.ret = -EINTR;
1065  wake_up(&v->arch.cpu_run);
1066  }
1067  }
1068  vc->runner = NULL;
1069  }
1070 
1071  if (signal_pending(current)) {
1072  if (vc->vcore_state == VCORE_RUNNING ||
1073  vc->vcore_state == VCORE_EXITING) {
1074  spin_unlock(&vc->lock);
1075  kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
1076  spin_lock(&vc->lock);
1077  }
1078  if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
1079  kvmppc_remove_runnable(vc, vcpu);
1080  vcpu->stat.signal_exits++;
1081  kvm_run->exit_reason = KVM_EXIT_INTR;
1082  vcpu->arch.ret = -EINTR;
1083  }
1084  }
1085 
1086  spin_unlock(&vc->lock);
1087  return vcpu->arch.ret;
1088 }
1089 
1090 int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
1091 {
1092  int r;
1093 
1094  if (!vcpu->arch.sane) {
1096  return -EINVAL;
1097  }
1098 
1100 
1101  /* No need to go into the guest when all we'll do is come back out */
1102  if (signal_pending(current)) {
1103  run->exit_reason = KVM_EXIT_INTR;
1104  return -EINTR;
1105  }
1106 
1107  atomic_inc(&vcpu->kvm->arch.vcpus_running);
1108  /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
1109  smp_mb();
1110 
1111  /* On the first time here, set up HTAB and VRMA or RMA */
1112  if (!vcpu->kvm->arch.rma_setup_done) {
1113  r = kvmppc_hv_setup_htab_rma(vcpu);
1114  if (r)
1115  goto out;
1116  }
1117 
1119  flush_altivec_to_thread(current);
1120  flush_vsx_to_thread(current);
1121  vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1122  vcpu->arch.pgdir = current->mm->pgd;
1123 
1124  do {
1125  r = kvmppc_run_vcpu(run, vcpu);
1126 
1127  if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
1128  !(vcpu->arch.shregs.msr & MSR_PR)) {
1129  r = kvmppc_pseries_do_hcall(vcpu);
1131  }
1132  } while (r == RESUME_GUEST);
1133 
1134  out:
1135  atomic_dec(&vcpu->kvm->arch.vcpus_running);
1136  return r;
1137 }
1138 
1139 
1140 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
1141  Assumes POWER7 or PPC970. */
1142 static inline int lpcr_rmls(unsigned long rma_size)
1143 {
1144  switch (rma_size) {
1145  case 32ul << 20: /* 32 MB */
1147  return 8; /* only supported on POWER7 */
1148  return -1;
1149  case 64ul << 20: /* 64 MB */
1150  return 3;
1151  case 128ul << 20: /* 128 MB */
1152  return 7;
1153  case 256ul << 20: /* 256 MB */
1154  return 4;
1155  case 1ul << 30: /* 1 GB */
1156  return 2;
1157  case 16ul << 30: /* 16 GB */
1158  return 1;
1159  case 256ul << 30: /* 256 GB */
1160  return 0;
1161  default:
1162  return -1;
1163  }
1164 }
1165 
1166 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1167 {
1168  struct kvmppc_linear_info *ri = vma->vm_file->private_data;
1169  struct page *page;
1170 
1171  if (vmf->pgoff >= ri->npages)
1172  return VM_FAULT_SIGBUS;
1173 
1174  page = pfn_to_page(ri->base_pfn + vmf->pgoff);
1175  get_page(page);
1176  vmf->page = page;
1177  return 0;
1178 }
1179 
1180 static const struct vm_operations_struct kvm_rma_vm_ops = {
1181  .fault = kvm_rma_fault,
1182 };
1183 
1184 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
1185 {
1186  vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1187  vma->vm_ops = &kvm_rma_vm_ops;
1188  return 0;
1189 }
1190 
1191 static int kvm_rma_release(struct inode *inode, struct file *filp)
1192 {
1193  struct kvmppc_linear_info *ri = filp->private_data;
1194 
1195  kvm_release_rma(ri);
1196  return 0;
1197 }
1198 
1199 static struct file_operations kvm_rma_fops = {
1200  .mmap = kvm_rma_mmap,
1201  .release = kvm_rma_release,
