Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
cdv_intel_display.c
Go to the documentation of this file.
1 /*
2  * Copyright © 2006-2011 Intel Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc.,
15  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16  *
17  * Authors:
18  * Eric Anholt <[email protected]>
19  */
20 
21 #include <linux/i2c.h>
22 #include <linux/pm_runtime.h>
23 
24 #include <drm/drmP.h>
25 #include "framebuffer.h"
26 #include "psb_drv.h"
27 #include "psb_intel_drv.h"
28 #include "psb_intel_reg.h"
29 #include "psb_intel_display.h"
30 #include "power.h"
31 #include "cdv_device.h"
32 
33 
35  int min, max;
36 };
37 
39  int dot_limit;
41 };
42 
44  /* given values */
45  int n;
46  int m1, m2;
47  int p1, p2;
48  /* derived values */
49  int dot;
50  int vco;
51  int m;
52  int p;
53 };
54 
55 #define INTEL_P2_NUM 2
56 
58  struct cdv_intel_range_t dot, vco, n, m, m1, m2, p, p1;
60  bool (*find_pll)(const struct cdv_intel_limit_t *, struct drm_crtc *,
61  int, int, struct cdv_intel_clock_t *);
62 };
63 
64 static bool cdv_intel_find_best_PLL(const struct cdv_intel_limit_t *limit,
65  struct drm_crtc *crtc, int target, int refclk,
66  struct cdv_intel_clock_t *best_clock);
67 static bool cdv_intel_find_dp_pll(const struct cdv_intel_limit_t *limit, struct drm_crtc *crtc, int target,
68  int refclk,
69  struct cdv_intel_clock_t *best_clock);
70 
71 #define CDV_LIMIT_SINGLE_LVDS_96 0
72 #define CDV_LIMIT_SINGLE_LVDS_100 1
73 #define CDV_LIMIT_DAC_HDMI_27 2
74 #define CDV_LIMIT_DAC_HDMI_96 3
75 #define CDV_LIMIT_DP_27 4
76 #define CDV_LIMIT_DP_100 5
77 
78 static const struct cdv_intel_limit_t cdv_intel_limits[] = {
79  { /* CDV_SINGLE_LVDS_96MHz */
80  .dot = {.min = 20000, .max = 115500},
81  .vco = {.min = 1800000, .max = 3600000},
82  .n = {.min = 2, .max = 6},
83  .m = {.min = 60, .max = 160},
84  .m1 = {.min = 0, .max = 0},
85  .m2 = {.min = 58, .max = 158},
86  .p = {.min = 28, .max = 140},
87  .p1 = {.min = 2, .max = 10},
88  .p2 = {.dot_limit = 200000,
89  .p2_slow = 14, .p2_fast = 14},
90  .find_pll = cdv_intel_find_best_PLL,
91  },
92  { /* CDV_SINGLE_LVDS_100MHz */
93  .dot = {.min = 20000, .max = 115500},
94  .vco = {.min = 1800000, .max = 3600000},
95  .n = {.min = 2, .max = 6},
96  .m = {.min = 60, .max = 160},
97  .m1 = {.min = 0, .max = 0},
98  .m2 = {.min = 58, .max = 158},
99  .p = {.min = 28, .max = 140},
100  .p1 = {.min = 2, .max = 10},
101  /* The single-channel range is 25-112Mhz, and dual-channel
102  * is 80-224Mhz. Prefer single channel as much as possible.
103  */
104  .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14},
105  .find_pll = cdv_intel_find_best_PLL,
106  },
107  { /* CDV_DAC_HDMI_27MHz */
108  .dot = {.min = 20000, .max = 400000},
109  .vco = {.min = 1809000, .max = 3564000},
110  .n = {.min = 1, .max = 1},
111  .m = {.min = 67, .max = 132},
112  .m1 = {.min = 0, .max = 0},
113  .m2 = {.min = 65, .max = 130},
114  .p = {.min = 5, .max = 90},
115  .p1 = {.min = 1, .max = 9},
116  .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
117  .find_pll = cdv_intel_find_best_PLL,
118  },
119  { /* CDV_DAC_HDMI_96MHz */
120  .dot = {.min = 20000, .max = 400000},
121  .vco = {.min = 1800000, .max = 3600000},
122  .n = {.min = 2, .max = 6},
123  .m = {.min = 60, .max = 160},
124  .m1 = {.min = 0, .max = 0},
125  .m2 = {.min = 58, .max = 158},
126  .p = {.min = 5, .max = 100},
127  .p1 = {.min = 1, .max = 10},
128  .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
129  .find_pll = cdv_intel_find_best_PLL,
130  },
131  { /* CDV_DP_27MHz */
132  .dot = {.min = 160000, .max = 272000},
133  .vco = {.min = 1809000, .max = 3564000},
134  .n = {.min = 1, .max = 1},
135  .m = {.min = 67, .max = 132},
136  .m1 = {.min = 0, .max = 0},
137  .m2 = {.min = 65, .max = 130},
138  .p = {.min = 5, .max = 90},
139  .p1 = {.min = 1, .max = 9},
140  .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10},
141  .find_pll = cdv_intel_find_dp_pll,
142  },
143  { /* CDV_DP_100MHz */
144  .dot = {.min = 160000, .max = 272000},
145  .vco = {.min = 1800000, .max = 3600000},
146  .n = {.min = 2, .max = 6},
147  .m = {.min = 60, .max = 164},
148  .m1 = {.min = 0, .max = 0},
149  .m2 = {.min = 58, .max = 162},
150  .p = {.min = 5, .max = 100},
151  .p1 = {.min = 1, .max = 10},
152  .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10},
153  .find_pll = cdv_intel_find_dp_pll,
154  }
155 };
156 
157 #define _wait_for(COND, MS, W) ({ \
158  unsigned long timeout__ = jiffies + msecs_to_jiffies(MS); \
159  int ret__ = 0; \
160  while (!(COND)) { \
161  if (time_after(jiffies, timeout__)) { \
162  ret__ = -ETIMEDOUT; \
163  break; \
164  } \
165  if (W && !in_dbg_master()) \
166  msleep(W); \
167  } \
168  ret__; \
169 })
170 
171 #define wait_for(COND, MS) _wait_for(COND, MS, 1)
172 
173 
175 {
176  int ret;
177 
178  ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
179  if (ret) {
180  DRM_ERROR("timeout waiting for SB to idle before read\n");
181  return ret;
182  }
183 
184  REG_WRITE(SB_ADDR, reg);
186  SET_FIELD(SB_OPCODE_READ, SB_OPCODE) |
187  SET_FIELD(SB_DEST_DPLL, SB_DEST) |
188  SET_FIELD(0xf, SB_BYTE_ENABLE));
189 
190  ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
191  if (ret) {
192  DRM_ERROR("timeout waiting for SB to idle after read\n");
193  return ret;
194  }
195 
196  *val = REG_READ(SB_DATA);
197 
198  return 0;
199 }
200 
202 {
203  int ret;
204  static bool dpio_debug = true;
205  u32 temp;
206 
207  if (dpio_debug) {
208  if (cdv_sb_read(dev, reg, &temp) == 0)
209  DRM_DEBUG_KMS("0x%08x: 0x%08x (before)\n", reg, temp);
210  DRM_DEBUG_KMS("0x%08x: 0x%08x\n", reg, val);
211  }
212 
213  ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
214  if (ret) {
215  DRM_ERROR("timeout waiting for SB to idle before write\n");
216  return ret;
217  }
218 
219  REG_WRITE(SB_ADDR, reg);
220  REG_WRITE(SB_DATA, val);
222  SET_FIELD(SB_OPCODE_WRITE, SB_OPCODE) |
223  SET_FIELD(SB_DEST_DPLL, SB_DEST) |
224  SET_FIELD(0xf, SB_BYTE_ENABLE));
225 
226  ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
227  if (ret) {
228  DRM_ERROR("timeout waiting for SB to idle after write\n");
229  return ret;
230  }
231 
232  if (dpio_debug) {
233  if (cdv_sb_read(dev, reg, &temp) == 0)
234  DRM_DEBUG_KMS("0x%08x: 0x%08x (after)\n", reg, temp);
235  }
236 
237  return 0;
238 }
239 
240 /* Reset the DPIO configuration register. The BIOS does this at every
241  * mode set.
