Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
dm-crypt.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2003 Christophe Saout <[email protected]>
3  * Copyright (C) 2004 Clemens Fruhwirth <[email protected]>
4  * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include <linux/completion.h>
10 #include <linux/err.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/bio.h>
15 #include <linux/blkdev.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/crypto.h>
19 #include <linux/workqueue.h>
20 #include <linux/backing-dev.h>
21 #include <linux/percpu.h>
22 #include <linux/atomic.h>
23 #include <linux/scatterlist.h>
24 #include <asm/page.h>
25 #include <asm/unaligned.h>
26 #include <crypto/hash.h>
27 #include <crypto/md5.h>
28 #include <crypto/algapi.h>
29 
30 #include <linux/device-mapper.h>
31 
32 #define DM_MSG_PREFIX "crypt"
33 
34 /*
35  * context holding the current state of a multi-part conversion
36  */
39  struct bio *bio_in;
40  struct bio *bio_out;
41  unsigned int offset_in;
42  unsigned int offset_out;
43  unsigned int idx_in;
44  unsigned int idx_out;
47 };
48 
49 /*
50  * per bio private data
51  */
52 struct dm_crypt_io {
53  struct crypt_config *cc;
54  struct bio *base_bio;
55  struct work_struct work;
56 
58 
60  int error;
63 };
64 
70 };
71 
72 struct crypt_config;
73 
75  int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
76  const char *opts);
77  void (*dtr)(struct crypt_config *cc);
78  int (*init)(struct crypt_config *cc);
79  int (*wipe)(struct crypt_config *cc);
80  int (*generator)(struct crypt_config *cc, u8 *iv,
81  struct dm_crypt_request *dmreq);
82  int (*post)(struct crypt_config *cc, u8 *iv,
83  struct dm_crypt_request *dmreq);
84 };
85 
88  u8 *salt;
89 };
90 
92  int shift;
93 };
94 
95 #define LMK_SEED_SIZE 64 /* hash + 0 */
98  u8 *seed;
99 };
100 
101 /*
102  * Crypt: maps a linear range of a block device
103  * and encrypts / decrypts at the same time.
104  */
106 
107 /*
108  * Duplicated per-CPU state for cipher.
109  */
110 struct crypt_cpu {
112 };
113 
114 /*
115  * The fields in here must be read only after initialization,
116  * changing state should be in crypt_cpu.
117  */
118 struct crypt_config {
119  struct dm_dev *dev;
121 
122  /*
123  * pool for per bio private data, crypto requests and
124  * encryption requeusts/buffer pages
125  */
129  struct bio_set *bs;
130 
133 
134  char *cipher;
136 
138  union {
142  } iv_gen_private;
144  unsigned int iv_size;
145 
146  /*
147  * Duplicated per cpu state. Access through
148  * per_cpu_ptr() only.
149  */
151 
152  /* ESSIV: struct crypto_cipher *essiv_tfm */
153  void *iv_private;
155  unsigned tfms_count;
156 
157  /*
158  * Layout of each crypto request:
159  *
160  * struct ablkcipher_request
161  * context
162  * padding
163  * struct dm_crypt_request
164  * padding
165  * IV
166  *
167  * The padding is added so that dm_crypt_request and the IV are
168  * correctly aligned.
169  */
170  unsigned int dmreq_start;
171 
172  unsigned long flags;
173  unsigned int key_size;
174  unsigned int key_parts;
175  u8 key[0];
176 };
177 
178 #define MIN_IOS 16
179 #define MIN_POOL_PAGES 32
180 
181 static struct kmem_cache *_crypt_io_pool;
182 
183 static void clone_init(struct dm_crypt_io *, struct bio *);
184 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
185 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
186 
187 static struct crypt_cpu *this_crypt_config(struct crypt_config *cc)
188 {
189  return this_cpu_ptr(cc->cpu);
190 }
191 
192 /*
193  * Use this to access cipher attributes that are the same for each CPU.
194  */
195 static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
196 {
197  return cc->tfms[0];
198 }
199 
200 /*
201  * Different IV generation algorithms:
202  *
203  * plain: the initial vector is the 32-bit little-endian version of the sector
204  * number, padded with zeros if necessary.
