Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
core-device.c
Go to the documentation of this file.
1 /*
2  * Device probing and sysfs code.
3  *
4  * Copyright (C) 2005-2006 Kristian Hoegsberg <[email protected]>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 #include <linux/bug.h>
22 #include <linux/ctype.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/errno.h>
26 #include <linux/firewire.h>
28 #include <linux/idr.h>
29 #include <linux/jiffies.h>
30 #include <linux/kobject.h>
31 #include <linux/list.h>
32 #include <linux/mod_devicetable.h>
33 #include <linux/module.h>
34 #include <linux/mutex.h>
35 #include <linux/random.h>
36 #include <linux/rwsem.h>
37 #include <linux/slab.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
40 #include <linux/workqueue.h>
41 
42 #include <linux/atomic.h>
43 #include <asm/byteorder.h>
44 
45 #include "core.h"
46 
47 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
48 {
49  ci->p = p + 1;
50  ci->end = ci->p + (p[0] >> 16);
51 }
53 
54 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
55 {
56  *key = *ci->p >> 24;
57  *value = *ci->p & 0xffffff;
58 
59  return ci->p++ < ci->end;
60 }
62 
63 static const u32 *search_leaf(const u32 *directory, int search_key)
64 {
65  struct fw_csr_iterator ci;
66  int last_key = 0, key, value;
67 
68  fw_csr_iterator_init(&ci, directory);
69  while (fw_csr_iterator_next(&ci, &key, &value)) {
70  if (last_key == search_key &&
72  return ci.p - 1 + value;
73 
74  last_key = key;
75  }
76 
77  return NULL;
78 }
79 
80 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
81 {
82  unsigned int quadlets, i;
83  char c;
84 
85  if (!size || !buf)
86  return -EINVAL;
87 
88  quadlets = min(block[0] >> 16, 256U);
89  if (quadlets < 2)
90  return -ENODATA;
91 
92  if (block[1] != 0 || block[2] != 0)
93  /* unknown language/character set */
94  return -ENODATA;
95 
96  block += 3;
97  quadlets -= 2;
98  for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
99  c = block[i / 4] >> (24 - 8 * (i % 4));
100  if (c == '\0')
101  break;
102  buf[i] = c;
103  }
104  buf[i] = '\0';
105 
106  return i;
107 }
108 
120 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
121 {
122  const u32 *leaf = search_leaf(directory, key);
123  if (!leaf)
124  return -ENOENT;
125 
126  return textual_leaf_to_string(leaf, buf, size);
127 }
129 
130 static void get_ids(const u32 *directory, int *id)
131 {
132  struct fw_csr_iterator ci;
133  int key, value;
134 
135  fw_csr_iterator_init(&ci, directory);
136  while (fw_csr_iterator_next(&ci, &key, &value)) {
137  switch (key) {
138  case CSR_VENDOR: id[0] = value; break;
139  case CSR_MODEL: id[1] = value; break;
140  case CSR_SPECIFIER_ID: id[2] = value; break;
141  case CSR_VERSION: id[3] = value; break;
142  }
143  }
144 }
145 
146 static void get_modalias_ids(struct fw_unit *unit, int *id)
147 {
148  get_ids(&fw_parent_device(unit)->config_rom[5], id);
149  get_ids(unit->directory, id);
150 }
151 
152 static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
153 {
154  int match = 0;
155 
156  if (id[0] == id_table->vendor_id)
157  match |= IEEE1394_MATCH_VENDOR_ID;
158  if (id[1] == id_table->model_id)
159  match |= IEEE1394_MATCH_MODEL_ID;
160  if (id[2] == id_table->specifier_id)
162  if (id[3] == id_table->version)
163  match |= IEEE1394_MATCH_VERSION;
164 
165  return (match & id_table->match_flags) == id_table->match_flags;
166 }
167 
168 static bool is_fw_unit(struct device *dev);
169 
170 static int fw_unit_match(struct device *dev, struct device_driver *drv)
171 {
172  const struct ieee1394_device_id *id_table =
173  container_of(drv, struct fw_driver, driver)->id_table;
174  int id[] = {0, 0, 0, 0};
175 
176  /* We only allow binding to fw_units. */
177  if (!is_fw_unit(dev))
178  return 0;
179 
180  get_modalias_ids(fw_unit(dev), id);
181 
182  for (; id_table->match_flags != 0; id_table++)
183  if (match_ids(id_table, id))
184  return 1;
185 
186  return 0;
187 }
188 
189 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
190 {
191  int id[] = {0, 0, 0, 0};
192 
193  get_modalias_ids(unit, id);
194 
195  return snprintf(buffer, buffer_size,
196  "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
197  id[0], id[1], id[2], id[3]);
198 }
199 
200 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