242  */
244 {
245 
246  REG_WRITE(DPIO_CFG, 0);
249 }
250 
251 /* Unlike most Intel display engines, on Cedarview the DPLL registers
252  * are behind this sideband bus. They must be programmed while the
253  * DPLL reference clock is on in the DPLL control register, but before
254  * the DPLL is enabled in the DPLL control register.
255  */
256 static int
257 cdv_dpll_set_clock_cdv(struct drm_device *dev, struct drm_crtc *crtc,
258  struct cdv_intel_clock_t *clock, bool is_lvds, u32 ddi_select)
259 {
260  struct psb_intel_crtc *psb_crtc = to_psb_intel_crtc(crtc);
261  int pipe = psb_crtc->pipe;
262  u32 m, n_vco, p;
263  int ret = 0;
264  int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
265  int ref_sfr = (pipe == 0) ? SB_REF_DPLLA : SB_REF_DPLLB;
266  u32 ref_value;
267  u32 lane_reg, lane_value;
268 
269  cdv_sb_reset(dev);
270 
272 
273  udelay(100);
274 
275  /* Follow the BIOS and write the REF/SFR Register. Hardcoded value */
276  ref_value = 0x68A701;
277 
278  cdv_sb_write(dev, SB_REF_SFR(pipe), ref_value);
279 
280  /* We don't know what the other fields of these regs are, so
281  * leave them in place.
282  */
283  /*
284  * The BIT 14:13 of 0x8010/0x8030 is used to select the ref clk
285  * for the pipe A/B. Display spec 1.06 has wrong definition.
286  * Correct definition is like below:
287  *
288  * refclka mean use clock from same PLL
289  *
290  * if DPLLA sets 01 and DPLLB sets 01, they use clock from their pll
291  *
292  * if DPLLA sets 01 and DPLLB sets 02, both use clk from DPLLA
293  *
294  */
295  ret = cdv_sb_read(dev, ref_sfr, &ref_value);
296  if (ret)
297  return ret;
298  ref_value &= ~(REF_CLK_MASK);
299 
300  /* use DPLL_A for pipeB on CRT/HDMI */
301  if (pipe == 1 && !is_lvds && !(ddi_select & DP_MASK)) {
302  DRM_DEBUG_KMS("use DPLLA for pipe B\n");
303  ref_value |= REF_CLK_DPLLA;
304  } else {
305  DRM_DEBUG_KMS("use their DPLL for pipe A/B\n");
306  ref_value |= REF_CLK_DPLL;
307  }
308  ret = cdv_sb_write(dev, ref_sfr, ref_value);
309  if (ret)
310  return ret;
311 
312  ret = cdv_sb_read(dev, SB_M(pipe), &m);
313  if (ret)
314  return ret;
315  m &= ~SB_M_DIVIDER_MASK;
316  m |= ((clock->m2) << SB_M_DIVIDER_SHIFT);
317  ret = cdv_sb_write(dev, SB_M(pipe), m);
318  if (ret)
319  return ret;
320 
321  ret = cdv_sb_read(dev, SB_N_VCO(pipe), &n_vco);
322  if (ret)
323  return ret;
324 
325  /* Follow the BIOS to program the N_DIVIDER REG */
326  n_vco &= 0xFFFF;
327  n_vco |= 0x107;
328  n_vco &= ~(SB_N_VCO_SEL_MASK |
331 
332  n_vco |= ((clock->n) << SB_N_DIVIDER_SHIFT);
333 
334  if (clock->vco < 2250000) {
335  n_vco |= (2 << SB_N_CB_TUNE_SHIFT);
336  n_vco |= (0 << SB_N_VCO_SEL_SHIFT);
337  } else if (clock->vco < 2750000) {
338  n_vco |= (1 << SB_N_CB_TUNE_SHIFT);
339  n_vco |= (1 << SB_N_VCO_SEL_SHIFT);
340  } else if (clock->vco < 3300000) {
341  n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
342  n_vco |= (2 << SB_N_VCO_SEL_SHIFT);
343  } else {
344  n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
345  n_vco |= (3 << SB_N_VCO_SEL_SHIFT);
346  }
347 
348  ret = cdv_sb_write(dev, SB_N_VCO(pipe), n_vco);
349  if (ret)
350  return ret;
351 
352  ret = cdv_sb_read(dev, SB_P(pipe), &p);
353  if (ret)
354  return ret;
356  p |= SET_FIELD(clock->p1, SB_P1_DIVIDER);
357  switch (clock->p2) {
358  case 5:
359  p |= SET_FIELD(SB_P2_5, SB_P2_DIVIDER);
360  break;
361  case 10:
362  p |= SET_FIELD(SB_P2_10, SB_P2_DIVIDER);
363  break;
364  case 14:
365  p |= SET_FIELD(SB_P2_14, SB_P2_DIVIDER);
366  break;
367  case 7:
368  p |= SET_FIELD(SB_P2_7, SB_P2_DIVIDER);
369  break;
370  default:
371  DRM_ERROR("Bad P2 clock: %d\n", clock->p2);
372  return -EINVAL;
373  }
374  ret = cdv_sb_write(dev, SB_P(pipe), p);
375  if (ret)
376  return ret;
377 
378  if (ddi_select) {
379  if ((ddi_select & DDI_MASK) == DDI0_SELECT) {
380  lane_reg = PSB_LANE0;
381  cdv_sb_read(dev, lane_reg, &lane_value);
382  lane_value &= ~(LANE_PLL_MASK);
383  lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
384  cdv_sb_write(dev, lane_reg, lane_value);
385 
386  lane_reg = PSB_LANE1;
387  cdv_sb_read(dev, lane_reg, &lane_value);
388  lane_value &= ~(LANE_PLL_MASK);
389  lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
390  cdv_sb_write(dev, lane_reg, lane_value);
391  } else {
392  lane_reg = PSB_LANE2;
393  cdv_sb_read(dev, lane_reg, &lane_value);
394  lane_value &= ~(LANE_PLL_MASK);
395  lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
396  cdv_sb_write(dev, lane_reg, lane_value);
397 
398  lane_reg = PSB_LANE3;
399  cdv_sb_read(dev, lane_reg, &lane_value);
400  lane_value &= ~(LANE_PLL_MASK);
401  lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
402  cdv_sb_write(dev, lane_reg, lane_value);
403  }
404  }
405  return 0;
406 }
407 
408 /*
409  * Returns whether any encoder on the specified pipe is of the specified type
410  */
411 static bool cdv_intel_pipe_has_type(struct drm_crtc *crtc, int type)
412 {
413  struct drm_device *dev = crtc->dev;
414  struct drm_mode_config *mode_config = &dev->mode_config;
415  struct drm_connector *l_entry;
416 
417  list_for_each_entry(l_entry, &mode_config->connector_list, head) {
418  if (l_entry->encoder && l_entry->encoder->crtc == crtc) {
420  psb_intel_attached_encoder(l_entry);
421  if (psb_intel_encoder->type == type)
422  return true;
423  }
424  }
425  return false;
426 }
427 
428 static const struct cdv_intel_limit_t *cdv_intel_limit(struct drm_crtc *crtc,
429  int refclk)
430 {
431  const struct cdv_intel_limit_t *limit;
432  if (cdv_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
433  /*
434  * Now only single-channel LVDS is supported on CDV. If it is
435  * incorrect, please add the dual-channel LVDS.