205  *
206  * plain64: the initial vector is the 64-bit little-endian version of the sector
207  * number, padded with zeros if necessary.
208  *
209  * essiv: "encrypted sector|salt initial vector", the sector number is
210  * encrypted with the bulk cipher using a salt as key. The salt
211  * should be derived from the bulk cipher's key via hashing.
212  *
213  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
214  * (needed for LRW-32-AES and possible other narrow block modes)
215  *
216  * null: the initial vector is always zero. Provides compatibility with
217  * obsolete loop_fish2 devices. Do not use for new devices.
218  *
219  * lmk: Compatible implementation of the block chaining mode used
220  * by the Loop-AES block device encryption system
221  * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
222  * It operates on full 512 byte sectors and uses CBC
223  * with an IV derived from the sector number, the data and
224  * optionally extra IV seed.
225  * This means that after decryption the first block
226  * of sector must be tweaked according to decrypted data.
227  * Loop-AES can use three encryption schemes:
228  * version 1: is plain aes-cbc mode
229  * version 2: uses 64 multikey scheme with lmk IV generator
230  * version 3: the same as version 2 with additional IV seed
231  * (it uses 65 keys, last key is used as IV seed)
232  *
233  * plumb: unimplemented, see:
234  * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
235  */
236 
237 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
238  struct dm_crypt_request *dmreq)
239 {
240  memset(iv, 0, cc->iv_size);
241  *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
242 
243  return 0;
244 }
245 
246 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
247  struct dm_crypt_request *dmreq)
248 {
249  memset(iv, 0, cc->iv_size);
250  *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
251 
252  return 0;
253 }
254 
255 /* Initialise ESSIV - compute salt but no local memory allocations */
256 static int crypt_iv_essiv_init(struct crypt_config *cc)
257 {
258  struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
259  struct hash_desc desc;
260  struct scatterlist sg;
261  struct crypto_cipher *essiv_tfm;
262  int err;
263 
264  sg_init_one(&sg, cc->key, cc->key_size);
265  desc.tfm = essiv->hash_tfm;
267 
268  err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
269  if (err)
270  return err;
271 
272  essiv_tfm = cc->iv_private;
273 
274  err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
275  crypto_hash_digestsize(essiv->hash_tfm));
276  if (err)
277  return err;
278 
279  return 0;
280 }
281 
282 /* Wipe salt and reset key derived from volume key */
283 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
284 {
285  struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
286  unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
287  struct crypto_cipher *essiv_tfm;
288  int r, err = 0;
289 
290  memset(essiv->salt, 0, salt_size);
291 
292  essiv_tfm = cc->iv_private;
293  r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
294  if (r)
295  err = r;
296 
297  return err;
298 }
299 
300 /* Set up per cpu cipher state */
301 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
302  struct dm_target *ti,
303  u8 *salt, unsigned saltsize)
304 {
305  struct crypto_cipher *essiv_tfm;
306  int err;
307 
308  /* Setup the essiv_tfm with the given salt */
309  essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
310  if (IS_ERR(essiv_tfm)) {
311  ti->error = "Error allocating crypto tfm for ESSIV";
312  return essiv_tfm;
313  }
314 
315  if (crypto_cipher_blocksize(essiv_tfm) !=
316  crypto_ablkcipher_ivsize(any_tfm(cc))) {
317  ti->error = "Block size of ESSIV cipher does "
318  "not match IV size of block cipher";
319  crypto_free_cipher(essiv_tfm);
320  return ERR_PTR(-EINVAL);
321  }
322 
323  err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
324  if (err) {
325  ti->error = "Failed to set key for ESSIV cipher";
326  crypto_free_cipher(essiv_tfm);