201 {
202  struct fw_unit *unit = fw_unit(dev);
203  char modalias[64];
204 
205  get_modalias(unit, modalias, sizeof(modalias));
206 
207  if (add_uevent_var(env, "MODALIAS=%s", modalias))
208  return -ENOMEM;
209 
210  return 0;
211 }
212 
214  .name = "firewire",
215  .match = fw_unit_match,
216 };
217 EXPORT_SYMBOL(fw_bus_type);
218 
220 {
221  int generation = device->generation;
222 
223  /* device->node_id, accessed below, must not be older than generation */
224  smp_rmb();
225 
226  return device->card->driver->enable_phys_dma(device->card,
227  device->node_id,
228  generation);
229 }
231 
235 };
236 
237 static ssize_t show_immediate(struct device *dev,
238  struct device_attribute *dattr, char *buf)
239 {
240  struct config_rom_attribute *attr =
241  container_of(dattr, struct config_rom_attribute, attr);
242  struct fw_csr_iterator ci;
243  const u32 *dir;
244  int key, value, ret = -ENOENT;
245 
247 
248  if (is_fw_unit(dev))
249  dir = fw_unit(dev)->directory;
250  else
251  dir = fw_device(dev)->config_rom + 5;
252 
253  fw_csr_iterator_init(&ci, dir);
254  while (fw_csr_iterator_next(&ci, &key, &value))
255  if (attr->key == key) {
256  ret = snprintf(buf, buf ? PAGE_SIZE : 0,
257  "0x%06x\n", value);
258  break;
259  }
260 
261  up_read(&fw_device_rwsem);
262 
263  return ret;
264 }
265 
266 #define IMMEDIATE_ATTR(name, key) \
267  { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
268 
269 static ssize_t show_text_leaf(struct device *dev,
270  struct device_attribute *dattr, char *buf)
271 {
272  struct config_rom_attribute *attr =
273  container_of(dattr, struct config_rom_attribute, attr);
274  const u32 *dir;
275  size_t bufsize;
276  char dummy_buf[2];
277  int ret;
278 
280 
281  if (is_fw_unit(dev))
282  dir = fw_unit(dev)->directory;
283  else
284  dir = fw_device(dev)->config_rom + 5;
285 
286  if (buf) {
287  bufsize = PAGE_SIZE - 1;
288  } else {
289  buf = dummy_buf;
290  bufsize = 1;
291  }
292 
293  ret = fw_csr_string(dir, attr->key, buf, bufsize);
294 
295  if (ret >= 0) {
296  /* Strip trailing whitespace and add newline. */
297  while (ret > 0 && isspace(buf[ret - 1]))
298  ret--;
299  strcpy(buf + ret, "\n");
300  ret++;
301  }
302 
304 
305  return ret;
306 }
307 
308 #define TEXT_LEAF_ATTR(name, key) \
309  { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
310 
311 static struct config_rom_attribute config_rom_attributes[] = {
314  IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
317  TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
318  TEXT_LEAF_ATTR(model_name, CSR_MODEL),
319  TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
320 };
321 
322 static void init_fw_attribute_group(struct device *dev,
323  struct device_attribute *attrs,
324  struct fw_attribute_group *group)
325 {
326  struct device_attribute *attr;
327  int i, j;
328 
329  for (j = 0; attrs[j].attr.name != NULL; j++)
330  group->attrs[j] = &attrs[j].attr;
331 
332  for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
333  attr = &config_rom_attributes[i].attr;
334  if (attr->show(dev, attr, NULL) < 0)
335  continue;
336  group->attrs[j++] = &attr->attr;
337  }
338 
339  group->attrs[j] = NULL;
340  group->groups[0] = &group->group;
341  group->groups[1] = NULL;
342  group->group.attrs = group->attrs;
343  dev->groups = (const struct attribute_group **) group->groups;
344 }
345 
346 static ssize_t modalias_show(struct device *dev,
347  struct device_attribute *attr, char *buf)
348 {
349  struct fw_unit *unit = fw_unit(dev);
350  int length;
351 
352  length = get_modalias(unit, buf, PAGE_SIZE);
353  strcpy(buf + length, "\n");
354 
355  return length + 1;
356 }
357 
358 static ssize_t rom_index_show(struct device *dev,
359  struct device_attribute *attr, char *buf)
360 {
361  struct fw_device *device = fw_device(dev->parent);
362  struct fw_unit *unit = fw_unit(dev);
363 
364  return snprintf(buf, PAGE_SIZE, "%d\n",
365  (int)(unit->directory - device->config_rom));
366 }
367 
368 static struct device_attribute fw_unit_attributes[] = {
369  __ATTR_RO(modalias),
370  __ATTR_RO(rom_index),
371  __ATTR_NULL,
372 };
373 
374 static ssize_t config_rom_show(struct device *dev,
375  struct device_attribute *attr, char *buf)
376 {
377  struct fw_device *device = fw_device(dev);