436  */
437  if (refclk == 96000)
438  limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_96];
439  else
440  limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_100];
443  if (refclk == 27000)
444  limit = &cdv_intel_limits[CDV_LIMIT_DP_27];
445  else
446  limit = &cdv_intel_limits[CDV_LIMIT_DP_100];
447  } else {
448  if (refclk == 27000)
449  limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_27];
450  else
451  limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_96];
452  }
453  return limit;
454 }
455 
456 /* m1 is reserved as 0 in CDV, n is a ring counter */
457 static void cdv_intel_clock(struct drm_device *dev,
458  int refclk, struct cdv_intel_clock_t *clock)
459 {
460  clock->m = clock->m2 + 2;
461  clock->p = clock->p1 * clock->p2;
462  clock->vco = (refclk * clock->m) / clock->n;
463  clock->dot = clock->vco / clock->p;
464 }
465 
466 
467 #define INTELPllInvalid(s) { /* ErrorF (s) */; return false; }
468 static bool cdv_intel_PLL_is_valid(struct drm_crtc *crtc,
469  const struct cdv_intel_limit_t *limit,
470  struct cdv_intel_clock_t *clock)
471 {
472  if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
473  INTELPllInvalid("p1 out of range\n");
474  if (clock->p < limit->p.min || limit->p.max < clock->p)
475  INTELPllInvalid("p out of range\n");
476  /* unnecessary to check the range of m(m1/M2)/n again */
477  if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
478  INTELPllInvalid("vco out of range\n");
479  /* XXX: We may need to be checking "Dot clock"
480  * depending on the multiplier, connector, etc.,
481  * rather than just a single range.
482  */
483  if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
484  INTELPllInvalid("dot out of range\n");
485 
486  return true;
487 }
488 
489 static bool cdv_intel_find_best_PLL(const struct cdv_intel_limit_t *limit,
490  struct drm_crtc *crtc, int target, int refclk,
491  struct cdv_intel_clock_t *best_clock)
492 {
493  struct drm_device *dev = crtc->dev;
494  struct cdv_intel_clock_t clock;
495  int err = target;
496 
497 
498  if (cdv_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
499  (REG_READ(LVDS) & LVDS_PORT_EN) != 0) {
500  /*
501  * For LVDS, if the panel is on, just rely on its current
502  * settings for dual-channel. We haven't figured out how to
503  * reliably set up different single/dual channel state, if we
504  * even can.
505  */
508  clock.p2 = limit->p2.p2_fast;
509  else
510  clock.p2 = limit->p2.p2_slow;
511  } else {
512  if (target < limit->p2.dot_limit)
513  clock.p2 = limit->p2.p2_slow;
514  else
515  clock.p2 = limit->p2.p2_fast;
516  }
517 
518  memset(best_clock, 0, sizeof(*best_clock));
519  clock.m1 = 0;
520  /* m1 is reserved as 0 in CDV, n is a ring counter.
521  So skip the m1 loop */
522  for (clock.n = limit->n.min; clock.n <= limit->n.max; clock.n++) {
523  for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max;
524  clock.m2++) {
525  for (clock.p1 = limit->p1.min;
526  clock.p1 <= limit->p1.max;
527  clock.p1++) {
528  int this_err;
529 
530  cdv_intel_clock(dev, refclk, &clock);
531 
532  if (!cdv_intel_PLL_is_valid(crtc,
533  limit, &clock))
534  continue;
535 
536  this_err = abs(clock.dot - target);
537  if (this_err < err) {
538  *best_clock = clock;
539  err = this_err;
540  }
541  }
542  }
543  }
544 
545  return err != target;
546 }
547 
548 static bool cdv_intel_find_dp_pll(const struct cdv_intel_limit_t *limit, struct drm_crtc *crtc, int target,
549  int refclk,
550  struct cdv_intel_clock_t *best_clock)
551 {
552  struct cdv_intel_clock_t clock;
553  if (refclk == 27000) {
554  if (target < 200000) {
555  clock.p1 = 2;
556  clock.p2 = 10;
557  clock.n = 1;
558  clock.m1 = 0;
559  clock.m2 = 118;
560  } else {
561  clock.p1 = 1;
562  clock.p2 = 10;
563  clock.n = 1;
564  clock.m1 = 0;
565  clock.m2 = 98;
566  }
567  } else if (refclk == 100000) {
568  if (target < 200000) {
569  clock.p1 = 2;
570  clock.p2 = 10;
571  clock.n = 5;
572  clock.m1 = 0;
573  clock.m2 = 160;
574  } else {
575  clock.p1 = 1;
576  clock.p2 = 10;
577  clock.n = 5;
578  clock.m1 = 0;
579  clock.m2 = 133;
580  }
581  } else
582  return false;
583  clock.m = clock.m2 + 2;
584  clock.p = clock.p1 * clock.p2;
585  clock.vco = (refclk * clock.m) / clock.n;
586  clock.dot = clock.vco / clock.p;
587  memcpy(best_clock, &clock, sizeof(struct cdv_intel_clock_t));
588  return true;
589 }
590 
591 static int cdv_intel_pipe_set_base(struct drm_crtc *crtc,
592  int x, int y, struct drm_framebuffer *old_fb)
593 {
594  struct drm_device *dev = crtc->dev;
595  struct drm_psb_private *dev_priv = dev->dev_private;
597  struct psb_framebuffer *psbfb = to_psb_fb(crtc->fb);
598  int pipe = psb_intel_crtc->pipe;
599  const struct psb_offset *map = &dev_priv->regmap[pipe];
600  unsigned long start, offset;
601  u32 dspcntr;
602  int ret = 0;
603 
604  if (!gma_power_begin(dev, true))
605  return 0;
606 
607  /* no fb bound */
608  if (!crtc->fb) {
609  dev_err(dev->dev, "No FB bound\n");
610  goto psb_intel_pipe_cleaner;
611  }
612 
613 
614  /* We are displaying this buffer, make sure it is actually loaded
615  into the GTT */
616  ret = psb_gtt_pin(psbfb->gtt);
617  if (ret < 0)
618  goto psb_intel_pipe_set_base_exit;
619  start = psbfb->gtt->offset;
620  offset = y * crtc->fb->pitches[0] + x * (crtc->fb->bits_per_pixel / 8);
621 
622  REG_WRITE(map->stride, crtc->fb->pitches[0]);
623 
624  dspcntr = REG_READ(map->cntr);
625  dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
626 
627  switch (crtc->fb->bits_per_pixel) {
628  case 8:
629  dspcntr |= DISPPLANE_8BPP;
630  break;
631  case 16:
632  if (crtc->fb->depth == 15)
633  dspcntr |= DISPPLANE_15_16BPP;
634  else
635  dspcntr |= DISPPLANE_16BPP;
636  break;
637  case 24:
638  case 32:
639  dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
640  break;
641  default:
642  dev_err(dev->dev, "Unknown color depth\n");
643  ret = -EINVAL;
644  goto psb_intel_pipe_set_base_exit;
645  }
646  REG_WRITE(map->cntr, dspcntr);
647 
648  dev_dbg(dev->dev,
649  "Writing base %08lX %08lX %d %d\n", start, offset, x, y);
650 
651  REG_WRITE(map->base, offset);
652  REG_READ(map->base);
653  REG_WRITE(map->surf, start);
654  REG_READ(map->surf);
655 
656 psb_intel_pipe_cleaner:
657  /* If there was a previous display we can now unpin it */
658  if (old_fb)
659  psb_gtt_unpin(to_psb_fb(old_fb)->gtt);
660 
661 psb_intel_pipe_set_base_exit:
662  gma_power_end(dev);
663  return ret;
664 }
665 
666 #define FIFO_PIPEA (1 << 0)
667 #define FIFO_PIPEB (1 << 1)
668 
669 static bool cdv_intel_pipe_enabled(struct drm_device *dev, int pipe)
670 {
671  struct drm_crtc *crtc;
672  struct drm_psb_private *dev_priv = dev->dev_private;
673  struct psb_intel_crtc *psb_intel_crtc = NULL;
674 
675  crtc = dev_priv->pipe_to_crtc_mapping[pipe];
676  psb_intel_crtc = to_psb_intel_crtc(crtc);
677 
678  if (crtc->fb == NULL || !psb_intel_crtc->active)
679  return false;
680  return true;
681 }
682 
683 static bool cdv_intel_single_pipe_active (struct drm_device *dev)
684 {
685  uint32_t pipe_enabled = 0;
686 
687  if (cdv_intel_pipe_enabled(dev, 0))
688  pipe_enabled |= FIFO_PIPEA;
689 
690  if (cdv_intel_pipe_enabled(dev, 1))
691  pipe_enabled |= FIFO_PIPEB;
692 
693 
694  DRM_DEBUG_KMS("pipe enabled %x\n", pipe_enabled);
695 
696  if (pipe_enabled == FIFO_PIPEA || pipe_enabled == FIFO_PIPEB)
697  return true;
698  else
699  return false;
700 }
701 
702 static bool is_pipeb_lvds(struct drm_device *dev, struct drm_crtc *crtc)
703 {
704  struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
705  struct drm_mode_config *mode_config = &dev->mode_config;
706  struct drm_connector *connector;
707 
708  if (psb_intel_crtc->pipe != 1)
709  return false;
710 
711  list_for_each_entry(connector, &mode_config->connector_list, head) {
713  psb_intel_attached_encoder(connector);
714 
715  if (!connector->encoder
716  || connector->encoder->crtc != crtc)
717  continue;
718 
719  if (psb_intel_encoder->type == INTEL_OUTPUT_LVDS)
720  return true;
721  }
722 
723  return false;
724 }
725 
726 static void cdv_intel_disable_self_refresh (struct drm_device *dev)
727 {
729 
730  /* Disable self-refresh before adjust WM */
731  REG_WRITE(FW_BLC_SELF, (REG_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN));
733 
734  cdv_intel_wait_for_vblank(dev);
735 
736  /* Cedarview workaround to write ovelay plane, which force to leave
737  * MAX_FIFO state.
