Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
cls_flow.c
Go to the documentation of this file.
1 /*
2  * net/sched/cls_flow.c Generic flow classifier
3  *
4  * Copyright (c) 2007, 2008 Patrick McHardy <[email protected]>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/init.h>
14 #include <linux/list.h>
15 #include <linux/jhash.h>
16 #include <linux/random.h>
17 #include <linux/pkt_cls.h>
18 #include <linux/skbuff.h>
19 #include <linux/in.h>
20 #include <linux/ip.h>
21 #include <linux/ipv6.h>
22 #include <linux/if_vlan.h>
23 #include <linux/slab.h>
24 #include <linux/module.h>
25 
26 #include <net/pkt_cls.h>
27 #include <net/ip.h>
28 #include <net/route.h>
29 #include <net/flow_keys.h>
30 
31 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
33 #endif
34 
35 struct flow_head {
37 };
38 
39 struct flow_filter {
40  struct list_head list;
41  struct tcf_exts exts;
46 
57 };
58 
59 static const struct tcf_ext_map flow_ext_map = {
60  .action = TCA_FLOW_ACT,
61  .police = TCA_FLOW_POLICE,
62 };
63 
64 static inline u32 addr_fold(void *addr)
65 {
66  unsigned long a = (unsigned long)addr;
67 
68  return (a & 0xFFFFFFFF) ^ (BITS_PER_LONG > 32 ? a >> 32 : 0);
69 }
70 
71 static u32 flow_get_src(const struct sk_buff *skb, const struct flow_keys *flow)
72 {
73  if (flow->src)
74  return ntohl(flow->src);
75  return addr_fold(skb->sk);
76 }
77 
78 static u32 flow_get_dst(const struct sk_buff *skb, const struct flow_keys *flow)
79 {
80  if (flow->dst)
81  return ntohl(flow->dst);
82  return addr_fold(skb_dst(skb)) ^ (__force u16)skb->protocol;
83 }
84 
85 static u32 flow_get_proto(const struct sk_buff *skb, const struct flow_keys *flow)
86 {
87  return flow->ip_proto;
88 }
89 
90 static u32 flow_get_proto_src(const struct sk_buff *skb, const struct flow_keys *flow)
91 {
92  if (flow->ports)
93  return ntohs(flow->port16[0]);
94 
95  return addr_fold(skb->sk);
96 }
97 
98 static u32 flow_get_proto_dst(const struct sk_buff *skb, const struct flow_keys *flow)
99 {
100  if (flow->ports)
101  return ntohs(flow->port16[1]);
102 
103  return addr_fold(skb_dst(skb)) ^ (__force u16)skb->protocol;
104 }
105 
106 static u32 flow_get_iif(const struct sk_buff *skb)
107 {
108  return skb->skb_iif;
109 }
110 
111 static u32 flow_get_priority(const struct sk_buff *skb)
112 {
113  return skb->priority;
114 }
115 
116 static u32 flow_get_mark(const struct sk_buff *skb)
117 {
118  return skb->mark;
119 }
120 
121 static u32 flow_get_nfct(const struct sk_buff *skb)
122 {
123 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
124  return addr_fold(skb->nfct);
125 #else
126  return 0;
127 #endif
128 }
129 
130 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
131 #define CTTUPLE(skb, member) \
132 ({ \
133  enum ip_conntrack_info ctinfo; \
134  const struct nf_conn *ct = nf_ct_get(skb, &ctinfo); \