378  size_t length;
379 
380  down_read(&fw_device_rwsem);
381  length = device->config_rom_length * 4;
382  memcpy(buf, device->config_rom, length);
383  up_read(&fw_device_rwsem);
384 
385  return length;
386 }
387 
388 static ssize_t guid_show(struct device *dev,
389  struct device_attribute *attr, char *buf)
390 {
391  struct fw_device *device = fw_device(dev);
392  int ret;
393 
394  down_read(&fw_device_rwsem);
395  ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
396  device->config_rom[3], device->config_rom[4]);
397  up_read(&fw_device_rwsem);
398 
399  return ret;
400 }
401 
402 static ssize_t is_local_show(struct device *dev,
403  struct device_attribute *attr, char *buf)
404 {
405  struct fw_device *device = fw_device(dev);
406 
407  return sprintf(buf, "%u\n", device->is_local);
408 }
409 
410 static int units_sprintf(char *buf, const u32 *directory)
411 {
412  struct fw_csr_iterator ci;
413  int key, value;
414  int specifier_id = 0;
415  int version = 0;
416 
417  fw_csr_iterator_init(&ci, directory);
418  while (fw_csr_iterator_next(&ci, &key, &value)) {
419  switch (key) {
420  case CSR_SPECIFIER_ID:
421  specifier_id = value;
422  break;
423  case CSR_VERSION:
424  version = value;
425  break;
426  }
427  }
428 
429  return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
430 }
431 
432 static ssize_t units_show(struct device *dev,
433  struct device_attribute *attr, char *buf)
434 {
435  struct fw_device *device = fw_device(dev);
436  struct fw_csr_iterator ci;
437  int key, value, i = 0;
438 
439  down_read(&fw_device_rwsem);
440  fw_csr_iterator_init(&ci, &device->config_rom[5]);
441  while (fw_csr_iterator_next(&ci, &key, &value)) {
442  if (key != (CSR_UNIT | CSR_DIRECTORY))
443  continue;
444  i += units_sprintf(&buf[i], ci.p + value - 1);
445  if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
446  break;
447  }
448  up_read(&fw_device_rwsem);
449 
450  if (i)
451  buf[i - 1] = '\n';
452 
453  return i;
454 }
455 
456 static struct device_attribute fw_device_attributes[] = {
457  __ATTR_RO(config_rom),
458  __ATTR_RO(guid),
459  __ATTR_RO(is_local),
460  __ATTR_RO(units),
461  __ATTR_NULL,
462 };
463 
464 static int read_rom(struct fw_device *device,
465  int generation, int index, u32 *data)
466 {
467  u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
468  int i, rcode;
469 
470  /* device->node_id, accessed below, must not be older than generation */
471  smp_rmb();
472 
473  for (i = 10; i < 100; i += 10) {
474  rcode = fw_run_transaction(device->card,
476  generation, device->max_speed, offset, data, 4);
477  if (rcode != RCODE_BUSY)
478  break;
479  msleep(i);
480  }
481  be32_to_cpus(data);
482 
483  return rcode;
484 }
485 
486 #define MAX_CONFIG_ROM_SIZE 256
487 
488 /*
489  * Read the bus info block, perform a speed probe, and read all of the rest of
490  * the config ROM. We do all this with a cached bus generation. If the bus
491  * generation changes under us, read_config_rom will fail and get retried.
492  * It's better to start all over in this case because the node from which we
493  * are reading the ROM may have changed the ROM during the reset.
494  * Returns either a result code or a negative error code.
495  */
496 static int read_config_rom(struct fw_device *device, int generation)
497 {
498  struct fw_card *card = device->card;
499  const u32 *old_rom, *new_rom;
500  u32 *rom, *stack;
501  u32 sp, key;
502  int i, end, length, ret;
503 
504  rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
505  sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
506  if (rom == NULL)
507  return -ENOMEM;
508 
509  stack = &rom[MAX_CONFIG_ROM_SIZE];
510  memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
511 
512  device->max_speed = SCODE_100;
513 
514  /* First read the bus info block. */
515  for (i = 0; i < 5; i++) {
516  ret = read_rom(device, generation, i, &rom[i]);
517  if (ret != RCODE_COMPLETE)
518  goto out;
519  /*
520  * As per IEEE1212 7.2, during initialization, devices can
521  * reply with a 0 for the first quadlet of the config
522  * rom to indicate that they are booting (for example,
523  * if the firmware is on the disk of a external
524  * harddisk). In that case we just fail, and the
525  * retry mechanism will try again later.
