Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
cx23888-ir.c
Go to the documentation of this file.
1 /*
2  * Driver for the Conexant CX23885/7/8 PCIe bridge
3  *
4  * CX23888 Integrated Consumer Infrared Controller
5  *
6  * Copyright (C) 2009 Andy Walls <[email protected]>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version 2
11  * of the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21  * 02110-1301, USA.
22  */
23 
24 #include <linux/kfifo.h>
25 #include <linux/slab.h>
26 
27 #include <media/v4l2-device.h>
28 #include <media/v4l2-chip-ident.h>
29 #include <media/rc-core.h>
30 
31 #include "cx23885.h"
32 
33 static unsigned int ir_888_debug;
34 module_param(ir_888_debug, int, 0644);
35 MODULE_PARM_DESC(ir_888_debug, "enable debug messages [CX23888 IR controller]");
36 
37 #define CX23888_IR_REG_BASE 0x170000
38 /*
39  * These CX23888 register offsets have a straightforward one to one mapping
40  * to the CX23885 register offsets of 0x200 through 0x218
41  */
42 #define CX23888_IR_CNTRL_REG 0x170000
43 #define CNTRL_WIN_3_3 0x00000000
44 #define CNTRL_WIN_4_3 0x00000001
45 #define CNTRL_WIN_3_4 0x00000002
46 #define CNTRL_WIN_4_4 0x00000003
47 #define CNTRL_WIN 0x00000003
48 #define CNTRL_EDG_NONE 0x00000000
49 #define CNTRL_EDG_FALL 0x00000004
50 #define CNTRL_EDG_RISE 0x00000008
51 #define CNTRL_EDG_BOTH 0x0000000C
52 #define CNTRL_EDG 0x0000000C
53 #define CNTRL_DMD 0x00000010
54 #define CNTRL_MOD 0x00000020
55 #define CNTRL_RFE 0x00000040
56 #define CNTRL_TFE 0x00000080
57 #define CNTRL_RXE 0x00000100
58 #define CNTRL_TXE 0x00000200
59 #define CNTRL_RIC 0x00000400
60 #define CNTRL_TIC 0x00000800
61 #define CNTRL_CPL 0x00001000
62 #define CNTRL_LBM 0x00002000
63 #define CNTRL_R 0x00004000
64 /* CX23888 specific control flag */
65 #define CNTRL_IVO 0x00008000
66 
67 #define CX23888_IR_TXCLK_REG 0x170004
68 #define TXCLK_TCD 0x0000FFFF
69 
70 #define CX23888_IR_RXCLK_REG 0x170008
71 #define RXCLK_RCD 0x0000FFFF
72 
73 #define CX23888_IR_CDUTY_REG 0x17000C
74 #define CDUTY_CDC 0x0000000F
75 
76 #define CX23888_IR_STATS_REG 0x170010
77 #define STATS_RTO 0x00000001
78 #define STATS_ROR 0x00000002
79 #define STATS_RBY 0x00000004
80 #define STATS_TBY 0x00000008
81 #define STATS_RSR 0x00000010
82 #define STATS_TSR 0x00000020
83 
84 #define CX23888_IR_IRQEN_REG 0x170014
85 #define IRQEN_RTE 0x00000001
86 #define IRQEN_ROE 0x00000002
87 #define IRQEN_RSE 0x00000010
88 #define IRQEN_TSE 0x00000020
89 
90 #define CX23888_IR_FILTR_REG 0x170018
91 #define FILTR_LPF 0x0000FFFF
92 
93 /* This register doesn't follow the pattern; it's 0x23C on a CX23885 */
94 #define CX23888_IR_FIFO_REG 0x170040
95 #define FIFO_RXTX 0x0000FFFF
96 #define FIFO_RXTX_LVL 0x00010000
97 #define FIFO_RXTX_RTO 0x0001FFFF
98 #define FIFO_RX_NDV 0x00020000
99 #define FIFO_RX_DEPTH 8
100 #define FIFO_TX_DEPTH 8
101 
102 /* CX23888 unique registers */
103 #define CX23888_IR_SEEDP_REG 0x17001C
104 #define CX23888_IR_TIMOL_REG 0x170020
105 #define CX23888_IR_WAKE0_REG 0x170024
106 #define CX23888_IR_WAKE1_REG 0x170028
107 #define CX23888_IR_WAKE2_REG 0x17002C
108 #define CX23888_IR_MASK0_REG 0x170030
109 #define CX23888_IR_MASK1_REG 0x170034
110 #define CX23888_IR_MAKS2_REG 0x170038
111 #define CX23888_IR_DPIPG_REG 0x17003C
112 #define CX23888_IR_LEARN_REG 0x170044
113 
114 #define CX23888_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */
115 #define CX23888_IR_REFCLK_FREQ (CX23888_VIDCLK_FREQ / 2)
116 
117 /*
118  * We use this union internally for convenience, but callers to tx_write
119  * and rx_read will be expecting records of type struct ir_raw_event.
120  * Always ensure the size of this union is dictated by struct ir_raw_event.