1202 };
1203 
1204 long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
1205 {
1206  struct kvmppc_linear_info *ri;
1207  long fd;
1208 
1209  ri = kvm_alloc_rma();
1210  if (!ri)
1211  return -ENOMEM;
1212 
1213  fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
1214  if (fd < 0)
1215  kvm_release_rma(ri);
1216 
1217  ret->rma_size = ri->npages << PAGE_SHIFT;
1218  return fd;
1219 }
1220 
1221 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
1222  int linux_psize)
1223 {
1224  struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
1225 
1226  if (!def->shift)
1227  return;
1228  (*sps)->page_shift = def->shift;
1229  (*sps)->slb_enc = def->sllp;
1230  (*sps)->enc[0].page_shift = def->shift;
1231  (*sps)->enc[0].pte_enc = def->penc;
1232  (*sps)++;
1233 }
1234 
1236 {
1237  struct kvm_ppc_one_seg_page_size *sps;
1238 
1240  if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1241  info->flags |= KVM_PPC_1T_SEGMENTS;
1242  info->slb_size = mmu_slb_size;
1243 
1244  /* We only support these sizes for now, and no muti-size segments */
1245  sps = &info->sps[0];
1246  kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
1247  kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
1248  kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
1249 
1250  return 0;
1251 }
1252 
1253 /*
1254  * Get (and clear) the dirty memory log for a memory slot.
1255  */
1256 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1257 {
1258  struct kvm_memory_slot *memslot;
1259  int r;
1260  unsigned long n;
1261 
1262  mutex_lock(&kvm->slots_lock);
1263 
1264  r = -EINVAL;
1265  if (log->slot >= KVM_MEMORY_SLOTS)
1266  goto out;
1267 
1268  memslot = id_to_memslot(kvm->memslots, log->slot);
1269  r = -ENOENT;
1270  if (!memslot->dirty_bitmap)
1271  goto out;
1272 
1273  n = kvm_dirty_bitmap_bytes(memslot);
1274  memset(memslot->dirty_bitmap, 0, n);
1275 
1276  r = kvmppc_hv_get_dirty_log(kvm, memslot);
1277  if (r)
1278  goto out;
1279 
1280  r = -EFAULT;
1281  if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1282  goto out;
1283 
1284  r = 0;
1285 out:
1286  mutex_unlock(&kvm->slots_lock);
1287  return r;
1288 }
1289 
1290 static unsigned long slb_pgsize_encoding(unsigned long psize)
1291 {
1292  unsigned long senc = 0;
1293 
1294  if (psize > 0x1000) {
1295  senc = SLB_VSID_L;
1296  if (psize == 0x10000)
1297  senc |= SLB_VSID_LP_01;
1298  }
1299  return senc;
1300 }
1301 
1304 {
1305  unsigned long npages;
1306  unsigned long *phys;
1307 
1308  /* Allocate a slot_phys array */
1309  phys = kvm->arch.slot_phys[mem->slot];
1310  if (!kvm->arch.using_mmu_notifiers && !phys) {
1311  npages = mem->memory_size >> PAGE_SHIFT;
1312  phys = vzalloc(npages * sizeof(unsigned long));
1313  if (!phys)
1314  return -ENOMEM;
1315  kvm->arch.slot_phys[mem->slot] = phys;
1316  kvm->arch.slot_npages[mem->slot] = npages;
1317  }
1318 
1319  return 0;
1320 }
1321 
1322 static void unpin_slot(struct kvm *kvm, int slot_id)
1323 {
1324  unsigned long *physp;
1325  unsigned long j, npages, pfn;
1326  struct page *page;
1327 
1328  physp = kvm->arch.slot_phys[slot_id];
1329  npages = kvm->arch.slot_npages[slot_id];
1330  if (physp) {
1331  spin_lock(&kvm->arch.slot_phys_lock);
1332  for (j = 0; j < npages; j++) {
1333  if (!(physp[j] & KVMPPC_GOT_PAGE))
1334  continue;
1335  pfn = physp[j] >> PAGE_SHIFT;
1336  page = pfn_to_page(pfn);
1337  SetPageDirty(page);
1338  put_page(page);
1339  }
1340  kvm->arch.slot_phys[slot_id] = NULL;