526  */
527  if (i == 0 && rom[i] == 0) {
528  ret = RCODE_BUSY;
529  goto out;
530  }
531  }
532 
533  device->max_speed = device->node->max_speed;
534 
535  /*
536  * Determine the speed of
537  * - devices with link speed less than PHY speed,
538  * - devices with 1394b PHY (unless only connected to 1394a PHYs),
539  * - all devices if there are 1394b repeaters.
540  * Note, we cannot use the bus info block's link_spd as starting point
541  * because some buggy firmwares set it lower than necessary and because
542  * 1394-1995 nodes do not have the field.
543  */
544  if ((rom[2] & 0x7) < device->max_speed ||
545  device->max_speed == SCODE_BETA ||
546  card->beta_repeaters_present) {
547  u32 dummy;
548 
549  /* for S1600 and S3200 */
550  if (device->max_speed == SCODE_BETA)
551  device->max_speed = card->link_speed;
552 
553  while (device->max_speed > SCODE_100) {
554  if (read_rom(device, generation, 0, &dummy) ==
556  break;
557  device->max_speed--;
558  }
559  }
560 
561  /*
562  * Now parse the config rom. The config rom is a recursive
563  * directory structure so we parse it using a stack of
564  * references to the blocks that make up the structure. We
565  * push a reference to the root directory on the stack to
566  * start things off.
567  */
568  length = i;
569  sp = 0;
570  stack[sp++] = 0xc0000005;
571  while (sp > 0) {
572  /*
573  * Pop the next block reference of the stack. The
574  * lower 24 bits is the offset into the config rom,
575  * the upper 8 bits are the type of the reference the
576  * block.
577  */
578  key = stack[--sp];
579  i = key & 0xffffff;
580  if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
581  ret = -ENXIO;
582  goto out;
583  }
584 
585  /* Read header quadlet for the block to get the length. */
586  ret = read_rom(device, generation, i, &rom[i]);
587  if (ret != RCODE_COMPLETE)
588  goto out;
589  end = i + (rom[i] >> 16) + 1;
590  if (end > MAX_CONFIG_ROM_SIZE) {
591  /*
592  * This block extends outside the config ROM which is
593  * a firmware bug. Ignore this whole block, i.e.
594  * simply set a fake block length of 0.
595  */
596  fw_err(card, "skipped invalid ROM block %x at %llx\n",
597  rom[i],
599  rom[i] = 0;
600  end = i;
601  }
602  i++;
603 
604  /*
605  * Now read in the block. If this is a directory
606  * block, check the entries as we read them to see if
607  * it references another block, and push it in that case.
608  */
609  for (; i < end; i++) {
610  ret = read_rom(device, generation, i, &rom[i]);
611  if (ret != RCODE_COMPLETE)
612  goto out;
613 
614  if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
615  continue;
616  /*
617  * Offset points outside the ROM. May be a firmware
618  * bug or an Extended ROM entry (IEEE 1212-2001 clause
619  * 7.7.18). Simply overwrite this pointer here by a
620  * fake immediate entry so that later iterators over
621  * the ROM don't have to check offsets all the time.
622  */
623  if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
624  fw_err(card,
625  "skipped unsupported ROM entry %x at %llx\n",
626  rom[i],
628  rom[i] = 0;
629  continue;
630  }
631  stack[sp++] = i + rom[i];
632  }
633  if (length < i)
634  length = i;
635  }
636 
637  old_rom = device->config_rom;
638  new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
639  if (new_rom == NULL) {
640  ret = -ENOMEM;
641  goto out;
642  }
643 
645  device->config_rom = new_rom;
646  device->config_rom_length = length;
648 
649  kfree(old_rom);
650  ret = RCODE_COMPLETE;
651  device->max_rec = rom[2] >> 12 & 0xf;
652  device->cmc = rom[2] >> 30 & 1;
653  device->irmc = rom[2] >> 31 & 1;
654  out:
655  kfree(rom);
656 
657  return ret;
658 }
659 
660 static void fw_unit_release(struct device *dev)
661 {
662  struct fw_unit *unit = fw_unit(dev);
663 
664  fw_device_put(fw_parent_device(unit));
665  kfree(unit);
666 }
667 
668 static struct device_type fw_unit_type = {
669  .uevent = fw_unit_uevent,
670  .release = fw_unit_release,
671 };
672 
673 static bool is_fw_unit(struct device *dev)
674 {
675  return dev->type == &fw_unit_type;
676 }
677 
678 static void create_units(struct fw_device *device)
679 {
680  struct fw_csr_iterator ci;
681  struct fw_unit *unit;
682  int key, value, i;
683 
684  i = 0;
685  fw_csr_iterator_init(&ci, &device->config_rom[5]);
686  while (fw_csr_iterator_next(&ci, &key, &value)) {
687  if (key != (CSR_UNIT | CSR_DIRECTORY))
688  continue;
689 
690  /*
691  * Get the address of the unit directory and try to
692  * match the drivers id_tables against it.