121  */
125 };
126 
127 #define CX23888_IR_RX_KFIFO_SIZE (256 * sizeof(union cx23888_ir_fifo_rec))
128 #define CX23888_IR_TX_KFIFO_SIZE (256 * sizeof(union cx23888_ir_fifo_rec))
129 
131  struct v4l2_subdev sd;
132  struct cx23885_dev *dev;
135 
140 
141  struct kfifo rx_kfifo;
143 
147 };
148 
149 static inline struct cx23888_ir_state *to_state(struct v4l2_subdev *sd)
150 {
151  return v4l2_get_subdevdata(sd);
152 }
153 
154 /*
155  * IR register block read and write functions
156  */
157 static
158 inline int cx23888_ir_write4(struct cx23885_dev *dev, u32 addr, u32 value)
159 {
160  cx_write(addr, value);
161  return 0;
162 }
163 
164 static inline u32 cx23888_ir_read4(struct cx23885_dev *dev, u32 addr)
165 {
166  return cx_read(addr);
167 }
168 
169 static inline int cx23888_ir_and_or4(struct cx23885_dev *dev, u32 addr,
170  u32 and_mask, u32 or_value)
171 {
172  cx_andor(addr, ~and_mask, or_value);
173  return 0;
174 }
175 
176 /*
177  * Rx and Tx Clock Divider register computations
178  *
179  * Note the largest clock divider value of 0xffff corresponds to:
180  * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
181  * which fits in 21 bits, so we'll use unsigned int for time arguments.
182  */
183 static inline u16 count_to_clock_divider(unsigned int d)
184 {
185  if (d > RXCLK_RCD + 1)
186  d = RXCLK_RCD;
187  else if (d < 2)
188  d = 1;
189  else
190  d--;
191  return (u16) d;
192 }
193 
194 static inline u16 ns_to_clock_divider(unsigned int ns)
195 {
196  return count_to_clock_divider(
197  DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
198 }
199 
200 static inline unsigned int clock_divider_to_ns(unsigned int divider)
201 {
202  /* Period of the Rx or Tx clock in ns */
203  return DIV_ROUND_CLOSEST((divider + 1) * 1000,
204  CX23888_IR_REFCLK_FREQ / 1000000);
205 }
206 
207 static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
208 {
209  return count_to_clock_divider(
211 }
212 
213 static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
214 {
215  return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, (divider + 1) * 16);
216 }
217 
218 static inline u16 freq_to_clock_divider(unsigned int freq,
219  unsigned int rollovers)
220 {
221  return count_to_clock_divider(
222  DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * rollovers));
223 }
224 
225 static inline unsigned int clock_divider_to_freq(unsigned int divider,
226  unsigned int rollovers)
227 {
229  (divider + 1) * rollovers);
230 }
231 
232 /*
233  * Low Pass Filter register calculations
234  *
235  * Note the largest count value of 0xffff corresponds to:
236  * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
237  * which fits in 21 bits, so we'll use unsigned int for time arguments.
238  */
239 static inline u16 count_to_lpf_count(unsigned int d)
240 {
241  if (d > FILTR_LPF)
242  d = FILTR_LPF;
243  else if (d < 4)
244  d = 0;
245  return (u16) d;
246 }
247 
248 static inline u16 ns_to_lpf_count(unsigned int ns)
249 {
250  return count_to_lpf_count(
251  DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
252 }
253 
254 static inline unsigned int lpf_count_to_ns(unsigned int count)
255 {
256  /* Duration of the Low Pass Filter rejection window in ns */
257  return DIV_ROUND_CLOSEST(count * 1000,
258  CX23888_IR_REFCLK_FREQ / 1000000);
259 }
260 
261 static inline unsigned int lpf_count_to_us(unsigned int count)
262 {
263  /* Duration of the Low Pass Filter rejection window in us */
264  return DIV_ROUND_CLOSEST(count, CX23888_IR_REFCLK_FREQ / 1000000);
265 }
266 
267 /*
268  * FIFO register pulse width count compuations
269  */
270 static u32 clock_divider_to_resolution(u16 divider)
271 {
272  /*
273  * Resolution is the duration of 1 tick of the readable portion of
274  * of the pulse width counter as read from the FIFO. The two lsb's are
275  * not readable, hence the << 2. This function returns ns.
276  */
277  return DIV_ROUND_CLOSEST((1 << 2) * ((u32) divider + 1) * 1000,
278  CX23888_IR_REFCLK_FREQ / 1000000);
279 }
280 
281 static u64 pulse_width_count_to_ns(u16 count, u16 divider)
282 {
283  u64 n;
284  u32 rem;
285 
286  /*
287  * The 2 lsb's of the pulse width timer count are not readable, hence
288  * the (count << 2) | 0x3
289  */
290  n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
291  rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => ns */
292  if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
293  n++;
294  return n;
295 }
296 
297 static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
298 {
299  u64 n;
300  u32 rem;
301 
302  /*
303  * The 2 lsb's of the pulse width timer count are not readable, hence
304  * the (count << 2) | 0x3
305  */
306  n = (((u64) count << 2) | 0x3) * (divider + 1); /* cycles */
307  rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
308  if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
309  n++;
310  return (unsigned int) n;
311 }
312 
313 /*
314  * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
315  *
316  * The total pulse clock count is an 18 bit pulse width timer count as the most
317  * significant part and (up to) 16 bit clock divider count as a modulus.
318  * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
319  * width timer count's least significant bit.