738  */
739  REG_WRITE(OV_OVADD, 0/*dev_priv->ovl_offset*/);
741 
742  cdv_intel_wait_for_vblank(dev);
743  }
744 
745 }
746 
747 static void cdv_intel_update_watermark (struct drm_device *dev, struct drm_crtc *crtc)
748 {
749 
750  if (cdv_intel_single_pipe_active(dev)) {
751  u32 fw;
752 
753  fw = REG_READ(DSPFW1);
754  fw &= ~DSP_FIFO_SR_WM_MASK;
755  fw |= (0x7e << DSP_FIFO_SR_WM_SHIFT);
756  fw &= ~CURSOR_B_FIFO_WM_MASK;
757  fw |= (0x4 << CURSOR_B_FIFO_WM_SHIFT);
758  REG_WRITE(DSPFW1, fw);
759 
760  fw = REG_READ(DSPFW2);
761  fw &= ~CURSOR_A_FIFO_WM_MASK;
762  fw |= (0x6 << CURSOR_A_FIFO_WM_SHIFT);
764  fw |= (0x8 << DSP_PLANE_C_FIFO_WM_SHIFT);
765  REG_WRITE(DSPFW2, fw);
766 
767  REG_WRITE(DSPFW3, 0x36000000);
768 
769  /* ignore FW4 */
770 
771  if (is_pipeb_lvds(dev, crtc)) {
772  REG_WRITE(DSPFW5, 0x00040330);
773  } else {
774  fw = (3 << DSP_PLANE_B_FIFO_WM1_SHIFT) |
776  (3 << CURSOR_B_FIFO_WM1_SHIFT) |
778  REG_WRITE(DSPFW5, fw);
779  }
780 
781  REG_WRITE(DSPFW6, 0x10);
782 
783  cdv_intel_wait_for_vblank(dev);
784 
785  /* enable self-refresh for single pipe active */
786  REG_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
788  cdv_intel_wait_for_vblank(dev);
789 
790  } else {
791 
792  /* HW team suggested values... */
793  REG_WRITE(DSPFW1, 0x3f880808);
794  REG_WRITE(DSPFW2, 0x0b020202);
795  REG_WRITE(DSPFW3, 0x24000000);
796  REG_WRITE(DSPFW4, 0x08030202);
797  REG_WRITE(DSPFW5, 0x01010101);
798  REG_WRITE(DSPFW6, 0x1d0);
799 
800  cdv_intel_wait_for_vblank(dev);
801 
802  cdv_intel_disable_self_refresh(dev);
803 
804  }
805 }
806 
808 static void cdv_intel_crtc_load_lut(struct drm_crtc *crtc)
809 {
810  struct drm_device *dev = crtc->dev;
811  struct drm_psb_private *dev_priv = dev->dev_private;
812  struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
813  int palreg = PALETTE_A;
814  int i;
815 
816  /* The clocks have to be on to load the palette. */
817  if (!crtc->enabled)
818  return;
819 
820  switch (psb_intel_crtc->pipe) {
821  case 0:
822  break;
823  case 1:
824  palreg = PALETTE_B;
825  break;
826  case 2:
827  palreg = PALETTE_C;
828  break;
829  default:
830  dev_err(dev->dev, "Illegal Pipe Number.\n");
831  return;
832  }
833 
834  if (gma_power_begin(dev, false)) {
835  for (i = 0; i < 256; i++) {
836  REG_WRITE(palreg + 4 * i,
837  ((psb_intel_crtc->lut_r[i] +
838  psb_intel_crtc->lut_adj[i]) << 16) |
839  ((psb_intel_crtc->lut_g[i] +
840  psb_intel_crtc->lut_adj[i]) << 8) |
841  (psb_intel_crtc->lut_b[i] +
842  psb_intel_crtc->lut_adj[i]));
843  }
844  gma_power_end(dev);
845  } else {
846  for (i = 0; i < 256; i++) {
847  dev_priv->regs.pipe[0].palette[i] =
848  ((psb_intel_crtc->lut_r[i] +
849  psb_intel_crtc->lut_adj[i]) << 16) |
850  ((psb_intel_crtc->lut_g[i] +
851  psb_intel_crtc->lut_adj[i]) << 8) |
852  (psb_intel_crtc->lut_b[i] +
853  psb_intel_crtc->lut_adj[i]);
854  }
855 
856  }
857 }
858 
865 static void cdv_intel_crtc_dpms(struct drm_crtc *crtc, int mode)
866 {
867  struct drm_device *dev = crtc->dev;
868  struct drm_psb_private *dev_priv = dev->dev_private;
869  struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
870  int pipe = psb_intel_crtc->pipe;
871  const struct psb_offset *map = &dev_priv->regmap[pipe];
872  u32 temp;
873 
874  /* XXX: When our outputs are all unaware of DPMS modes other than off
875  * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
876  */
877  cdv_intel_disable_self_refresh(dev);
878 
879  switch (mode) {
880  case DRM_MODE_DPMS_ON:
883  if (psb_intel_crtc->active)
884  break;
885 
886  psb_intel_crtc->active = true;
887 
888  /* Enable the DPLL */
889  temp = REG_READ(map->dpll);
890  if ((temp & DPLL_VCO_ENABLE) == 0) {
891  REG_WRITE(map->dpll, temp);
892  REG_READ(map->dpll);
893  /* Wait for the clocks to stabilize. */
894  udelay(150);
895  REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
896  REG_READ(map->dpll);
897  /* Wait for the clocks to stabilize. */
898  udelay(150);
899  REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
900  REG_READ(map->dpll);
901  /* Wait for the clocks to stabilize. */
902  udelay(150);
903  }
904 
905  /* Jim Bish - switch plan and pipe per scott */
906  /* Enable the plane */
907  temp = REG_READ(map->cntr);
908  if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
909  REG_WRITE(map->cntr,
910  temp | DISPLAY_PLANE_ENABLE);
911  /* Flush the plane changes */
912  REG_WRITE(map->base, REG_READ(map->base));
913  }
914 
915  udelay(150);
916 
917  /* Enable the pipe */
918  temp = REG_READ(map->conf);
919  if ((temp & PIPEACONF_ENABLE) == 0)
920  REG_WRITE(map->conf, temp | PIPEACONF_ENABLE);
921 
922  temp = REG_READ(map->status);
923  temp &= ~(0xFFFF);
924  temp |= PIPE_FIFO_UNDERRUN;
925  REG_WRITE(map->status, temp);
926  REG_READ(map->status);
927 
928  cdv_intel_crtc_load_lut(crtc);
929 
930  /* Give the overlay scaler a chance to enable