693  */
694  unit = kzalloc(sizeof(*unit), GFP_KERNEL);
695  if (unit == NULL) {
696  fw_err(device->card, "out of memory for unit\n");
697  continue;
698  }
699 
700  unit->directory = ci.p + value - 1;
701  unit->device.bus = &fw_bus_type;
702  unit->device.type = &fw_unit_type;
703  unit->device.parent = &device->device;
704  dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
705 
707  ARRAY_SIZE(fw_unit_attributes) +
708  ARRAY_SIZE(config_rom_attributes));
709  init_fw_attribute_group(&unit->device,
710  fw_unit_attributes,
711  &unit->attribute_group);
712 
713  if (device_register(&unit->device) < 0)
714  goto skip_unit;
715 
716  fw_device_get(device);
717  continue;
718 
719  skip_unit:
720  kfree(unit);
721  }
722 }
723 
724 static int shutdown_unit(struct device *device, void *data)
725 {
726  device_unregister(device);
727 
728  return 0;
729 }
730 
731 /*
732  * fw_device_rwsem acts as dual purpose mutex:
733  * - serializes accesses to fw_device_idr,
734  * - serializes accesses to fw_device.config_rom/.config_rom_length and
735  * fw_unit.directory, unless those accesses happen at safe occasions
736  */
737 DECLARE_RWSEM(fw_device_rwsem);
738 
739 DEFINE_IDR(fw_device_idr);
741 
743 {
744  struct fw_device *device;
745 
747  device = idr_find(&fw_device_idr, MINOR(devt));
748  if (device)
749  fw_device_get(device);
751 
752  return device;
753 }
754 
756 EXPORT_SYMBOL(fw_workqueue);
757 
758 static void fw_schedule_device_work(struct fw_device *device,
759  unsigned long delay)
760 {
761  queue_delayed_work(fw_workqueue, &device->work, delay);
762 }
763 
764 /*
765  * These defines control the retry behavior for reading the config
766  * rom. It shouldn't be necessary to tweak these; if the device
767  * doesn't respond to a config rom read within 10 seconds, it's not
768  * going to respond at all. As for the initial delay, a lot of
769  * devices will be able to respond within half a second after bus
770  * reset. On the other hand, it's not really worth being more
771  * aggressive than that, since it scales pretty well; if 10 devices
772  * are plugged in, they're all getting read within one second.
773  */
774 
775 #define MAX_RETRIES 10
776 #define RETRY_DELAY (3 * HZ)
777 #define INITIAL_DELAY (HZ / 2)
778 #define SHUTDOWN_DELAY (2 * HZ)
779 
780 static void fw_device_shutdown(struct work_struct *work)
781 {
782  struct fw_device *device =
783  container_of(work, struct fw_device, work.work);
784  int minor = MINOR(device->device.devt);
785 
787  device->card->reset_jiffies + SHUTDOWN_DELAY)
788  && !list_empty(&device->card->link)) {
789  fw_schedule_device_work(device, SHUTDOWN_DELAY);
790  return;
791  }
792 
793  if (atomic_cmpxchg(&device->state,
796  return;
797 
798  fw_device_cdev_remove(device);
799  device_for_each_child(&device->device, NULL, shutdown_unit);
800  device_unregister(&device->device);
801 
803  idr_remove(&fw_device_idr, minor);
805 
806  fw_device_put(device);
807 }
808 
809 static void fw_device_release(struct device *dev)
810 {
811  struct fw_device *device = fw_device(dev);
812  struct fw_card *card = device->card;
813  unsigned long flags;
814 
815  /*
816  * Take the card lock so we don't set this to NULL while a
817  * FW_NODE_UPDATED callback is being handled or while the
818  * bus manager work looks at this node.