320  */
321 static u64 ns_to_pulse_clocks(u32 ns)
322 {
323  u64 clocks;
324  u32 rem;
325  clocks = CX23888_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles */
326  rem = do_div(clocks, 1000); /* /1000 = cycles */
327  if (rem >= 1000 / 2)
328  clocks++;
329  return clocks;
330 }
331 
332 static u16 pulse_clocks_to_clock_divider(u64 count)
333 {
334  do_div(count, (FIFO_RXTX << 2) | 0x3);
335 
336  /* net result needs to be rounded down and decremented by 1 */
337  if (count > RXCLK_RCD + 1)
338  count = RXCLK_RCD;
339  else if (count < 2)
340  count = 1;
341  else
342  count--;
343  return (u16) count;
344 }
345 
346 /*
347  * IR Control Register helpers
348  */
352 };
353 
357 };
358 
359 static inline void control_tx_irq_watermark(struct cx23885_dev *dev,
361 {
362  cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_TIC, level);
363 }
364 
365 static inline void control_rx_irq_watermark(struct cx23885_dev *dev,
367 {
368  cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_RIC, level);
369 }
370 
371 static inline void control_tx_enable(struct cx23885_dev *dev, bool enable)
372 {
373  cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
374  enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
375 }
376 
377 static inline void control_rx_enable(struct cx23885_dev *dev, bool enable)
378 {
379  cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
380  enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
381 }
382 
383 static inline void control_tx_modulation_enable(struct cx23885_dev *dev,
384  bool enable)
385 {
386  cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_MOD,
387  enable ? CNTRL_MOD : 0);
388 }
389 
390 static inline void control_rx_demodulation_enable(struct cx23885_dev *dev,
391  bool enable)
392 {
393  cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_DMD,
394  enable ? CNTRL_DMD : 0);
395 }
396 
397 static inline void control_rx_s_edge_detection(struct cx23885_dev *dev,
398  u32 edge_types)
399 {
400  cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
401  edge_types & CNTRL_EDG_BOTH);
402 }
403 
404 static void control_rx_s_carrier_window(struct cx23885_dev *dev,
405  unsigned int carrier,
406  unsigned int *carrier_range_low,
407  unsigned int *carrier_range_high)
408 {
409  u32 v;
410  unsigned int c16 = carrier * 16;
411 
412  if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
413  v = CNTRL_WIN_3_4;
414  *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
415  } else {
416  v = CNTRL_WIN_3_3;
417  *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
418  }
419 
420  if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
421  v |= CNTRL_WIN_4_3;
422  *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
423  } else {
424  v |= CNTRL_WIN_3_3;
425  *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
426  }
427  cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_WIN, v);
428 }
429 
430 static inline void control_tx_polarity_invert(struct cx23885_dev *dev,
431  bool invert)
432 {
433  cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_CPL,
434  invert ? CNTRL_CPL : 0);
435 }
436 
437 static inline void control_tx_level_invert(struct cx23885_dev *dev,
438  bool invert)
439 {
440  cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_IVO,
441  invert ? CNTRL_IVO : 0);
442 }
443 
444 /*
445  * IR Rx & Tx Clock Register helpers
446  */
447 static unsigned int txclk_tx_s_carrier(struct cx23885_dev *dev,
448  unsigned int freq,
449  u16 *divider)
450 {
451  *divider = carrier_freq_to_clock_divider(freq);
452  cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
453  return clock_divider_to_carrier_freq(*divider);
454 }
455 
456 static unsigned int rxclk_rx_s_carrier(struct cx23885_dev *dev,
457  unsigned int freq,
458  u16 *divider)
459 {
460  *divider = carrier_freq_to_clock_divider(freq);
461  cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
462  return clock_divider_to_carrier_freq(*divider);
463 }
464 
465 static u32 txclk_tx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
466  u16 *divider)
467 {
468  u64 pulse_clocks;
469 
470  if (ns > IR_MAX_DURATION)
471  ns = IR_MAX_DURATION;
472  pulse_clocks = ns_to_pulse_clocks(ns);
473  *divider = pulse_clocks_to_clock_divider(pulse_clocks);
474  cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
475  return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
476 }
477 
478 static u32 rxclk_rx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
479  u16 *divider)
480 {
481  u64 pulse_clocks;
482 
483  if (ns > IR_MAX_DURATION)
484  ns = IR_MAX_DURATION;
485  pulse_clocks = ns_to_pulse_clocks(ns);
486  *divider = pulse_clocks_to_clock_divider(pulse_clocks);
487  cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
488  return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
489 }
490 
491 /*
492  * IR Tx Carrier Duty Cycle register helpers
493  */
494 static unsigned int cduty_tx_s_duty_cycle(struct cx23885_dev *dev,
495  unsigned int duty_cycle)
496 {
497  u32 n;
498  n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
499  if (n != 0)
500  n--;
501  if (n > 15)
502  n = 15;
503  cx23888_ir_write4(dev, CX23888_IR_CDUTY_REG, n);
504  return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
505 }
506 
507 /*
508  * IR Filter Register helpers
509  */
510 static u32 filter_rx_s_min_width(struct cx23885_dev *dev, u32 min_width_ns)
511 {
512  u32 count = ns_to_lpf_count(min_width_ns);
513  cx23888_ir_write4(dev, CX23888_IR_FILTR_REG, count);
514  return lpf_count_to_ns(count);
515 }
516 
517 /*
518  * IR IRQ Enable Register helpers
519  */
520 static inline void irqenable_rx(struct cx23885_dev *dev, u32 mask)
521 {
522  mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
523  cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG,
524  ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
525 }
526 
527 static inline void irqenable_tx(struct cx23885_dev *dev, u32 mask)
528 {
529  mask &= IRQEN_TSE;
530  cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG, ~IRQEN_TSE, mask);
531 }
532 
533 /*
534  * V4L2 Subdevice IR Ops
535  */
536 static int cx23888_ir_irq_handler(struct v4l2_subdev *sd, u32 status,
537  bool *handled)
538 {
539  struct cx23888_ir_state *state = to_state(sd);
540  struct cx23885_dev *dev = state->dev;
541  unsigned long flags;
542 
543  u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
544  u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
545  u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
546 
548  unsigned int i, j, k;
549  u32 events, v;
550  int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
551 
552  tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
553  rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
554  rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
555  ror = stats & STATS_ROR; /* Rx FIFO Over Run */
556 
557  tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
558  rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */
559  rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
560  roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
561 
562  *handled = false;
563  v4l2_dbg(2, ir_888_debug, sd, "IRQ Status: %s %s %s %s %s %s\n",
564  tsr ? "tsr" : " ", rsr ? "rsr" : " ",
565  rto ? "rto" : " ", ror ? "ror" : " ",
566  stats & STATS_TBY ? "tby" : " ",
567  stats & STATS_RBY ? "rby" : " ");
568 
569  v4l2_dbg(2, ir_888_debug, sd, "IRQ Enables: %s %s %s %s\n",
570  tse ? "tse" : " ", rse ? "rse" : " ",
571  rte ? "rte" : " ", roe ? "roe" : " ");
572 
573  /*
574  * Transmitter interrupt service
575  */
576  if (tse && tsr) {
577  /*
578  * TODO:
579  * Check the watermark threshold setting
580  * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
581  * Push the data to the hardware FIFO.