931  * if it's on this pipe */
932  /* psb_intel_crtc_dpms_video(crtc, true); TODO */
933  break;
934  case DRM_MODE_DPMS_OFF:
935  if (!psb_intel_crtc->active)
936  break;
937 
938  psb_intel_crtc->active = false;
939 
940  /* Give the overlay scaler a chance to disable
941  * if it's on this pipe */
942  /* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */
943 
944  /* Disable the VGA plane that we never use */
946 
947  /* Jim Bish - changed pipe/plane here as well. */
948 
949  drm_vblank_off(dev, pipe);
950  /* Wait for vblank for the disable to take effect */
951  cdv_intel_wait_for_vblank(dev);
952 
953  /* Next, disable display pipes */
954  temp = REG_READ(map->conf);
955  if ((temp & PIPEACONF_ENABLE) != 0) {
956  REG_WRITE(map->conf, temp & ~PIPEACONF_ENABLE);
957  REG_READ(map->conf);
958  }
959 
960  /* Wait for vblank for the disable to take effect. */
961  cdv_intel_wait_for_vblank(dev);
962 
963  udelay(150);
964 
965  /* Disable display plane */
966  temp = REG_READ(map->cntr);
967  if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
968  REG_WRITE(map->cntr,
969  temp & ~DISPLAY_PLANE_ENABLE);
970  /* Flush the plane changes */
971  REG_WRITE(map->base, REG_READ(map->base));
972  REG_READ(map->base);
973  }
974 
975  temp = REG_READ(map->dpll);
976  if ((temp & DPLL_VCO_ENABLE) != 0) {
977  REG_WRITE(map->dpll, temp & ~DPLL_VCO_ENABLE);
978  REG_READ(map->dpll);
979  }
980 
981  /* Wait for the clocks to turn off. */
982  udelay(150);
983  break;
984  }
985  cdv_intel_update_watermark(dev, crtc);
986  /*Set FIFO Watermarks*/
987  REG_WRITE(DSPARB, 0x3F3E);
988 }
989 
990 static void cdv_intel_crtc_prepare(struct drm_crtc *crtc)
991 {
992  struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
993  crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
994 }
995 
996 static void cdv_intel_crtc_commit(struct drm_crtc *crtc)
997 {
998  struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
999  crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1000 }
1001 
1002 static bool cdv_intel_crtc_mode_fixup(struct drm_crtc *crtc,
1003  const struct drm_display_mode *mode,
1004  struct drm_display_mode *adjusted_mode)
1005 {
1006  return true;
1007 }
1008 
1009 
1014 static int cdv_intel_panel_fitter_pipe(struct drm_device *dev)
1015 {
1016  u32 pfit_control;
1017 
1018  pfit_control = REG_READ(PFIT_CONTROL);
1019 
1020  /* See if the panel fitter is in use */
1021  if ((pfit_control & PFIT_ENABLE) == 0)
1022  return -1;
1023  return (pfit_control >> 29) & 0x3;
1024 }
1025 
1026 static int cdv_intel_crtc_mode_set(struct drm_crtc *crtc,
1027  struct drm_display_mode *mode,
1028  struct drm_display_mode *adjusted_mode,
1029  int x, int y,
1030  struct drm_framebuffer *old_fb)
1031 {
1032  struct drm_device *dev = crtc->dev;
1033  struct drm_psb_private *dev_priv = dev->dev_private;
1034  struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1035  int pipe = psb_intel_crtc->pipe;
1036  const struct psb_offset *map = &dev_priv->regmap[pipe];
1037  int refclk;
1038  struct cdv_intel_clock_t clock;
1039  u32 dpll = 0, dspcntr, pipeconf;
1040  bool ok;
1041  bool is_crt = false, is_lvds = false, is_tv = false;
1042  bool is_hdmi = false, is_dp = false;
1043  struct drm_mode_config *mode_config = &dev->mode_config;
1044  struct drm_connector *connector;
1045  const struct cdv_intel_limit_t *limit;
1046  u32 ddi_select = 0;
1047  bool is_edp = false;
1048 
1049  list_for_each_entry(connector, &mode_config->connector_list, head) {
1050  struct psb_intel_encoder *psb_intel_encoder =
1051  psb_intel_attached_encoder(connector);
1052 
1053  if (!connector->encoder
1054  || connector->encoder->crtc != crtc)
1055  continue;
1056 
1057  ddi_select = psb_intel_encoder->ddi_select;
1058  switch (psb_intel_encoder->type) {
1059  case INTEL_OUTPUT_LVDS:
1060  is_lvds = true;
1061  break;
1062  case INTEL_OUTPUT_TVOUT:
1063  is_tv = true;
1064  break;
1065  case INTEL_OUTPUT_ANALOG:
1066  is_crt = true;
1067  break;
1068  case INTEL_OUTPUT_HDMI:
1069  is_hdmi = true;
1070  break;
1072  is_dp = true;
1073  break;
1074  case INTEL_OUTPUT_EDP:
1075  is_edp = true;
1076  break;
1077  default:
1078  DRM_ERROR("invalid output type.\n");
1079  return 0;
1080  }
1081  }
1082 
1083  if (dev_priv->dplla_96mhz)
1084  /* low-end sku, 96/100 mhz */
1085  refclk = 96000;
1086  else
1087  /* high-end sku, 27/100 mhz */
1088  refclk = 27000;
1089  if (is_dp || is_edp) {
1090  /*
1091  * Based on the spec the low-end SKU has only CRT/LVDS. So it is
1092  * unnecessary to consider it for DP/eDP.
1093  * On the high-end SKU, it will use the 27/100M reference clk
1094  * for DP/eDP. When using SSC clock, the ref clk is 100MHz.Otherwise
1095  * it will be 27MHz. From the VBIOS code it seems that the pipe A choose
1096  * 27MHz for DP/eDP while the Pipe B chooses the 100MHz.