819  */
820  spin_lock_irqsave(&card->lock, flags);
821  device->node->data = NULL;
822  spin_unlock_irqrestore(&card->lock, flags);
823 
824  fw_node_put(device->node);
825  kfree(device->config_rom);
826  kfree(device);
827  fw_card_put(card);
828 }
829 
830 static struct device_type fw_device_type = {
831  .release = fw_device_release,
832 };
833 
834 static bool is_fw_device(struct device *dev)
835 {
836  return dev->type == &fw_device_type;
837 }
838 
839 static int update_unit(struct device *dev, void *data)
840 {
841  struct fw_unit *unit = fw_unit(dev);
842  struct fw_driver *driver = (struct fw_driver *)dev->driver;
843 
844  if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
845  device_lock(dev);
846  driver->update(unit);
847  device_unlock(dev);
848  }
849 
850  return 0;
851 }
852 
853 static void fw_device_update(struct work_struct *work)
854 {
855  struct fw_device *device =
856  container_of(work, struct fw_device, work.work);
857 
858  fw_device_cdev_update(device);
859  device_for_each_child(&device->device, NULL, update_unit);
860 }
861 
862 /*
863  * If a device was pending for deletion because its node went away but its
864  * bus info block and root directory header matches that of a newly discovered
865  * device, revive the existing fw_device.
866  * The newly allocated fw_device becomes obsolete instead.
867  */
868 static int lookup_existing_device(struct device *dev, void *data)
869 {
870  struct fw_device *old = fw_device(dev);
871  struct fw_device *new = data;
872  struct fw_card *card = new->card;
873  int match = 0;
874 
875  if (!is_fw_device(dev))
876  return 0;
877 
878  down_read(&fw_device_rwsem); /* serialize config_rom access */
879  spin_lock_irq(&card->lock); /* serialize node access */
880 
881  if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
882  atomic_cmpxchg(&old->state,
885  struct fw_node *current_node = new->node;
886  struct fw_node *obsolete_node = old->node;
887 
888  new->node = obsolete_node;
889  new->node->data = new;
890  old->node = current_node;
891  old->node->data = old;
892 
893  old->max_speed = new->max_speed;
894  old->node_id = current_node->node_id;
895  smp_wmb(); /* update node_id before generation */
896  old->generation = card->generation;
897  old->config_rom_retries = 0;
898  fw_notice(card, "rediscovered device %s\n", dev_name(dev));
899 
900  PREPARE_DELAYED_WORK(&old->work, fw_device_update);
901  fw_schedule_device_work(old, 0);
902 
903  if (current_node == card->root_node)
904  fw_schedule_bm_work(card, 0);
905 
906  match = 1;
907  }
908 
909  spin_unlock_irq(&card->lock);
910  up_read(&fw_device_rwsem);
911 
912  return match;
913 }
914 
916 
917 static void set_broadcast_channel(struct fw_device *device, int generation)
918 {
919  struct fw_card *card = device->card;
920  __be32 data;
921  int rcode;
922 
923  if (!card->broadcast_channel_allocated)
924  return;
925 
926  /*
927  * The Broadcast_Channel Valid bit is required by nodes which want to
928  * transmit on this channel. Such transmissions are practically
929  * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required
930  * to be IRM capable and have a max_rec of 8 or more. We use this fact
931  * to narrow down to which nodes we send Broadcast_Channel updates.
932  */
933  if (!device->irmc || device->max_rec < 8)
934  return;
935 
936  /*
937  * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
938  * Perform a read test first.
939  */
940  if (device->bc_implemented == BC_UNKNOWN) {
942  device->node_id, generation, device->max_speed,
944  &data, 4);
945  switch (rcode) {
946  case RCODE_COMPLETE:
947  if (data & cpu_to_be32(1 << 31)) {
948  device->bc_implemented = BC_IMPLEMENTED;
949  break;
950  }
951  /* else fall through to case address error */
952  case RCODE_ADDRESS_ERROR:
954  }
955  }
956 
957  if (device->bc_implemented == BC_IMPLEMENTED) {
961  device->node_id, generation, device->max_speed,
963  &data, 4);
964  }
965 }
966 
967 int fw_device_set_broadcast_channel(struct device *dev, void *gen)
968 {
969  if (is_fw_device(dev))
970  set_broadcast_channel(fw_device(dev), (long)gen);
971 
972  return 0;
973 }
974 
975 static void fw_device_init(struct work_struct *work)
976 {
977  struct fw_device *device =
978  container_of(work, struct fw_device, work.work);
979  struct fw_card *card = device->card;
980  struct device *revived_dev;
981  int minor, ret;
982 
983  /*
984  * All failure paths here set node->data to NULL, so that we
985  * don't try to do device_for_each_child() on a kfree()'d
986  * device.
987  */
988 
989  ret = read_config_rom(device, device->generation);
990  if (ret != RCODE_COMPLETE) {
991  if (device->config_rom_retries < MAX_RETRIES &&
993  device->config_rom_retries++;
994  fw_schedule_device_work(device, RETRY_DELAY);
995  } else {
996  if (device->node->link_on)
997  fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
998  device->node_id,
999  fw_rcode_string(ret));
1000  if (device->node == card->root_node)
1001  fw_schedule_bm_work(card, 0);
1002  fw_device_release(&device->device);
1003  }
1004  return;
1005  }
1006 
1007  revived_dev = device_find_child(card->device,
1008  device, lookup_existing_device);
1009  if (revived_dev) {
1010  put_device(revived_dev);
1011  fw_device_release(&device->device);
1012 
1013  return;
1014  }
1015 
1016  device_initialize(&device->device);
1017 
1018  fw_device_get(device);
1019  down_write(&fw_device_rwsem);
1020  ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ?