1341  spin_unlock(&kvm->arch.slot_phys_lock);
1342  vfree(physp);
1343  }
1344 }
1345 
1348 {
1349 }
1350 
1351 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
1352 {
1353  int err = 0;
1354  struct kvm *kvm = vcpu->kvm;
1355  struct kvmppc_linear_info *ri = NULL;
1356  unsigned long hva;
1357  struct kvm_memory_slot *memslot;
1358  struct vm_area_struct *vma;
1359  unsigned long lpcr, senc;
1360  unsigned long psize, porder;
1361  unsigned long rma_size;
1362  unsigned long rmls;
1363  unsigned long *physp;
1364  unsigned long i, npages;
1365 
1366  mutex_lock(&kvm->lock);
1367  if (kvm->arch.rma_setup_done)
1368  goto out; /* another vcpu beat us to it */
1369 
1370  /* Allocate hashed page table (if not done already) and reset it */
1371  if (!kvm->arch.hpt_virt) {
1372  err = kvmppc_alloc_hpt(kvm, NULL);
1373  if (err) {
1374  pr_err("KVM: Couldn't alloc HPT\n");
1375  goto out;
1376  }
1377  }
1378 
1379  /* Look up the memslot for guest physical address 0 */
1380  memslot = gfn_to_memslot(kvm, 0);
1381 
1382  /* We must have some memory at 0 by now */
1383  err = -EINVAL;
1384  if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1385  goto out;
1386 
1387  /* Look up the VMA for the start of this memory slot */
1388  hva = memslot->userspace_addr;
1389  down_read(&current->mm->mmap_sem);
1390  vma = find_vma(current->mm, hva);
1391  if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
1392  goto up_out;
1393 
1394  psize = vma_kernel_pagesize(vma);
1395  porder = __ilog2(psize);
1396 
1397  /* Is this one of our preallocated RMAs? */
1398  if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
1399  hva == vma->vm_start)
1400  ri = vma->vm_file->private_data;
1401 
1402  up_read(&current->mm->mmap_sem);
1403 
1404  if (!ri) {
1405  /* On POWER7, use VRMA; on PPC970, give up */
1406  err = -EPERM;
1408  pr_err("KVM: CPU requires an RMO\n");
1409  goto out;
1410  }
1411 
1412  /* We can handle 4k, 64k or 16M pages in the VRMA */
1413  err = -EINVAL;
1414  if (!(psize == 0x1000 || psize == 0x10000 ||
1415  psize == 0x1000000))
1416  goto out;
1417 
1418  /* Update VRMASD field in the LPCR */
1419  senc = slb_pgsize_encoding(psize);
1420  kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1422  lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
1423  lpcr |= senc << (LPCR_VRMASD_SH - 4);
1424  kvm->arch.lpcr = lpcr;
1425 
1426  /* Create HPTEs in the hash page table for the VRMA */
1427  kvmppc_map_vrma(vcpu, memslot, porder);
1428 
1429  } else {
1430  /* Set up to use an RMO region */
1431  rma_size = ri->npages;
1432  if (rma_size > memslot->npages)
1433  rma_size = memslot->npages;
1434  rma_size <<= PAGE_SHIFT;
1435  rmls = lpcr_rmls(rma_size);
1436  err = -EINVAL;
1437  if (rmls < 0) {
1438  pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
1439  goto out;
1440  }
1441  atomic_inc(&ri->use_count);
1442  kvm->arch.rma = ri;
1443 
1444  /* Update LPCR and RMOR */
1445  lpcr = kvm->arch.lpcr;
1447  /* PPC970; insert RMLS value (split field) in HID4 */
1448  lpcr &= ~((1ul << HID4_RMLS0_SH) |
1449  (3ul << HID4_RMLS2_SH));
1450  lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
1451  ((rmls & 3) << HID4_RMLS2_SH);
1452  /* RMOR is also in HID4 */
1453  lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
1454  << HID4_RMOR_SH;
1455  } else {
1456  /* POWER7 */
1457  lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
1458  lpcr |= rmls << LPCR_RMLS_SH;
1459  kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