1097  */
1098  if (pipe == 0)
1099  refclk = 27000;
1100  else
1101  refclk = 100000;
1102  }
1103 
1104  if (is_lvds && dev_priv->lvds_use_ssc) {
1105  refclk = dev_priv->lvds_ssc_freq * 1000;
1106  DRM_DEBUG_KMS("Use SSC reference clock %d Mhz\n", dev_priv->lvds_ssc_freq);
1107  }
1108 
1109  drm_mode_debug_printmodeline(adjusted_mode);
1110 
1111  limit = cdv_intel_limit(crtc, refclk);
1112 
1113  ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
1114  &clock);
1115  if (!ok) {
1116  dev_err(dev->dev, "Couldn't find PLL settings for mode!\n");
1117  return 0;
1118  }
1119 
1120  dpll = DPLL_VGA_MODE_DIS;
1121  if (is_tv) {
1122  /* XXX: just matching BIOS for now */
1123 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
1124  dpll |= 3;
1125  }
1126 /* dpll |= PLL_REF_INPUT_DREFCLK; */
1127 
1128  if (is_dp || is_edp) {
1129  cdv_intel_dp_set_m_n(crtc, mode, adjusted_mode);
1130  } else {
1131  REG_WRITE(PIPE_GMCH_DATA_M(pipe), 0);
1132  REG_WRITE(PIPE_GMCH_DATA_N(pipe), 0);
1133  REG_WRITE(PIPE_DP_LINK_M(pipe), 0);
1134  REG_WRITE(PIPE_DP_LINK_N(pipe), 0);
1135  }
1136 
1137  dpll |= DPLL_SYNCLOCK_ENABLE;
1138 /* if (is_lvds)
1139  dpll |= DPLLB_MODE_LVDS;
1140  else
1141  dpll |= DPLLB_MODE_DAC_SERIAL; */
1142  /* dpll |= (2 << 11); */
1143 
1144  /* setup pipeconf */
1145  pipeconf = REG_READ(map->conf);
1146 
1147  pipeconf &= ~(PIPE_BPC_MASK);
1148  if (is_edp) {
1149  switch (dev_priv->edp.bpp) {
1150  case 24:
1151  pipeconf |= PIPE_8BPC;
1152  break;
1153  case 18:
1154  pipeconf |= PIPE_6BPC;
1155  break;
1156  case 30:
1157  pipeconf |= PIPE_10BPC;
1158  break;
1159  default:
1160  pipeconf |= PIPE_8BPC;
1161  break;
1162  }
1163  } else if (is_lvds) {
1164  /* the BPC will be 6 if it is 18-bit LVDS panel */
1166  pipeconf |= PIPE_8BPC;
1167  else
1168  pipeconf |= PIPE_6BPC;
1169  } else
1170  pipeconf |= PIPE_8BPC;
1171 
1172  /* Set up the display plane register */
1173  dspcntr = DISPPLANE_GAMMA_ENABLE;
1174 
1175  if (pipe == 0)
1176  dspcntr |= DISPPLANE_SEL_PIPE_A;
1177  else
1178  dspcntr |= DISPPLANE_SEL_PIPE_B;
1179 
1180  dspcntr |= DISPLAY_PLANE_ENABLE;
1181  pipeconf |= PIPEACONF_ENABLE;
1182 
1184  REG_READ(map->dpll);
1185 
1186  cdv_dpll_set_clock_cdv(dev, crtc, &clock, is_lvds, ddi_select);
1187 
1188  udelay(150);
1189 
1190 
1191  /* The LVDS pin pair needs to be on before the DPLLs are enabled.
1192  * This is an exception to the general rule that mode_set doesn't turn
1193  * things on.
1194  */
1195  if (is_lvds) {
1196  u32 lvds = REG_READ(LVDS);
1197 
1198  lvds |=
1199  LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP |
1201  /* Set the B0-B3 data pairs corresponding to
1202  * whether we're going to
1203  * set the DPLLs for dual-channel mode or not.
1204  */
1205  if (clock.p2 == 7)
1207  else
1209 
1210  /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
1211  * appropriately here, but we need to look more
1212  * thoroughly into how panels behave in the two modes.
1213  */
1214 
1215  REG_WRITE(LVDS, lvds);
1216  REG_READ(LVDS);
1217  }
1218 
1219  dpll |= DPLL_VCO_ENABLE;
1220 
1221  /* Disable the panel fitter if it was on our pipe */
1222  if (cdv_intel_panel_fitter_pipe(dev) == pipe)
1223  REG_WRITE(PFIT_CONTROL, 0);
1224 
1225  DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
1227 
1228  REG_WRITE(map->dpll,
1229  (REG_READ(map->dpll) & ~DPLL_LOCK) | DPLL_VCO_ENABLE);
1230  REG_READ(map->dpll);
1231  /* Wait for the clocks to stabilize. */
1232  udelay(150); /* 42 usec w/o calibration, 110 with. rounded up. */
1233 
1234  if (!(REG_READ(map->dpll) & DPLL_LOCK)) {
1235  dev_err(dev->dev, "Failed to get DPLL lock\n");
1236  return -EBUSY;
1237  }
1238 
1239  {
1240  int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
1241  REG_WRITE(map->dpll_md, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) | ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
1242  }
1243 
1244  REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
1245  ((adjusted_mode->crtc_htotal - 1) << 16));
1246  REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
1247  ((adjusted_mode->crtc_hblank_end - 1) << 16));
1248  REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
1249  ((adjusted_mode->crtc_hsync_end - 1) << 16));
1250  REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
1251  ((adjusted_mode->crtc_vtotal - 1) << 16));
1252  REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
1253  ((adjusted_mode->crtc_vblank_end - 1) << 16));
1254  REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
1255  ((adjusted_mode->crtc_vsync_end - 1) << 16));
1256  /* pipesrc and dspsize control the size that is scaled from,
1257  * which should always be the user's requested size.
1258  */
1259  REG_WRITE(map->size,
1260  ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
1261  REG_WRITE(map->pos, 0);
1262  REG_WRITE(map->src,
1263  ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
1264  REG_WRITE(map->conf, pipeconf);
1265  REG_READ(map->conf);
1266 
1267  cdv_intel_wait_for_vblank(dev);
1268 
1269  REG_WRITE(map->cntr, dspcntr);
1270 
1271  /* Flush the plane changes */
1272  {
1273  struct drm_crtc_helper_funcs *crtc_funcs =
1274  crtc->helper_private;
1275  crtc_funcs->mode_set_base(crtc, x, y, old_fb);
1276  }
1277 
1278  cdv_intel_wait_for_vblank(dev);
1279 
1280  return 0;
1281 }
1282 
1283 
1287 static void cdv_intel_crtc_save(struct drm_crtc *crtc)
1288 {
1289  struct drm_device *dev = crtc->dev;
1290  struct drm_psb_private *dev_priv = dev->dev_private;
1291  struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1292  struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
1293  const struct psb_offset *map = &dev_priv->regmap[psb_intel_crtc->pipe];
1294  uint32_t paletteReg;
1295  int i;
1296 
1297  if (!crtc_state) {
1298  dev_dbg(dev->dev, "No CRTC state found\n");
1299  return;
1300  }
1301 
1302  crtc_state->saveDSPCNTR = REG_READ(map->cntr);
1303  crtc_state->savePIPECONF = REG_READ(map->conf);
1304  crtc_state->savePIPESRC = REG_READ(map->src);
1305  crtc_state->saveFP0 = REG_READ(map->fp0);
1306  crtc_state->saveFP1 = REG_READ(map->fp1);
1307  crtc_state->saveDPLL = REG_READ(map->dpll);
1308  crtc_state->saveHTOTAL = REG_READ(map->htotal);
1309  crtc_state->saveHBLANK = REG_READ(map->hblank);
1310  crtc_state->saveHSYNC = REG_READ(map->hsync);
1311  crtc_state->saveVTOTAL = REG_READ(map->vtotal);
1312  crtc_state->saveVBLANK = REG_READ(map->vblank);
1313  crtc_state->saveVSYNC = REG_READ(map->vsync);
1314  crtc_state->saveDSPSTRIDE = REG_READ(map->stride);
1315 
1316  /*NOTE: DSPSIZE DSPPOS only for psb*/