1021  idr_get_new(&fw_device_idr, device, &minor) :
1022  -ENOMEM;
1023  up_write(&fw_device_rwsem);
1024 
1025  if (ret < 0)
1026  goto error;
1027 
1028  device->device.bus = &fw_bus_type;
1029  device->device.type = &fw_device_type;
1030  device->device.parent = card->device;
1031  device->device.devt = MKDEV(fw_cdev_major, minor);
1032  dev_set_name(&device->device, "fw%d", minor);
1033 
1034  BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1035  ARRAY_SIZE(fw_device_attributes) +
1036  ARRAY_SIZE(config_rom_attributes));
1037  init_fw_attribute_group(&device->device,
1038  fw_device_attributes,
1039  &device->attribute_group);
1040 
1041  if (device_add(&device->device)) {
1042  fw_err(card, "failed to add device\n");
1043  goto error_with_cdev;
1044  }
1045 
1046  create_units(device);
1047 
1048  /*
1049  * Transition the device to running state. If it got pulled
1050  * out from under us while we did the intialization work, we
1051  * have to shut down the device again here. Normally, though,
1052  * fw_node_event will be responsible for shutting it down when
1053  * necessary. We have to use the atomic cmpxchg here to avoid
1054  * racing with the FW_NODE_DESTROYED case in
1055  * fw_node_event().
1056  */
1057  if (atomic_cmpxchg(&device->state,
1060  PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1061  fw_schedule_device_work(device, SHUTDOWN_DELAY);
1062  } else {
1063  fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1064  dev_name(&device->device),
1065  device->config_rom[3], device->config_rom[4],
1066  1 << device->max_speed);
1067  device->config_rom_retries = 0;
1068 
1069  set_broadcast_channel(device, device->generation);
1070 
1071  add_device_randomness(&device->config_rom[3], 8);
1072  }
1073 
1074  /*
1075  * Reschedule the IRM work if we just finished reading the
1076  * root node config rom. If this races with a bus reset we
1077  * just end up running the IRM work a couple of extra times -
1078  * pretty harmless.
1079  */
1080  if (device->node == card->root_node)
1081  fw_schedule_bm_work(card, 0);
1082 
1083  return;
1084 
1085  error_with_cdev:
1086  down_write(&fw_device_rwsem);
1087  idr_remove(&fw_device_idr, minor);
1088  up_write(&fw_device_rwsem);
1089  error:
1090  fw_device_put(device); /* fw_device_idr's reference */
1091 
1092  put_device(&device->device); /* our reference */
1093 }
1094 
1095 /* Reread and compare bus info block and header of root directory */
1096 static int reread_config_rom(struct fw_device *device, int generation,
1097  bool *changed)
1098 {
1099  u32 q;
1100  int i, rcode;
1101 
1102  for (i = 0; i < 6; i++) {
1103  rcode = read_rom(device, generation, i, &q);
1104  if (rcode != RCODE_COMPLETE)
1105  return rcode;
1106 
1107  if (i == 0 && q == 0)
1108  /* inaccessible (see read_config_rom); retry later */
1109  return RCODE_BUSY;
1110 
1111  if (q != device->config_rom[i]) {
1112  *changed = true;
1113  return RCODE_COMPLETE;
1114  }
1115  }
1116 
1117  *changed = false;
1118  return RCODE_COMPLETE;
1119 }
1120 
1121 static void fw_device_refresh(struct work_struct *work)
1122 {
1123  struct fw_device *device =
1124  container_of(work, struct fw_device, work.work);
1125  struct fw_card *card = device->card;
1126  int ret, node_id = device->node_id;
1127  bool changed;
1128 
1129  ret = reread_config_rom(device, device->generation, &changed);
1130  if (ret != RCODE_COMPLETE)
1131  goto failed_config_rom;
1132 
1133  if (!changed) {
1134  if (atomic_cmpxchg(&device->state,
1137  goto gone;
1138 
1139  fw_device_update(work);
1140  device->config_rom_retries = 0;
1141  goto out;
1142  }
1143 
1144  /*
1145  * Something changed. We keep things simple and don't investigate
1146  * further. We just destroy all previous units and create new ones.