582  * If there was nothing more to send in the tx_kfifo, disable
583  * the TSR IRQ and notify the v4l2_device.
584  * If there was something in the tx_kfifo, check the tx_kfifo
585  * level and notify the v4l2_device, if it is low.
586  */
587  /* For now, inhibit TSR interrupt until Tx is implemented */
588  irqenable_tx(dev, 0);
591  *handled = true;
592  }
593 
594  /*
595  * Receiver interrupt service
596  */
597  kror = 0;
598  if ((rse && rsr) || (rte && rto)) {
599  /*
600  * Receive data on RSR to clear the STATS_RSR.
601  * Receive data on RTO, since we may not have yet hit the RSR
602  * watermark when we receive the RTO.
603  */
604  for (i = 0, v = FIFO_RX_NDV;
605  (v & FIFO_RX_NDV) && !kror; i = 0) {
606  for (j = 0;
607  (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
608  v = cx23888_ir_read4(dev, CX23888_IR_FIFO_REG);
609  rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV;
610  i++;
611  }
612  if (i == 0)
613  break;
614  j = i * sizeof(union cx23888_ir_fifo_rec);
615  k = kfifo_in_locked(&state->rx_kfifo,
616  (unsigned char *) rx_data, j,
617  &state->rx_kfifo_lock);
618  if (k != j)
619  kror++; /* rx_kfifo over run */
620  }
621  *handled = true;
622  }
623 
624  events = 0;
625  v = 0;
626  if (kror) {
628  v4l2_err(sd, "IR receiver software FIFO overrun\n");
629  }
630  if (roe && ror) {
631  /*
632  * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
633  * the Rx FIFO Over Run status (STATS_ROR)
634  */
635  v |= CNTRL_RFE;
637  v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
638  }
639  if (rte && rto) {
640  /*
641  * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
642  * the Rx Pulse Width Timer Time Out (STATS_RTO)
643  */
644  v |= CNTRL_RXE;
646  }
647  if (v) {
648  /* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
649  cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl & ~v);
650  cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl);
651  *handled = true;
652  }
653 
654  spin_lock_irqsave(&state->rx_kfifo_lock, flags);
655  if (kfifo_len(&state->rx_kfifo) >= CX23888_IR_RX_KFIFO_SIZE / 2)
657  spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
658 
659  if (events)
661  return 0;
662 }
663 
664 /* Receiver */
665 static int cx23888_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
666  ssize_t *num)
667 {
668  struct cx23888_ir_state *state = to_state(sd);
669  bool invert = (bool) atomic_read(&state->rx_invert);
670  u16 divider = (u16) atomic_read(&state->rxclk_divider);
671 
672  unsigned int i, n;
673  union cx23888_ir_fifo_rec *p;
674  unsigned u, v, w;
675 
676  n = count / sizeof(union cx23888_ir_fifo_rec)
677  * sizeof(union cx23888_ir_fifo_rec);
678  if (n == 0) {
679  *num = 0;
680  return 0;
681  }
682 
683  n = kfifo_out_locked(&state->rx_kfifo, buf, n, &state->rx_kfifo_lock);
684 
685  n /= sizeof(union cx23888_ir_fifo_rec);
686  *num = n * sizeof(union cx23888_ir_fifo_rec);
687 
688  for (p = (union cx23888_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) {
689 
690  if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
691  /* Assume RTO was because of no IR light input */
692  u = 0;
693  w = 1;
694  } else {
695  u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0;
696  if (invert)
697  u = u ? 0 : 1;
698  w = 0;
699  }
700 
701  v = (unsigned) pulse_width_count_to_ns(
702  (u16) (p->hw_fifo_data & FIFO_RXTX), divider);
703  if (v > IR_MAX_DURATION)
704  v = IR_MAX_DURATION;
705 
706  init_ir_raw_event(&p->ir_core_data);
707  p->ir_core_data.pulse = u;
708  p->ir_core_data.duration = v;
709  p->ir_core_data.timeout = w;
710 
711  v4l2_dbg(2, ir_888_debug, sd, "rx read: %10u ns %s %s\n",
712  v, u ? "mark" : "space", w ? "(timed out)" : "");
713  if (w)
714  v4l2_dbg(2, ir_888_debug, sd, "rx read: end of rx\n");
715  }
716  return 0;
717 }
718 
719 static int cx23888_ir_rx_g_parameters(struct v4l2_subdev *sd,
720  struct v4l2_subdev_ir_parameters *p)
721 {
722  struct cx23888_ir_state *state = to_state(sd);
723  mutex_lock(&state->rx_params_lock);
724  memcpy(p, &state->rx_params, sizeof(struct v4l2_subdev_ir_parameters));
725  mutex_unlock(&state->rx_params_lock);
726  return 0;
727 }
728 