135  if (ct == NULL) \
136  goto fallback; \
137  ct->tuplehash[CTINFO2DIR(ctinfo)].tuple.member; \
138 })
139 #else
140 #define CTTUPLE(skb, member) \
141 ({ \
142  goto fallback; \
143  0; \
144 })
145 #endif
146 
147 static u32 flow_get_nfct_src(const struct sk_buff *skb, const struct flow_keys *flow)
148 {
149  switch (skb->protocol) {
150  case htons(ETH_P_IP):
151  return ntohl(CTTUPLE(skb, src.u3.ip));
152  case htons(ETH_P_IPV6):
153  return ntohl(CTTUPLE(skb, src.u3.ip6[3]));
154  }
155 fallback:
156  return flow_get_src(skb, flow);
157 }
158 
159 static u32 flow_get_nfct_dst(const struct sk_buff *skb, const struct flow_keys *flow)
160 {
161  switch (skb->protocol) {
162  case htons(ETH_P_IP):
163  return ntohl(CTTUPLE(skb, dst.u3.ip));
164  case htons(ETH_P_IPV6):
165  return ntohl(CTTUPLE(skb, dst.u3.ip6[3]));
166  }
167 fallback:
168  return flow_get_dst(skb, flow);
169 }
170 
171 static u32 flow_get_nfct_proto_src(const struct sk_buff *skb, const struct flow_keys *flow)
172 {
173  return ntohs(CTTUPLE(skb, src.u.all));
174 fallback:
175  return flow_get_proto_src(skb, flow);
176 }
177 
178 static u32 flow_get_nfct_proto_dst(const struct sk_buff *skb, const struct flow_keys *flow)
179 {
180  return ntohs(CTTUPLE(skb, dst.u.all));
181 fallback:
182  return flow_get_proto_dst(skb, flow);
183 }
184 
185 static u32 flow_get_rtclassid(const struct sk_buff *skb)
186 {
187 #ifdef CONFIG_IP_ROUTE_CLASSID
188  if (skb_dst(skb))
189  return skb_dst(skb)->tclassid;
190 #endif
191  return 0;
192 }
193 
194 static u32 flow_get_skuid(const struct sk_buff *skb)
195 {
196  if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file) {
197  kuid_t skuid = skb->sk->sk_socket->file->f_cred->fsuid;
198  return from_kuid(&init_user_ns, skuid);
199  }
200  return 0;
201 }
202 
203 static u32 flow_get_skgid(const struct sk_buff *skb)
204 {
205  if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file) {
206  kgid_t skgid = skb->sk->sk_socket->file->f_cred->fsgid;
207  return from_kgid(&init_user_ns, skgid);
208  }
209  return 0;
210 }
211 
212 static u32 flow_get_vlan_tag(const struct sk_buff *skb)
213 {
215 
216  if (vlan_get_tag(skb, &tag) < 0)
217  return 0;
218  return tag & VLAN_VID_MASK;
219 }
220 
221 static u32 flow_get_rxhash(struct sk_buff *skb)
222 {
223  return skb_get_rxhash(skb);
224 }
225 
226 static u32 flow_key_get(struct sk_buff *skb, int key, struct flow_keys *flow)
227 {
228  switch (key) {
229  case FLOW_KEY_SRC:
230  return flow_get_src(skb, flow);
231  case FLOW_KEY_DST:
232  return flow_get_dst(skb, flow);
233  case FLOW_KEY_PROTO:
234  return flow_get_proto(skb, flow);
235  case FLOW_KEY_PROTO_SRC:
236  return flow_get_proto_src(skb, flow);
237  case FLOW_KEY_PROTO_DST:
238  return flow_get_proto_dst(skb, flow);
239  case FLOW_KEY_IIF:
240  return flow_get_iif(skb);