327  return ERR_PTR(err);
328  }
329 
330  return essiv_tfm;
331 }
332 
333 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
334 {
335  struct crypto_cipher *essiv_tfm;
336  struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
337 
338  crypto_free_hash(essiv->hash_tfm);
339  essiv->hash_tfm = NULL;
340 
341  kzfree(essiv->salt);
342  essiv->salt = NULL;
343 
344  essiv_tfm = cc->iv_private;
345 
346  if (essiv_tfm)
347  crypto_free_cipher(essiv_tfm);
348 
349  cc->iv_private = NULL;
350 }
351 
352 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
353  const char *opts)
354 {
355  struct crypto_cipher *essiv_tfm = NULL;
356  struct crypto_hash *hash_tfm = NULL;
357  u8 *salt = NULL;
358  int err;
359 
360  if (!opts) {
361  ti->error = "Digest algorithm missing for ESSIV mode";
362  return -EINVAL;
363  }
364 
365  /* Allocate hash algorithm */
366  hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
367  if (IS_ERR(hash_tfm)) {
368  ti->error = "Error initializing ESSIV hash";
369  err = PTR_ERR(hash_tfm);
370  goto bad;
371  }
372 
373  salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
374  if (!salt) {
375  ti->error = "Error kmallocing salt storage in ESSIV";
376  err = -ENOMEM;
377  goto bad;
378  }
379 
380  cc->iv_gen_private.essiv.salt = salt;
381  cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
382 
383  essiv_tfm = setup_essiv_cpu(cc, ti, salt,
384  crypto_hash_digestsize(hash_tfm));
385  if (IS_ERR(essiv_tfm)) {
386  crypt_iv_essiv_dtr(cc);
387  return PTR_ERR(essiv_tfm);
388  }
389  cc->iv_private = essiv_tfm;
390 
391  return 0;
392 
393 bad:
394  if (hash_tfm && !IS_ERR(hash_tfm))
395  crypto_free_hash(hash_tfm);
396  kfree(salt);
397  return err;
398 }
399 
400 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
401  struct dm_crypt_request *dmreq)
402 {
403  struct crypto_cipher *essiv_tfm = cc->iv_private;
404 
405  memset(iv, 0, cc->iv_size);
406  *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
407  crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
408 
409  return 0;
410 }
411 
412 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
413  const char *opts)
414 {
415  unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
416  int log = ilog2(bs);
417 
418  /* we need to calculate how far we must shift the sector count
419  * to get the cipher block count, we use this shift in _gen */
420 
421  if (1 << log != bs) {
422  ti->error = "cypher blocksize is not a power of 2";
423  return -EINVAL;
424  }
425 
426  if (log > 9) {
427  ti->error = "cypher blocksize is > 512";
428  return -EINVAL;
429  }
430 
431  cc->iv_gen_private.benbi.shift = 9 - log;
432 
433  return 0;
434 }
435 
436 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
437 {
438 }
439 
440 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
441  struct dm_crypt_request *dmreq)
442 {
443  __be64 val;
444 
445  memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
446 
447  val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
448  put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
449 
450  return 0;
451 }
452 
453 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
454  struct dm_crypt_request *dmreq)
455 {
456  memset(iv, 0, cc->iv_size);
457 
458  return 0;
459 }
460 
461 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
462 {
463  struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
464 
465  if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
466  crypto_free_shash(lmk->hash_tfm);
467  lmk->hash_tfm = NULL;
468 
469  kzfree(lmk->seed);
470  lmk->seed = NULL;
471 }
472 
473 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
474  const char *opts)
475 {
476  struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
477 
478  lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
479  if (IS_ERR(lmk->hash_tfm)) {
480  ti->error = "Error initializing LMK hash";
481  return PTR_ERR(lmk->hash_tfm);
482  }
483 
484  /* No seed in LMK version 2 */
485  if (cc->key_parts == cc->tfms_count) {
486  lmk->seed = NULL;