729 static int cx23888_ir_rx_shutdown(struct v4l2_subdev *sd)
730 {
731  struct cx23888_ir_state *state = to_state(sd);
732  struct cx23885_dev *dev = state->dev;
733 
734  mutex_lock(&state->rx_params_lock);
735 
736  /* Disable or slow down all IR Rx circuits and counters */
737  irqenable_rx(dev, 0);
738  control_rx_enable(dev, false);
739  control_rx_demodulation_enable(dev, false);
740  control_rx_s_edge_detection(dev, CNTRL_EDG_NONE);
741  filter_rx_s_min_width(dev, 0);
742  cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, RXCLK_RCD);
743 
744  state->rx_params.shutdown = true;
745 
746  mutex_unlock(&state->rx_params_lock);
747  return 0;
748 }
749 
750 static int cx23888_ir_rx_s_parameters(struct v4l2_subdev *sd,
751  struct v4l2_subdev_ir_parameters *p)
752 {
753  struct cx23888_ir_state *state = to_state(sd);
754  struct cx23885_dev *dev = state->dev;
755  struct v4l2_subdev_ir_parameters *o = &state->rx_params;
756  u16 rxclk_divider;
757 
758  if (p->shutdown)
759  return cx23888_ir_rx_shutdown(sd);
760 
762  return -ENOSYS;
763 
764  mutex_lock(&state->rx_params_lock);
765 
766  o->shutdown = p->shutdown;
767 
769 
771  = sizeof(union cx23888_ir_fifo_rec);
772 
773  /* Before we tweak the hardware, we have to disable the receiver */
774  irqenable_rx(dev, 0);
775  control_rx_enable(dev, false);
776 
777  control_rx_demodulation_enable(dev, p->modulation);
778  o->modulation = p->modulation;
779 
780  if (p->modulation) {
781  p->carrier_freq = rxclk_rx_s_carrier(dev, p->carrier_freq,
782  &rxclk_divider);
783 
784  o->carrier_freq = p->carrier_freq;
785 
786  o->duty_cycle = p->duty_cycle = 50;
787 
788  control_rx_s_carrier_window(dev, p->carrier_freq,
790  &p->carrier_range_upper);
793 
794  p->max_pulse_width =
795  (u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider);
796  } else {
797  p->max_pulse_width =
798  rxclk_rx_s_max_pulse_width(dev, p->max_pulse_width,
799  &rxclk_divider);
800  }
802  atomic_set(&state->rxclk_divider, rxclk_divider);
803 
805  filter_rx_s_min_width(dev, p->noise_filter_min_width);
807 
808  p->resolution = clock_divider_to_resolution(rxclk_divider);
809  o->resolution = p->resolution;
810 
811  /* FIXME - make this dependent on resolution for better performance */
812  control_rx_irq_watermark(dev, RX_FIFO_HALF_FULL);
813 
814  control_rx_s_edge_detection(dev, CNTRL_EDG_BOTH);
815 
816  o->invert_level = p->invert_level;
817  atomic_set(&state->rx_invert, p->invert_level);
818 
820  o->enable = p->enable;
821  if (p->enable) {
822  unsigned long flags;
823 
824  spin_lock_irqsave(&state->rx_kfifo_lock, flags);
825  kfifo_reset(&state->rx_kfifo);
826  /* reset tx_fifo too if there is one... */
827  spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
828  if (p->interrupt_enable)
829  irqenable_rx(dev, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
830  control_rx_enable(dev, p->enable);
831  }
832 
833  mutex_unlock(&state->rx_params_lock);
834  return 0;
835 }
836 
837 /* Transmitter */
838 static int cx23888_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
839  ssize_t *num)
840 {
841  struct cx23888_ir_state *state = to_state(sd);
842  struct cx23885_dev *dev = state->dev;
843  /* For now enable the Tx FIFO Service interrupt & pretend we did work */
844  irqenable_tx(dev, IRQEN_TSE);
845  *num = count;
846  return 0;
847 }
848 
849 static int cx23888_ir_tx_g_parameters(struct v4l2_subdev *sd,
850  struct v4l2_subdev_ir_parameters *p)
851 {
852  struct cx23888_ir_state *state = to_state(sd);
853  mutex_lock(&state->tx_params_lock);
854  memcpy(p, &state->tx_params, sizeof(struct v4l2_subdev_ir_parameters));
855  mutex_unlock(&state->tx_params_lock);
856  return 0;
857 }
858 
859 static int cx23888_ir_tx_shutdown(struct v4l2_subdev *sd)
860 {
861  struct cx23888_ir_state *state = to_state(sd);
862  struct cx23885_dev *dev = state->dev;
863 
864  mutex_lock(&state->tx_params_lock);
865 
866  /* Disable or slow down all IR Tx circuits and counters */
867  irqenable_tx(dev, 0);
868  control_tx_enable(dev, false);
869  control_tx_modulation_enable(dev, false);
870  cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, TXCLK_TCD);
871 
872  state->tx_params.shutdown = true;