241  case FLOW_KEY_PRIORITY:
242  return flow_get_priority(skb);
243  case FLOW_KEY_MARK:
244  return flow_get_mark(skb);
245  case FLOW_KEY_NFCT:
246  return flow_get_nfct(skb);
247  case FLOW_KEY_NFCT_SRC:
248  return flow_get_nfct_src(skb, flow);
249  case FLOW_KEY_NFCT_DST:
250  return flow_get_nfct_dst(skb, flow);
252  return flow_get_nfct_proto_src(skb, flow);
254  return flow_get_nfct_proto_dst(skb, flow);
255  case FLOW_KEY_RTCLASSID:
256  return flow_get_rtclassid(skb);
257  case FLOW_KEY_SKUID:
258  return flow_get_skuid(skb);
259  case FLOW_KEY_SKGID:
260  return flow_get_skgid(skb);
261  case FLOW_KEY_VLAN_TAG:
262  return flow_get_vlan_tag(skb);
263  case FLOW_KEY_RXHASH:
264  return flow_get_rxhash(skb);
265  default:
266  WARN_ON(1);
267  return 0;
268  }
269 }
270 
271 #define FLOW_KEYS_NEEDED ((1 << FLOW_KEY_SRC) | \
272  (1 << FLOW_KEY_DST) | \
273  (1 << FLOW_KEY_PROTO) | \
274  (1 << FLOW_KEY_PROTO_SRC) | \
275  (1 << FLOW_KEY_PROTO_DST) | \
276  (1 << FLOW_KEY_NFCT_SRC) | \
277  (1 << FLOW_KEY_NFCT_DST) | \
278  (1 << FLOW_KEY_NFCT_PROTO_SRC) | \
279  (1 << FLOW_KEY_NFCT_PROTO_DST))
280 
281 static int flow_classify(struct sk_buff *skb, const struct tcf_proto *tp,
282  struct tcf_result *res)
283 {
284  struct flow_head *head = tp->root;
285  struct flow_filter *f;
286  u32 keymask;
287  u32 classid;
288  unsigned int n, key;
289  int r;
290 
291  list_for_each_entry(f, &head->filters, list) {
292  u32 keys[FLOW_KEY_MAX + 1];
293  struct flow_keys flow_keys;
294 
295  if (!tcf_em_tree_match(skb, &f->ematches, NULL))
296  continue;
297 
298  keymask = f->keymask;
299  if (keymask & FLOW_KEYS_NEEDED)
300  skb_flow_dissect(skb, &flow_keys);
301 
302  for (n = 0; n < f->nkeys; n++) {
303  key = ffs(keymask) - 1;
304  keymask &= ~(1 << key);
305  keys[n] = flow_key_get(skb, key, &flow_keys);
306  }
307 
308  if (f->mode == FLOW_MODE_HASH)
309  classid = jhash2(keys, f->nkeys, f->hashrnd);
310  else {
311  classid = keys[0];
312  classid = (classid & f->mask) ^ f->xor;
313  classid = (classid >> f->rshift) + f->addend;
314  }
315 
316  if (f->divisor)
317  classid %= f->divisor;
318 
319  res->class = 0;
320  res->classid = TC_H_MAKE(f->baseclass, f->baseclass + classid);
321 
322  r = tcf_exts_exec(skb, &f->exts, res);
323  if (r < 0)
324  continue;
325  return r;
326  }
327  return -1;
328 }
329 
330 static void flow_perturbation(unsigned long arg)
331 {
332  struct flow_filter *f = (struct flow_filter *)arg;
333 
334  get_random_bytes(&f->hashrnd, 4);
335  if (f->perturb_period)
336  mod_timer(&f->perturb_timer, jiffies + f->perturb_period);
337 }
338 
339 static const struct nla_policy flow_policy[TCA_FLOW_MAX + 1] = {
340  [TCA_FLOW_KEYS] = { .type = NLA_U32 },
341  [TCA_FLOW_MODE] = { .type = NLA_U32 },
342  [TCA_FLOW_BASECLASS] = { .type = NLA_U32 },
343  [TCA_FLOW_RSHIFT] = { .type = NLA_U32 },