487  return 0;
488  }
489 
490  lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
491  if (!lmk->seed) {
492  crypt_iv_lmk_dtr(cc);
493  ti->error = "Error kmallocing seed storage in LMK";
494  return -ENOMEM;
495  }
496 
497  return 0;
498 }
499 
500 static int crypt_iv_lmk_init(struct crypt_config *cc)
501 {
502  struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
503  int subkey_size = cc->key_size / cc->key_parts;
504 
505  /* LMK seed is on the position of LMK_KEYS + 1 key */
506  if (lmk->seed)
507  memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
508  crypto_shash_digestsize(lmk->hash_tfm));
509 
510  return 0;
511 }
512 
513 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
514 {
515  struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
516 
517  if (lmk->seed)
518  memset(lmk->seed, 0, LMK_SEED_SIZE);
519 
520  return 0;
521 }
522 
523 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
524  struct dm_crypt_request *dmreq,
525  u8 *data)
526 {
527  struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
528  struct {
529  struct shash_desc desc;
530  char ctx[crypto_shash_descsize(lmk->hash_tfm)];
531  } sdesc;
532  struct md5_state md5state;
533  u32 buf[4];
534  int i, r;
535 
536  sdesc.desc.tfm = lmk->hash_tfm;
537  sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
538 
539  r = crypto_shash_init(&sdesc.desc);
540  if (r)
541  return r;
542 
543  if (lmk->seed) {
544  r = crypto_shash_update(&sdesc.desc, lmk->seed, LMK_SEED_SIZE);
545  if (r)
546  return r;
547  }
548 
549  /* Sector is always 512B, block size 16, add data of blocks 1-31 */
550  r = crypto_shash_update(&sdesc.desc, data + 16, 16 * 31);
551  if (r)
552  return r;
553 
554  /* Sector is cropped to 56 bits here */
555  buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
556  buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
557  buf[2] = cpu_to_le32(4024);
558  buf[3] = 0;
559  r = crypto_shash_update(&sdesc.desc, (u8 *)buf, sizeof(buf));
560  if (r)
561  return r;
562 
563  /* No MD5 padding here */
564  r = crypto_shash_export(&sdesc.desc, &md5state);
565  if (r)
566  return r;
567 
568  for (i = 0; i < MD5_HASH_WORDS; i++)
569  __cpu_to_le32s(&md5state.hash[i]);
570  memcpy(iv, &md5state.hash, cc->iv_size);
571 
572  return 0;
573 }
574 
575 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
576  struct dm_crypt_request *dmreq)
577 {
578  u8 *src;
579  int r = 0;
580 
581  if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
582  src = kmap_atomic(sg_page(&dmreq->sg_in));
583  r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
584  kunmap_atomic(src);
585  } else
586  memset(iv, 0, cc->iv_size);
587 
588  return r;
589 }
590 
591 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
592  struct dm_crypt_request *dmreq)
593 {
594  u8 *dst;
595  int r;
596 
597  if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
598  return 0;
599 
600  dst = kmap_atomic(sg_page(&dmreq->sg_out));
601  r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
602 
603  /* Tweak the first block of plaintext sector */
604  if (!r)
605  crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
606 
607  kunmap_atomic(dst);
608  return r;
609 }
610 
611 static struct crypt_iv_operations crypt_iv_plain_ops = {
612  .generator = crypt_iv_plain_gen
613 };
614 
615 static struct crypt_iv_operations crypt_iv_plain64_ops = {
616  .generator = crypt_iv_plain64_gen
617 };
618 
619 static struct crypt_iv_operations crypt_iv_essiv_ops = {
620  .ctr = crypt_iv_essiv_ctr,
621  .dtr = crypt_iv_essiv_dtr,
622  .init = crypt_iv_essiv_init,
623  .wipe = crypt_iv_essiv_wipe,
624  .generator = crypt_iv_essiv_gen
625 };
626 
627 static struct crypt_iv_operations crypt_iv_benbi_ops = {
628  .ctr = crypt_iv_benbi_ctr,
629  .dtr = crypt_iv_benbi_dtr,
630  .generator = crypt_iv_benbi_gen
631 };
632 
633 static struct crypt_iv_operations crypt_iv_null_ops = {
634  .generator = crypt_iv_null_gen
635 };
636 
637 static struct crypt_iv_operations crypt_iv_lmk_ops = {