873 
874  mutex_unlock(&state->tx_params_lock);
875  return 0;
876 }
877 
878 static int cx23888_ir_tx_s_parameters(struct v4l2_subdev *sd,
879  struct v4l2_subdev_ir_parameters *p)
880 {
881  struct cx23888_ir_state *state = to_state(sd);
882  struct cx23885_dev *dev = state->dev;
883  struct v4l2_subdev_ir_parameters *o = &state->tx_params;
884  u16 txclk_divider;
885 
886  if (p->shutdown)
887  return cx23888_ir_tx_shutdown(sd);
888 
890  return -ENOSYS;
891 
892  mutex_lock(&state->tx_params_lock);
893 
894  o->shutdown = p->shutdown;
895 
897 
899  = sizeof(union cx23888_ir_fifo_rec);
900 
901  /* Before we tweak the hardware, we have to disable the transmitter */
902  irqenable_tx(dev, 0);
903  control_tx_enable(dev, false);
904 
905  control_tx_modulation_enable(dev, p->modulation);
906  o->modulation = p->modulation;
907 
908  if (p->modulation) {
909  p->carrier_freq = txclk_tx_s_carrier(dev, p->carrier_freq,
910  &txclk_divider);
911  o->carrier_freq = p->carrier_freq;
912 
913  p->duty_cycle = cduty_tx_s_duty_cycle(dev, p->duty_cycle);
914  o->duty_cycle = p->duty_cycle;
915 
916  p->max_pulse_width =
917  (u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider);
918  } else {
919  p->max_pulse_width =
920  txclk_tx_s_max_pulse_width(dev, p->max_pulse_width,
921  &txclk_divider);
922  }
924  atomic_set(&state->txclk_divider, txclk_divider);
925 
926  p->resolution = clock_divider_to_resolution(txclk_divider);
927  o->resolution = p->resolution;
928 
929  /* FIXME - make this dependent on resolution for better performance */
930  control_tx_irq_watermark(dev, TX_FIFO_HALF_EMPTY);
931 
932  control_tx_polarity_invert(dev, p->invert_carrier_sense);
934 
935  control_tx_level_invert(dev, p->invert_level);
936  o->invert_level = p->invert_level;
937 
939  o->enable = p->enable;
940  if (p->enable) {
941  if (p->interrupt_enable)
942  irqenable_tx(dev, IRQEN_TSE);
943  control_tx_enable(dev, p->enable);
944  }
945 
946  mutex_unlock(&state->tx_params_lock);
947  return 0;
948 }
949 
950 
951 /*
952  * V4L2 Subdevice Core Ops
953  */
954 static int cx23888_ir_log_status(struct v4l2_subdev *sd)
955 {
956  struct cx23888_ir_state *state = to_state(sd);
957  struct cx23885_dev *dev = state->dev;
958  char *s;
959  int i, j;
960 
961  u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
962  u32 txclk = cx23888_ir_read4(dev, CX23888_IR_TXCLK_REG) & TXCLK_TCD;
963  u32 rxclk = cx23888_ir_read4(dev, CX23888_IR_RXCLK_REG) & RXCLK_RCD;
964  u32 cduty = cx23888_ir_read4(dev, CX23888_IR_CDUTY_REG) & CDUTY_CDC;
965  u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
966  u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
967  u32 filtr = cx23888_ir_read4(dev, CX23888_IR_FILTR_REG) & FILTR_LPF;
968 
969  v4l2_info(sd, "IR Receiver:\n");
970  v4l2_info(sd, "\tEnabled: %s\n",
971  cntrl & CNTRL_RXE ? "yes" : "no");
972  v4l2_info(sd, "\tDemodulation from a carrier: %s\n",
973  cntrl & CNTRL_DMD ? "enabled" : "disabled");
974  v4l2_info(sd, "\tFIFO: %s\n",
975  cntrl & CNTRL_RFE ? "enabled" : "disabled");
976  switch (cntrl & CNTRL_EDG) {
977  case CNTRL_EDG_NONE:
978  s = "disabled";
979  break;
980  case CNTRL_EDG_FALL:
981  s = "falling edge";
982  break;
983  case CNTRL_EDG_RISE:
984  s = "rising edge";
985  break;
986  case CNTRL_EDG_BOTH:
987  s = "rising & falling edges";
988  break;
989  default:
990  s = "??? edge";
991  break;
992  }
993  v4l2_info(sd, "\tPulse timers' start/stop trigger: %s\n", s);
994  v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
995  cntrl & CNTRL_R ? "not loaded" : "overflow marker");
996  v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
997  cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
998  v4l2_info(sd, "\tLoopback mode: %s\n",
999  cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
1000  if (cntrl & CNTRL_DMD) {
1001  v4l2_info(sd, "\tExpected carrier (16 clocks): %u Hz\n",
1002  clock_divider_to_carrier_freq(rxclk));
1003  switch (cntrl & CNTRL_WIN) {
1004  case CNTRL_WIN_3_3:
1005  i = 3;
1006  j = 3;
1007  break;
1008  case CNTRL_WIN_4_3:
1009  i = 4;
1010  j = 3;
1011  break;
1012  case CNTRL_WIN_3_4:
1013  i = 3;
1014  j = 4;
1015  break;