344  [TCA_FLOW_ADDEND] = { .type = NLA_U32 },
345  [TCA_FLOW_MASK] = { .type = NLA_U32 },
346  [TCA_FLOW_XOR] = { .type = NLA_U32 },
347  [TCA_FLOW_DIVISOR] = { .type = NLA_U32 },
348  [TCA_FLOW_ACT] = { .type = NLA_NESTED },
349  [TCA_FLOW_POLICE] = { .type = NLA_NESTED },
350  [TCA_FLOW_EMATCHES] = { .type = NLA_NESTED },
351  [TCA_FLOW_PERTURB] = { .type = NLA_U32 },
352 };
353 
354 static int flow_change(struct sk_buff *in_skb,
355  struct tcf_proto *tp, unsigned long base,
356  u32 handle, struct nlattr **tca,
357  unsigned long *arg)
358 {
359  struct flow_head *head = tp->root;
360  struct flow_filter *f;
361  struct nlattr *opt = tca[TCA_OPTIONS];
362  struct nlattr *tb[TCA_FLOW_MAX + 1];
363  struct tcf_exts e;
364  struct tcf_ematch_tree t;
365  unsigned int nkeys = 0;
366  unsigned int perturb_period = 0;
367  u32 baseclass = 0;
368  u32 keymask = 0;
369  u32 mode;
370  int err;
371 
372  if (opt == NULL)
373  return -EINVAL;
374 
375  err = nla_parse_nested(tb, TCA_FLOW_MAX, opt, flow_policy);
376  if (err < 0)
377  return err;
378 
379  if (tb[TCA_FLOW_BASECLASS]) {
380  baseclass = nla_get_u32(tb[TCA_FLOW_BASECLASS]);
381  if (TC_H_MIN(baseclass) == 0)
382  return -EINVAL;
383  }
384 
385  if (tb[TCA_FLOW_KEYS]) {
386  keymask = nla_get_u32(tb[TCA_FLOW_KEYS]);
387 
388  nkeys = hweight32(keymask);
389  if (nkeys == 0)
390  return -EINVAL;
391 
392  if (fls(keymask) - 1 > FLOW_KEY_MAX)
393  return -EOPNOTSUPP;
394 
395  if ((keymask & (FLOW_KEY_SKUID|FLOW_KEY_SKGID)) &&
396  sk_user_ns(NETLINK_CB(in_skb).ssk) != &init_user_ns)
397  return -EOPNOTSUPP;
398  }
399 
400  err = tcf_exts_validate(tp, tb, tca[TCA_RATE], &e, &flow_ext_map);
401  if (err < 0)
402  return err;
403 
404  err = tcf_em_tree_validate(tp, tb[TCA_FLOW_EMATCHES], &t);
405  if (err < 0)
406  goto err1;
407 
408  f = (struct flow_filter *)*arg;
409  if (f != NULL) {
410  err = -EINVAL;
411  if (f->handle != handle && handle)
412  goto err2;
413 
414  mode = f->mode;
415  if (tb[TCA_FLOW_MODE])
416  mode = nla_get_u32(tb[TCA_FLOW_MODE]);
417  if (mode != FLOW_MODE_HASH && nkeys > 1)
418  goto err2;
419 
420  if (mode == FLOW_MODE_HASH)
421  perturb_period = f->perturb_period;
422  if (tb[TCA_FLOW_PERTURB]) {
423  if (mode != FLOW_MODE_HASH)
424  goto err2;
425  perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
426  }
427  } else {
428  err = -EINVAL;
429  if (!handle)
430  goto err2;
431  if (!tb[TCA_FLOW_KEYS])
432  goto err2;
433 
434  mode = FLOW_MODE_MAP;
435  if (tb[TCA_FLOW_MODE])
436  mode = nla_get_u32(tb[TCA_FLOW_MODE]);
437  if (mode != FLOW_MODE_HASH && nkeys > 1)
438  goto err2;
439 
440  if (tb[TCA_FLOW_PERTURB]) {
441  if (mode != FLOW_MODE_HASH)
442  goto err2;
443  perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
444  }
445 
446  if (TC_H_MAJ(baseclass) == 0)