1317  crtc_state->saveDSPSIZE = REG_READ(map->size);
1318  crtc_state->saveDSPPOS = REG_READ(map->pos);
1319 
1320  crtc_state->saveDSPBASE = REG_READ(map->base);
1321 
1322  DRM_DEBUG("(%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n",
1323  crtc_state->saveDSPCNTR,
1324  crtc_state->savePIPECONF,
1325  crtc_state->savePIPESRC,
1326  crtc_state->saveFP0,
1327  crtc_state->saveFP1,
1328  crtc_state->saveDPLL,
1329  crtc_state->saveHTOTAL,
1330  crtc_state->saveHBLANK,
1331  crtc_state->saveHSYNC,
1332  crtc_state->saveVTOTAL,
1333  crtc_state->saveVBLANK,
1334  crtc_state->saveVSYNC,
1335  crtc_state->saveDSPSTRIDE,
1336  crtc_state->saveDSPSIZE,
1337  crtc_state->saveDSPPOS,
1338  crtc_state->saveDSPBASE
1339  );
1340 
1341  paletteReg = map->palette;
1342  for (i = 0; i < 256; ++i)
1343  crtc_state->savePalette[i] = REG_READ(paletteReg + (i << 2));
1344 }
1345 
1349 static void cdv_intel_crtc_restore(struct drm_crtc *crtc)
1350 {
1351  struct drm_device *dev = crtc->dev;
1352  struct drm_psb_private *dev_priv = dev->dev_private;
1353  struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1354  struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
1355  const struct psb_offset *map = &dev_priv->regmap[psb_intel_crtc->pipe];
1356  uint32_t paletteReg;
1357  int i;
1358 
1359  if (!crtc_state) {
1360  dev_dbg(dev->dev, "No crtc state\n");
1361  return;
1362  }
1363 
1364  DRM_DEBUG(
1365  "current:(%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n",
1366  REG_READ(map->cntr),
1367  REG_READ(map->conf),
1368  REG_READ(map->src),
1369  REG_READ(map->fp0),
1370  REG_READ(map->fp1),
1371  REG_READ(map->dpll),
1372  REG_READ(map->htotal),
1373  REG_READ(map->hblank),
1374  REG_READ(map->hsync),
1375  REG_READ(map->vtotal),
1376  REG_READ(map->vblank),
1377  REG_READ(map->vsync),
1378  REG_READ(map->stride),
1379  REG_READ(map->size),
1380  REG_READ(map->pos),
1381  REG_READ(map->base)
1382  );
1383 
1384  DRM_DEBUG(
1385  "saved: (%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n",
1386  crtc_state->saveDSPCNTR,
1387  crtc_state->savePIPECONF,
1388  crtc_state->savePIPESRC,
1389  crtc_state->saveFP0,
1390  crtc_state->saveFP1,
1391  crtc_state->saveDPLL,
1392  crtc_state->saveHTOTAL,
1393  crtc_state->saveHBLANK,
1394  crtc_state->saveHSYNC,
1395  crtc_state->saveVTOTAL,
1396  crtc_state->saveVBLANK,
1397  crtc_state->saveVSYNC,
1398  crtc_state->saveDSPSTRIDE,
1399  crtc_state->saveDSPSIZE,
1400  crtc_state->saveDSPPOS,
1401  crtc_state->saveDSPBASE
1402  );
1403 
1404 
1405  if (crtc_state->saveDPLL & DPLL_VCO_ENABLE) {
1406  REG_WRITE(map->dpll,
1407  crtc_state->saveDPLL & ~DPLL_VCO_ENABLE);
1408  REG_READ(map->dpll);
1409  DRM_DEBUG("write dpll: %x\n",
1410  REG_READ(map->dpll));
1411  udelay(150);
1412  }
1413 
1414  REG_WRITE(map->fp0, crtc_state->saveFP0);
1415  REG_READ(map->fp0);
1416 
1417  REG_WRITE(map->fp1, crtc_state->saveFP1);
1418  REG_READ(map->fp1);
1419 
1420  REG_WRITE(map->dpll, crtc_state->saveDPLL);
1421  REG_READ(map->dpll);
1422  udelay(150);
1423 
1424  REG_WRITE(map->htotal, crtc_state->saveHTOTAL);
1425  REG_WRITE(map->hblank, crtc_state->saveHBLANK);
1426  REG_WRITE(map->hsync, crtc_state->saveHSYNC);
1427  REG_WRITE(map->vtotal, crtc_state->saveVTOTAL);
1428  REG_WRITE(map->vblank, crtc_state->saveVBLANK);
1429  REG_WRITE(map->vsync, crtc_state->saveVSYNC);
1430  REG_WRITE(map->stride, crtc_state->saveDSPSTRIDE);
1431 
1432  REG_WRITE(map->size, crtc_state->saveDSPSIZE);
1433  REG_WRITE(map->pos, crtc_state->saveDSPPOS);
1434 
1435  REG_WRITE(map->src, crtc_state->savePIPESRC);
1436  REG_WRITE(map->base, crtc_state->saveDSPBASE);
1437  REG_WRITE(map->conf, crtc_state->savePIPECONF);
1438 
1439  cdv_intel_wait_for_vblank(dev);
1440 
1441  REG_WRITE(map->cntr, crtc_state->saveDSPCNTR);
1442  REG_WRITE(map->base, crtc_state->saveDSPBASE);
1443 
1444  cdv_intel_wait_for_vblank(dev);
1445 
1446  paletteReg = map->palette;
1447  for (i = 0; i < 256; ++i)
1448  REG_WRITE(paletteReg + (i << 2), crtc_state->savePalette[i]);
1449 }
1450 
1451 static int cdv_intel_crtc_cursor_set(struct drm_crtc *crtc,
1452  struct drm_file *file_priv,
1453  uint32_t handle,
1455 {
1456  struct drm_device *dev = crtc->dev;
1457  struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1458  int pipe = psb_intel_crtc->pipe;
1459  uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
1460  uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
1461  uint32_t temp;
1462  size_t addr = 0;
1463  struct gtt_range *gt;
1464  struct drm_gem_object *obj;
1465  int ret;
1466 
1467  /* if we want to turn of the cursor ignore width and height */
1468  if (!handle) {
1469  /* turn off the cursor */
1470  temp = CURSOR_MODE_DISABLE;
1471 
1472  if (gma_power_begin(dev, false)) {
1473  REG_WRITE(control, temp);
1474  REG_WRITE(base, 0);
1475  gma_power_end(dev);
1476  }
1477 
1478  /* unpin the old GEM object */
1479  if (psb_intel_crtc->cursor_obj) {
1480  gt = container_of(psb_intel_crtc->cursor_obj,
1481  struct gtt_range, gem);
1482  psb_gtt_unpin(gt);
1483  drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1484  psb_intel_crtc->cursor_obj = NULL;
1485  }
1486 
1487  return 0;
1488  }
1489 
1490  /* Currently we only support 64x64 cursors */
1491  if (width != 64 || height != 64) {
1492  dev_dbg(dev->dev, "we currently only support 64x64 cursors\n");
1493  return -EINVAL;
1494  }
1495 
1496  obj = drm_gem_object_lookup(dev, file_priv, handle);
1497  if (!obj)
1498  return -ENOENT;
1499 
1500  if (obj->size < width * height * 4) {
1501  dev_dbg(dev->dev, "buffer is to small\n");
1502  return -ENOMEM;
1503  }
1504 
1505  gt = container_of(obj, struct gtt_range, gem);
1506 
1507  /* Pin the memory into the GTT */
1508  ret = psb_gtt_pin(gt);
1509  if (ret) {
1510  dev_err(dev->dev, "Can not pin down handle 0x%x\n", handle);
1511  return ret;
1512  }
1513 
1514  addr = gt->offset; /* Or resource.start ??? */
1515 
1516  psb_intel_crtc->cursor_addr = addr;
1517 
1518  temp = 0;
1519  /* set the pipe for the cursor */
1520  temp |= (pipe << 28);
1522 
1523  if (gma_power_begin(dev, false)) {
1524  REG_WRITE(control, temp);
1525  REG_WRITE(base, addr);
1526  gma_power_end(dev);
1527  }
1528 
1529  /* unpin the old GEM object */
1530  if (psb_intel_crtc->cursor_obj) {
1531  gt = container_of(psb_intel_crtc->cursor_obj,
1532  struct gtt_range, gem);
1533  psb_gtt_unpin(gt);
1534  drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1535  psb_intel_crtc->cursor_obj = obj;
1536  }
1537  return 0;
1538 }
1539 
1540 static int cdv_intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
1541 {