1016  case CNTRL_WIN_4_4:
1017  i = 4;
1018  j = 4;
1019  break;
1020  default:
1021  i = 0;
1022  j = 0;
1023  break;
1024  }
1025  v4l2_info(sd, "\tNext carrier edge window: 16 clocks "
1026  "-%1d/+%1d, %u to %u Hz\n", i, j,
1027  clock_divider_to_freq(rxclk, 16 + j),
1028  clock_divider_to_freq(rxclk, 16 - i));
1029  }
1030  v4l2_info(sd, "\tMax measurable pulse width: %u us, %llu ns\n",
1031  pulse_width_count_to_us(FIFO_RXTX, rxclk),
1032  pulse_width_count_to_ns(FIFO_RXTX, rxclk));
1033  v4l2_info(sd, "\tLow pass filter: %s\n",
1034  filtr ? "enabled" : "disabled");
1035  if (filtr)
1036  v4l2_info(sd, "\tMin acceptable pulse width (LPF): %u us, "
1037  "%u ns\n",
1038  lpf_count_to_us(filtr),
1039  lpf_count_to_ns(filtr));
1040  v4l2_info(sd, "\tPulse width timer timed-out: %s\n",
1041  stats & STATS_RTO ? "yes" : "no");
1042  v4l2_info(sd, "\tPulse width timer time-out intr: %s\n",
1043  irqen & IRQEN_RTE ? "enabled" : "disabled");
1044  v4l2_info(sd, "\tFIFO overrun: %s\n",
1045  stats & STATS_ROR ? "yes" : "no");
1046  v4l2_info(sd, "\tFIFO overrun interrupt: %s\n",
1047  irqen & IRQEN_ROE ? "enabled" : "disabled");
1048  v4l2_info(sd, "\tBusy: %s\n",
1049  stats & STATS_RBY ? "yes" : "no");
1050  v4l2_info(sd, "\tFIFO service requested: %s\n",
1051  stats & STATS_RSR ? "yes" : "no");
1052  v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1053  irqen & IRQEN_RSE ? "enabled" : "disabled");
1054 
1055  v4l2_info(sd, "IR Transmitter:\n");
1056  v4l2_info(sd, "\tEnabled: %s\n",
1057  cntrl & CNTRL_TXE ? "yes" : "no");
1058  v4l2_info(sd, "\tModulation onto a carrier: %s\n",
1059  cntrl & CNTRL_MOD ? "enabled" : "disabled");
1060  v4l2_info(sd, "\tFIFO: %s\n",
1061  cntrl & CNTRL_TFE ? "enabled" : "disabled");
1062  v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
1063  cntrl & CNTRL_TIC ? "not empty" : "half full or less");
1064  v4l2_info(sd, "\tOutput pin level inversion %s\n",
1065  cntrl & CNTRL_IVO ? "yes" : "no");
1066  v4l2_info(sd, "\tCarrier polarity: %s\n",
1067  cntrl & CNTRL_CPL ? "space:burst mark:noburst"
1068  : "space:noburst mark:burst");
1069  if (cntrl & CNTRL_MOD) {
1070  v4l2_info(sd, "\tCarrier (16 clocks): %u Hz\n",
1071  clock_divider_to_carrier_freq(txclk));
1072  v4l2_info(sd, "\tCarrier duty cycle: %2u/16\n",
1073  cduty + 1);
1074  }
1075  v4l2_info(sd, "\tMax pulse width: %u us, %llu ns\n",
1076  pulse_width_count_to_us(FIFO_RXTX, txclk),
1077  pulse_width_count_to_ns(FIFO_RXTX, txclk));
1078  v4l2_info(sd, "\tBusy: %s\n",
1079  stats & STATS_TBY ? "yes" : "no");
1080  v4l2_info(sd, "\tFIFO service requested: %s\n",
1081  stats & STATS_TSR ? "yes" : "no");
1082  v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1083  irqen & IRQEN_TSE ? "enabled" : "disabled");
1084 
1085  return 0;
1086 }
1087 
1088 static inline int cx23888_ir_dbg_match(const struct v4l2_dbg_match *match)
1089 {
1090  return match->type == V4L2_CHIP_MATCH_HOST && match->addr == 2;
1091 }
1092 
1093 static int cx23888_ir_g_chip_ident(struct v4l2_subdev *sd,
1094  struct v4l2_dbg_chip_ident *chip)
1095 {
1096  struct cx23888_ir_state *state = to_state(sd);
1097 
1098  if (cx23888_ir_dbg_match(&chip->match)) {
1099  chip->ident = state->id;
1100  chip->revision = state->rev;
1101  }
1102  return 0;
1103 }
1104 
1105 #ifdef CONFIG_VIDEO_ADV_DEBUG
1106 static int cx23888_ir_g_register(struct v4l2_subdev *sd,
1107  struct v4l2_dbg_register *reg)
1108 {
1109  struct cx23888_ir_state *state = to_state(sd);
1110  u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1111 
1112  if (!cx23888_ir_dbg_match(&reg->match))
1113  return -EINVAL;
1114  if ((addr & 0x3) != 0)
1115  return -EINVAL;
1116  if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1117  return -EINVAL;
1118  if (!capable(CAP_SYS_ADMIN))
1119  return -EPERM;
1120  reg->size = 4;
1121  reg->val = cx23888_ir_read4(state->dev, addr);
1122  return 0;
1123 }
1124 
1125 static int cx23888_ir_s_register(struct v4l2_subdev *sd,
1126  struct v4l2_dbg_register *reg)
1127 {
1128  struct cx23888_ir_state *state = to_state(sd);
1129  u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1130 
1131  if (!cx23888_ir_dbg_match(&reg->match))
1132  return -EINVAL;