447  baseclass = TC_H_MAKE(tp->q->handle, baseclass);
448  if (TC_H_MIN(baseclass) == 0)
449  baseclass = TC_H_MAKE(baseclass, 1);
450 
451  err = -ENOBUFS;
452  f = kzalloc(sizeof(*f), GFP_KERNEL);
453  if (f == NULL)
454  goto err2;
455 
456  f->handle = handle;
457  f->mask = ~0U;
458 
459  get_random_bytes(&f->hashrnd, 4);
460  f->perturb_timer.function = flow_perturbation;
461  f->perturb_timer.data = (unsigned long)f;
463  }
464 
465  tcf_exts_change(tp, &f->exts, &e);
466  tcf_em_tree_change(tp, &f->ematches, &t);
467 
468  tcf_tree_lock(tp);
469 
470  if (tb[TCA_FLOW_KEYS]) {
471  f->keymask = keymask;
472  f->nkeys = nkeys;
473  }
474 
475  f->mode = mode;
476 
477  if (tb[TCA_FLOW_MASK])
478  f->mask = nla_get_u32(tb[TCA_FLOW_MASK]);
479  if (tb[TCA_FLOW_XOR])
480  f->xor = nla_get_u32(tb[TCA_FLOW_XOR]);
481  if (tb[TCA_FLOW_RSHIFT])
482  f->rshift = nla_get_u32(tb[TCA_FLOW_RSHIFT]);
483  if (tb[TCA_FLOW_ADDEND])
484  f->addend = nla_get_u32(tb[TCA_FLOW_ADDEND]);
485 
486  if (tb[TCA_FLOW_DIVISOR])
487  f->divisor = nla_get_u32(tb[TCA_FLOW_DIVISOR]);
488  if (baseclass)
489  f->baseclass = baseclass;
490 
493  if (perturb_period)
494  mod_timer(&f->perturb_timer, jiffies + perturb_period);
495 
496  if (*arg == 0)
497  list_add_tail(&f->list, &head->filters);
498 
499  tcf_tree_unlock(tp);
500 
501  *arg = (unsigned long)f;
502  return 0;
503 
504 err2:
505  tcf_em_tree_destroy(tp, &t);
506 err1:
507  tcf_exts_destroy(tp, &e);
508  return err;
509 }
510 
511 static void flow_destroy_filter(struct tcf_proto *tp, struct flow_filter *f)
512 {
514  tcf_exts_destroy(tp, &f->exts);
515  tcf_em_tree_destroy(tp, &f->ematches);
516  kfree(f);
517 }
518 
519 static int flow_delete(struct tcf_proto *tp, unsigned long arg)
520 {
521  struct flow_filter *f = (struct flow_filter *)arg;
522 
523  tcf_tree_lock(tp);
524  list_del(&f->list);
525  tcf_tree_unlock(tp);
526  flow_destroy_filter(tp, f);
527  return 0;
528 }
529 
530 static int flow_init(struct tcf_proto *tp)
531 {
532  struct flow_head *head;
533 
534  head = kzalloc(sizeof(*head), GFP_KERNEL);
535  if (head == NULL)
536  return -ENOBUFS;
537  INIT_LIST_HEAD(&head->filters);
538  tp->root = head;
539  return 0;
540 }
541 
542 static void flow_destroy(struct tcf_proto *tp)
543 {
544  struct flow_head *head = tp->root;
545  struct flow_filter *f, *next;
546 
547  list_for_each_entry_safe(f, next, &head->filters, list) {
548  list_del(&f->list);
549  flow_destroy_filter(tp, f);
550  }
551  kfree(head);
552 }
553 
554 static unsigned long flow_get(struct tcf_proto *tp, u32 handle)
555 {
556  struct flow_head *head = tp->root;
557  struct flow_filter *f;
558 
559  list_for_each_entry(f, &head->filters, list)
560  if (f->handle == handle)
561  return (unsigned long)f;
562  return 0;
563 }
564 
565 static void flow_put(struct tcf_proto *tp, unsigned long f)