1147  */
1148  device_for_each_child(&device->device, NULL, shutdown_unit);
1149 
1150  ret = read_config_rom(device, device->generation);
1151  if (ret != RCODE_COMPLETE)
1152  goto failed_config_rom;
1153 
1154  fw_device_cdev_update(device);
1155  create_units(device);
1156 
1157  /* Userspace may want to re-read attributes. */
1158  kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1159 
1160  if (atomic_cmpxchg(&device->state,
1163  goto gone;
1164 
1165  fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1166  device->config_rom_retries = 0;
1167  goto out;
1168 
1169  failed_config_rom:
1170  if (device->config_rom_retries < MAX_RETRIES &&
1171  atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1172  device->config_rom_retries++;
1173  fw_schedule_device_work(device, RETRY_DELAY);
1174  return;
1175  }
1176 
1177  fw_notice(card, "giving up on refresh of device %s: %s\n",
1178  dev_name(&device->device), fw_rcode_string(ret));
1179  gone:
1180  atomic_set(&device->state, FW_DEVICE_GONE);
1181  PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1182  fw_schedule_device_work(device, SHUTDOWN_DELAY);
1183  out:
1184  if (node_id == card->root_node->node_id)
1185  fw_schedule_bm_work(card, 0);
1186 }
1187 
1188 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1189 {
1190  struct fw_device *device;
1191 
1192  switch (event) {
1193  case FW_NODE_CREATED:
1194  /*
1195  * Attempt to scan the node, regardless whether its self ID has
1196  * the L (link active) flag set or not. Some broken devices
1197  * send L=0 but have an up-and-running link; others send L=1
1198  * without actually having a link.
1199  */
1200  create:
1201  device = kzalloc(sizeof(*device), GFP_ATOMIC);
1202  if (device == NULL)
1203  break;
1204 
1205  /*
1206  * Do minimal intialization of the device here, the
1207  * rest will happen in fw_device_init().
1208  *
1209  * Attention: A lot of things, even fw_device_get(),
1210  * cannot be done before fw_device_init() finished!
1211  * You can basically just check device->state and
1212  * schedule work until then, but only while holding
1213  * card->lock.
1214  */
1216  device->card = fw_card_get(card);
1217  device->node = fw_node_get(node);
1218  device->node_id = node->node_id;
1219  device->generation = card->generation;
1220  device->is_local = node == card->local_node;
1221  mutex_init(&device->client_list_mutex);
1222  INIT_LIST_HEAD(&device->client_list);
1223 
1224  /*
1225  * Set the node data to point back to this device so
1226  * FW_NODE_UPDATED callbacks can update the node_id
1227  * and generation for the device.
1228  */
1229  node->data = device;
1230 
1231  /*
1232  * Many devices are slow to respond after bus resets,
1233  * especially if they are bus powered and go through
1234  * power-up after getting plugged in. We schedule the
1235  * first config rom scan half a second after bus reset.
1236  */
1237  INIT_DELAYED_WORK(&device->work, fw_device_init);
1238  fw_schedule_device_work(device, INITIAL_DELAY);
1239  break;
1240 
1242  case FW_NODE_LINK_ON:
1243  device = node->data;
1244  if (device == NULL)
1245  goto create;
1246 
1247  device->node_id = node->node_id;
1248  smp_wmb(); /* update node_id before generation */
1249  device->generation = card->generation;
1250  if (atomic_cmpxchg(&device->state,
1253  PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
1254  fw_schedule_device_work(device,
1255  device->is_local ? 0 : INITIAL_DELAY);
1256  }
1257  break;
1258 
1259  case FW_NODE_UPDATED:
1260  device = node->data;
1261  if (device == NULL)
1262  break;
1263 
1264  device->node_id = node->node_id;
1265  smp_wmb(); /* update node_id before generation */
1266  device->generation = card->generation;
1267  if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1268  PREPARE_DELAYED_WORK(&device->work, fw_device_update);
1269  fw_schedule_device_work(device, 0);
1270  }
1271  break;
1272 
1273  case FW_NODE_DESTROYED:
1274  case FW_NODE_LINK_OFF:
1275  if (!node->data)
1276  break;
1277 
1278  /*
1279  * Destroy the device associated with the node. There
1280  * are two cases here: either the device is fully
1281  * initialized (FW_DEVICE_RUNNING) or we're in the
1282  * process of reading its config rom
1283  * (FW_DEVICE_INITIALIZING). If it is fully
1284  * initialized we can reuse device->work to schedule a
1285  * full fw_device_shutdown(). If not, there's work
1286  * scheduled to read it's config rom, and we just put
1287  * the device in shutdown state to have that code fail
1288  * to create the device.
1289  */
1290  device = node->data;
1291  if (atomic_xchg(&device->state,
1293  PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1294  fw_schedule_device_work(device,
1295  list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1296  }
1297  break;
1298  }
1299 }