1460  }
1461  kvm->arch.lpcr = lpcr;
1462  pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1463  ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
1464 
1465  /* Initialize phys addrs of pages in RMO */
1466  npages = ri->npages;
1467  porder = __ilog2(npages);
1468  physp = kvm->arch.slot_phys[memslot->id];
1469  spin_lock(&kvm->arch.slot_phys_lock);
1470  for (i = 0; i < npages; ++i)
1471  physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) + porder;
1472  spin_unlock(&kvm->arch.slot_phys_lock);
1473  }
1474 
1475  /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
1476  smp_wmb();
1477  kvm->arch.rma_setup_done = 1;
1478  err = 0;
1479  out:
1480  mutex_unlock(&kvm->lock);
1481  return err;
1482 
1483  up_out:
1484  up_read(&current->mm->mmap_sem);
1485  goto out;
1486 }
1487 
1488 int kvmppc_core_init_vm(struct kvm *kvm)
1489 {
1490  unsigned long lpcr, lpid;
1491 
1492  /* Allocate the guest's logical partition ID */
1493 
1494  lpid = kvmppc_alloc_lpid();
1495  if (lpid < 0)
1496  return -ENOMEM;
1497  kvm->arch.lpid = lpid;
1498 
1499  INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1500 
1501  kvm->arch.rma = NULL;
1502 
1503  kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1504 
1506  /* PPC970; HID4 is effectively the LPCR */
1507  kvm->arch.host_lpid = 0;
1508  kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
1509  lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
1510  lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
1511  ((lpid & 0xf) << HID4_LPID5_SH);
1512  } else {
1513  /* POWER7; init LPCR for virtual RMA mode */
1514  kvm->arch.host_lpid = mfspr(SPRN_LPID);
1515  kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
1516  lpcr &= LPCR_PECE | LPCR_LPES;
1517  lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1518  LPCR_VPM0 | LPCR_VPM1;
1519  kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
1521  }
1522  kvm->arch.lpcr = lpcr;
1523 
1524  kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
1525  spin_lock_init(&kvm->arch.slot_phys_lock);
1526  return 0;
1527 }
1528 
1529 void kvmppc_core_destroy_vm(struct kvm *kvm)
1530 {
1531  unsigned long i;
1532 
1533  if (!kvm->arch.using_mmu_notifiers)
1534  for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
1535  unpin_slot(kvm, i);
1536 
1537  if (kvm->arch.rma) {
1538  kvm_release_rma(kvm->arch.rma);
1539  kvm->arch.rma = NULL;
1540  }
1541 
1542  kvmppc_free_hpt(kvm);
1543  WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1544 }
1545 
1546 /* These are stubs for now */
1547 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
1548 {
1549 }
1550 
1551 /* We don't need to emulate any privileged instructions or dcbz */
1552 int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
1553  unsigned int inst, int *advance)
1554 {
1555  return EMULATE_FAIL;
1556 }
1557 
1558 int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
1559 {
1560  return EMULATE_FAIL;
1561 }
1562 
1563 int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
1564 {
1565  return EMULATE_FAIL;
1566 }
1567 
1568 static int kvmppc_book3s_hv_init(void)
1569 {
1570  int r;
1571 
1572  r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1573 
1574  if (r)
1575  return r;
1576 
1577  r = kvmppc_mmu_hv_init();
1578 
1579  return r;
1580 }
1581 
1582 static void kvmppc_book3s_hv_exit(void)
1583 {
1584  kvm_exit();
1585 }
1586 
1587 module_init(kvmppc_book3s_hv_init);
1588 module_exit(kvmppc_book3s_hv_exit);