566 {
567 }
568 
569 static int flow_dump(struct tcf_proto *tp, unsigned long fh,
570  struct sk_buff *skb, struct tcmsg *t)
571 {
572  struct flow_filter *f = (struct flow_filter *)fh;
573  struct nlattr *nest;
574 
575  if (f == NULL)
576  return skb->len;
577 
578  t->tcm_handle = f->handle;
579 
580  nest = nla_nest_start(skb, TCA_OPTIONS);
581  if (nest == NULL)
582  goto nla_put_failure;
583 
584  if (nla_put_u32(skb, TCA_FLOW_KEYS, f->keymask) ||
585  nla_put_u32(skb, TCA_FLOW_MODE, f->mode))
586  goto nla_put_failure;
587 
588  if (f->mask != ~0 || f->xor != 0) {
589  if (nla_put_u32(skb, TCA_FLOW_MASK, f->mask) ||
590  nla_put_u32(skb, TCA_FLOW_XOR, f->xor))
591  goto nla_put_failure;
592  }
593  if (f->rshift &&
594  nla_put_u32(skb, TCA_FLOW_RSHIFT, f->rshift))
595  goto nla_put_failure;
596  if (f->addend &&
597  nla_put_u32(skb, TCA_FLOW_ADDEND, f->addend))
598  goto nla_put_failure;
599 
600  if (f->divisor &&
601  nla_put_u32(skb, TCA_FLOW_DIVISOR, f->divisor))
602  goto nla_put_failure;
603  if (f->baseclass &&
604  nla_put_u32(skb, TCA_FLOW_BASECLASS, f->baseclass))
605  goto nla_put_failure;
606 
607  if (f->perturb_period &&
608  nla_put_u32(skb, TCA_FLOW_PERTURB, f->perturb_period / HZ))
609  goto nla_put_failure;
610 
611  if (tcf_exts_dump(skb, &f->exts, &flow_ext_map) < 0)
612  goto nla_put_failure;
613 #ifdef CONFIG_NET_EMATCH
614  if (f->ematches.hdr.nmatches &&
616  goto nla_put_failure;
617 #endif
618  nla_nest_end(skb, nest);
619 
620  if (tcf_exts_dump_stats(skb, &f->exts, &flow_ext_map) < 0)
621  goto nla_put_failure;
622 
623  return skb->len;
624 
625 nla_put_failure:
626  nlmsg_trim(skb, nest);
627  return -1;
628 }
629 
630 static void flow_walk(struct tcf_proto *tp, struct tcf_walker *arg)
631 {
632  struct flow_head *head = tp->root;
633  struct flow_filter *f;
634 
635  list_for_each_entry(f, &head->filters, list) {
636  if (arg->count < arg->skip)
637  goto skip;
638  if (arg->fn(tp, (unsigned long)f, arg) < 0) {
639  arg->stop = 1;
640  break;
641  }
642 skip:
643  arg->count++;
644  }
645 }
646 
647 static struct tcf_proto_ops cls_flow_ops __read_mostly = {
648  .kind = "flow",
649  .classify = flow_classify,
650  .init = flow_init,
651  .destroy = flow_destroy,
652  .change = flow_change,
653  .delete = flow_delete,
654  .get = flow_get,
655  .put = flow_put,
656  .dump = flow_dump,
657  .walk = flow_walk,
658  .owner = THIS_MODULE,
659 };
660 
661 static int __init cls_flow_init(void)
662 {
663  return register_tcf_proto_ops(&cls_flow_ops);
664 }
665 
666 static void __exit cls_flow_exit(void)
667 {
668  unregister_tcf_proto_ops(&cls_flow_ops);
669 }
670 
671 module_init(cls_flow_init);
672 module_exit(cls_flow_exit);
673 
674 MODULE_LICENSE("GPL");
675 MODULE_AUTHOR("Patrick McHardy <[email protected]>");
676 MODULE_DESCRIPTION("TC flow classifier");