1542  struct drm_device *dev = crtc->dev;
1543  struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1544  int pipe = psb_intel_crtc->pipe;
1545  uint32_t temp = 0;
1546  uint32_t adder;
1547 
1548 
1549  if (x < 0) {
1550  temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
1551  x = -x;
1552  }
1553  if (y < 0) {
1554  temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
1555  y = -y;
1556  }
1557 
1558  temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
1559  temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1560 
1561  adder = psb_intel_crtc->cursor_addr;
1562 
1563  if (gma_power_begin(dev, false)) {
1564  REG_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
1565  REG_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
1566  gma_power_end(dev);
1567  }
1568  return 0;
1569 }
1570 
1571 static void cdv_intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red,
1572  u16 *green, u16 *blue, uint32_t start, uint32_t size)
1573 {
1574  struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1575  int i;
1576  int end = (start + size > 256) ? 256 : start + size;
1577 
1578  for (i = start; i < end; i++) {
1579  psb_intel_crtc->lut_r[i] = red[i] >> 8;
1580  psb_intel_crtc->lut_g[i] = green[i] >> 8;
1581  psb_intel_crtc->lut_b[i] = blue[i] >> 8;
1582  }
1583 
1584  cdv_intel_crtc_load_lut(crtc);
1585 }
1586 
1587 static int cdv_crtc_set_config(struct drm_mode_set *set)
1588 {
1589  int ret = 0;
1590  struct drm_device *dev = set->crtc->dev;
1591  struct drm_psb_private *dev_priv = dev->dev_private;
1592 
1593  if (!dev_priv->rpm_enabled)
1594  return drm_crtc_helper_set_config(set);
1595 
1596  pm_runtime_forbid(&dev->pdev->dev);
1597 
1598  ret = drm_crtc_helper_set_config(set);
1599 
1600  pm_runtime_allow(&dev->pdev->dev);
1601 
1602  return ret;
1603 }
1604 
1607 /* FIXME: why are we using this, should it be cdv_ in this tree ? */
1608 
1609 static void i8xx_clock(int refclk, struct cdv_intel_clock_t *clock)
1610 {
1611  clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
1612  clock->p = clock->p1 * clock->p2;
1613  clock->vco = refclk * clock->m / (clock->n + 2);
1614  clock->dot = clock->vco / clock->p;
1615 }
1616 
1617 /* Returns the clock of the currently programmed mode of the given pipe. */
1618 static int cdv_intel_crtc_clock_get(struct drm_device *dev,
1619  struct drm_crtc *crtc)
1620 {
1621  struct drm_psb_private *dev_priv = dev->dev_private;
1622  struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1623  int pipe = psb_intel_crtc->pipe;
1624  const struct psb_offset *map = &dev_priv->regmap[pipe];
1625  u32 dpll;
1626  u32 fp;
1627  struct cdv_intel_clock_t clock;
1628  bool is_lvds;
1629  struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
1630 
1631  if (gma_power_begin(dev, false)) {
1632  dpll = REG_READ(map->dpll);
1633  if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1634  fp = REG_READ(map->fp0);
1635  else
1636  fp = REG_READ(map->fp1);
1637  is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
1638  gma_power_end(dev);
1639  } else {
1640  dpll = p->dpll;
1641  if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1642  fp = p->fp0;
1643  else
1644  fp = p->fp1;
1645 
1646  is_lvds = (pipe == 1) &&
1647  (dev_priv->regs.psb.saveLVDS & LVDS_PORT_EN);
1648  }
1649 
1650  clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
1651  clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
1652  clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
1653 
1654  if (is_lvds) {
1655  clock.p1 =
1656  ffs((dpll &
1659  if (clock.p1 == 0) {
1660  clock.p1 = 4;
1661  dev_err(dev->dev, "PLL %d\n", dpll);
1662  }
1663  clock.p2 = 14;
1664 
1665  if ((dpll & PLL_REF_INPUT_MASK) ==
1667  /* XXX: might not be 66MHz */
1668  i8xx_clock(66000, &clock);
1669  } else
1670  i8xx_clock(48000, &clock);
1671  } else {
1672  if (dpll & PLL_P1_DIVIDE_BY_TWO)
1673  clock.p1 = 2;
1674  else {
1675  clock.p1 =
1676  ((dpll &
1679  }
1680  if (dpll & PLL_P2_DIVIDE_BY_4)
1681  clock.p2 = 4;
1682  else
1683  clock.p2 = 2;
1684 
1685  i8xx_clock(48000, &clock);
1686  }
1687 
1688  /* XXX: It would be nice to validate the clocks, but we can't reuse
1689  * i830PllIsValid() because it relies on the xf86_config connector
1690  * configuration being accurate, which it isn't necessarily.
1691  */
1692 
1693  return clock.dot;
1694 }
1695 
1698  struct drm_crtc *crtc)
1699 {
1700  struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1701  int pipe = psb_intel_crtc->pipe;
1702  struct drm_psb_private *dev_priv = dev->dev_private;
1703  struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
1704  const struct psb_offset *map = &dev_priv->regmap[pipe];
1705  struct drm_display_mode *mode;
1706  int htot;
1707  int hsync;
1708  int vtot;
1709  int vsync;
1710 
1711  if (gma_power_begin(dev, false)) {
1712  htot = REG_READ(map->htotal);
1713  hsync = REG_READ(map->hsync);
1714  vtot = REG_READ(map->vtotal);
1715  vsync = REG_READ(map->vsync);
1716  gma_power_end(dev);
1717  } else {
1718  htot = p->htotal;
1719  hsync = p->hsync;
1720  vtot = p->vtotal;
1721  vsync = p->vsync;
1722  }
1723 
1724  mode = kzalloc(sizeof(*mode), GFP_KERNEL);
1725  if (!mode)
1726  return NULL;
1727 
1728  mode->clock = cdv_intel_crtc_clock_get(dev, crtc);
1729  mode->hdisplay = (htot & 0xffff) + 1;
1730  mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
1731  mode->hsync_start = (hsync & 0xffff) + 1;
1732  mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
1733  mode->vdisplay = (vtot & 0xffff) + 1;
1734  mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
1735  mode->vsync_start = (vsync & 0xffff) + 1;
1736  mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
1737 
1738  drm_mode_set_name(mode);
1739  drm_mode_set_crtcinfo(mode, 0);
1740 
1741  return mode;
1742 }
1743 
1744 static void cdv_intel_crtc_destroy(struct drm_crtc *crtc)
1745 {
1746  struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1747 
1748  kfree(psb_intel_crtc->crtc_state);
1749  drm_crtc_cleanup(crtc);
1750  kfree(psb_intel_crtc);
1751 }
1752 
1754  .dpms = cdv_intel_crtc_dpms,
1755  .mode_fixup = cdv_intel_crtc_mode_fixup,
1756  .mode_set = cdv_intel_crtc_mode_set,
1757  .mode_set_base = cdv_intel_pipe_set_base,
1758  .prepare = cdv_intel_crtc_prepare,
1759  .commit = cdv_intel_crtc_commit,
1760 };
1761 
1763  .save = cdv_intel_crtc_save,
1764  .restore = cdv_intel_crtc_restore,
1765  .cursor_set = cdv_intel_crtc_cursor_set,
1766  .cursor_move = cdv_intel_crtc_cursor_move,
1767  .gamma_set = cdv_intel_crtc_gamma_set,
1768  .set_config = cdv_crtc_set_config,
1769  .destroy = cdv_intel_crtc_destroy,
1770 };