1133  if ((addr & 0x3) != 0)
1134  return -EINVAL;
1135  if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1136  return -EINVAL;
1137  if (!capable(CAP_SYS_ADMIN))
1138  return -EPERM;
1139  cx23888_ir_write4(state->dev, addr, reg->val);
1140  return 0;
1141 }
1142 #endif
1143 
1144 static const struct v4l2_subdev_core_ops cx23888_ir_core_ops = {
1145  .g_chip_ident = cx23888_ir_g_chip_ident,
1146  .log_status = cx23888_ir_log_status,
1147 #ifdef CONFIG_VIDEO_ADV_DEBUG
1148  .g_register = cx23888_ir_g_register,
1149  .s_register = cx23888_ir_s_register,
1150 #endif
1151  .interrupt_service_routine = cx23888_ir_irq_handler,
1152 };
1153 
1154 static const struct v4l2_subdev_ir_ops cx23888_ir_ir_ops = {
1155  .rx_read = cx23888_ir_rx_read,
1156  .rx_g_parameters = cx23888_ir_rx_g_parameters,
1157  .rx_s_parameters = cx23888_ir_rx_s_parameters,
1158 
1159  .tx_write = cx23888_ir_tx_write,
1160  .tx_g_parameters = cx23888_ir_tx_g_parameters,
1161  .tx_s_parameters = cx23888_ir_tx_s_parameters,
1162 };
1163 
1164 static const struct v4l2_subdev_ops cx23888_ir_controller_ops = {
1165  .core = &cx23888_ir_core_ops,
1166  .ir = &cx23888_ir_ir_ops,
1167 };
1168 
1169 static const struct v4l2_subdev_ir_parameters default_rx_params = {
1170  .bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
1172 
1173  .enable = false,
1174  .interrupt_enable = false,
1175  .shutdown = true,
1176 
1177  .modulation = true,
1178  .carrier_freq = 36000, /* 36 kHz - RC-5, RC-6, and RC-6A carrier */
1179 
1180  /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1181  /* RC-6A: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1182  .noise_filter_min_width = 333333, /* ns */
1183  .carrier_range_lower = 35000,
1184  .carrier_range_upper = 37000,
1185  .invert_level = false,
1186 };
1187 
1188 static const struct v4l2_subdev_ir_parameters default_tx_params = {
1189  .bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
1191 
1192  .enable = false,
1193  .interrupt_enable = false,
1194  .shutdown = true,
1195 
1196  .modulation = true,
1197  .carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
1198  .duty_cycle = 25, /* 25 % - RC-5 carrier */
1199  .invert_level = false,
1200  .invert_carrier_sense = false,
1201 };
1202 
1204 {
1205  struct cx23888_ir_state *state;
1206  struct v4l2_subdev *sd;
1207  struct v4l2_subdev_ir_parameters default_params;
1208  int ret;
1209 
1210  state = kzalloc(sizeof(struct cx23888_ir_state), GFP_KERNEL);
1211  if (state == NULL)
1212  return -ENOMEM;
1213 
1214  spin_lock_init(&state->rx_kfifo_lock);
1216  return -ENOMEM;
1217 
1218  state->dev = dev;
1219  state->id = V4L2_IDENT_CX23888_IR;
1220  state->rev = 0;
1221  sd = &state->sd;
1222 
1223  v4l2_subdev_init(sd, &cx23888_ir_controller_ops);
1224  v4l2_set_subdevdata(sd, state);
1225  /* FIXME - fix the formatting of dev->v4l2_dev.name and use it */
1226  snprintf(sd->name, sizeof(sd->name), "%s/888-ir", dev->name);
1227  sd->grp_id = CX23885_HW_888_IR;
1228 
1229  ret = v4l2_device_register_subdev(&dev->v4l2_dev, sd);
1230  if (ret == 0) {
1231  /*
1232  * Ensure no interrupts arrive from '888 specific conditions,
1233  * since we ignore them in this driver to have commonality with
1234  * similar IR controller cores.
1235  */
1236  cx23888_ir_write4(dev, CX23888_IR_IRQEN_REG, 0);
1237 
1238  mutex_init(&state->rx_params_lock);
1239  memcpy(&default_params, &default_rx_params,
1240  sizeof(struct v4l2_subdev_ir_parameters));
1241  v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
1242 
1243  mutex_init(&state->tx_params_lock);
1244  memcpy(&default_params, &default_tx_params,
1245  sizeof(struct v4l2_subdev_ir_parameters));
1246  v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
1247  } else {
1248  kfifo_free(&state->rx_kfifo);
1249  }
1250  return ret;
1251 }
1252 
1254 {
1255  struct v4l2_subdev *sd;
1256  struct cx23888_ir_state *state;
1257 
1259  if (sd == NULL)
1260  return -ENODEV;
1261 
1262  cx23888_ir_rx_shutdown(sd);
1263  cx23888_ir_tx_shutdown(sd);
1264 
1265  state = to_state(sd);
1267  kfifo_free(&state->rx_kfifo);
1268  kfree(state);
1269  /* Nothing more to free() as state held the actual v4l2_subdev object */
1270  return 0;
1271 }