638  .ctr = crypt_iv_lmk_ctr,
639  .dtr = crypt_iv_lmk_dtr,
640  .init = crypt_iv_lmk_init,
641  .wipe = crypt_iv_lmk_wipe,
642  .generator = crypt_iv_lmk_gen,
643  .post = crypt_iv_lmk_post
644 };
645 
646 static void crypt_convert_init(struct crypt_config *cc,
647  struct convert_context *ctx,
648  struct bio *bio_out, struct bio *bio_in,
650 {
651  ctx->bio_in = bio_in;
652  ctx->bio_out = bio_out;
653  ctx->offset_in = 0;
654  ctx->offset_out = 0;
655  ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
656  ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
657  ctx->cc_sector = sector + cc->iv_offset;
658  init_completion(&ctx->restart);
659 }
660 
661 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
662  struct ablkcipher_request *req)
663 {
664  return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
665 }
666 
667 static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
668  struct dm_crypt_request *dmreq)
669 {
670  return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
671 }
672 
673 static u8 *iv_of_dmreq(struct crypt_config *cc,
674  struct dm_crypt_request *dmreq)
675 {
676  return (u8 *)ALIGN((unsigned long)(dmreq + 1),
677  crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
678 }
679 
680 static int crypt_convert_block(struct crypt_config *cc,
681  struct convert_context *ctx,
682  struct ablkcipher_request *req)
683 {
684  struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
685  struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
686  struct dm_crypt_request *dmreq;
687  u8 *iv;
688  int r;
689 
690  dmreq = dmreq_of_req(cc, req);
691  iv = iv_of_dmreq(cc, dmreq);
692 
693  dmreq->iv_sector = ctx->cc_sector;
694  dmreq->ctx = ctx;
695  sg_init_table(&dmreq->sg_in, 1);
696  sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
697  bv_in->bv_offset + ctx->offset_in);
698 
699  sg_init_table(&dmreq->sg_out, 1);
700  sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
701  bv_out->bv_offset + ctx->offset_out);
702 
703  ctx->offset_in += 1 << SECTOR_SHIFT;
704  if (ctx->offset_in >= bv_in->bv_len) {
705  ctx->offset_in = 0;
706  ctx->idx_in++;
707  }
708 
709  ctx->offset_out += 1 << SECTOR_SHIFT;
710  if (ctx->offset_out >= bv_out->bv_len) {
711  ctx->offset_out = 0;
712  ctx->idx_out++;
713  }
714 
715  if (cc->iv_gen_ops) {
716  r = cc->iv_gen_ops->generator(cc, iv, dmreq);
717  if (r < 0)
718  return r;
719  }
720 
721  ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
722  1 << SECTOR_SHIFT, iv);
723 
724  if (bio_data_dir(ctx->bio_in) == WRITE)
725  r = crypto_ablkcipher_encrypt(req);
726  else
727  r = crypto_ablkcipher_decrypt(req);
728 
729  if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
730  r = cc->iv_gen_ops->post(cc, iv, dmreq);
731 
732  return r;
733 }
734 
735 static void kcryptd_async_done(struct crypto_async_request *async_req,
736  int error);
737 
738 static void crypt_alloc_req(struct crypt_config *cc,
739  struct convert_context *ctx)
740 {
741  struct crypt_cpu *this_cc = this_crypt_config(cc);
742  unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
743 
744  if (!this_cc->req)
745  this_cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
746 
747  ablkcipher_request_set_tfm(this_cc->req, cc->tfms[key_index]);
748  ablkcipher_request_set_callback(this_cc->req,
750  kcryptd_async_done, dmreq_of_req(cc, this_cc->req));
751 }
752 
753 /*
754  * Encrypt / decrypt data from one bio to another one (can be the same one)
755  */
756 static int crypt_convert(struct crypt_config *cc,
757  struct convert_context *ctx)
758 {
759  struct crypt_cpu *this_cc = this_crypt_config(cc);
760  int r;
761 
762  atomic_set(&ctx->cc_pending, 1);
763 
764  while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
765  ctx->idx_out < ctx->bio_out->bi_vcnt) {
766 
767  crypt_alloc_req(cc, ctx);
768 
769  atomic_inc(&ctx->cc_pending);
770 
771  r = crypt_convert_block(cc, ctx, this_cc->req);
772 
773  switch (r) {
774  /* async */
775  case -EBUSY:
777  INIT_COMPLETION(ctx->restart);
778  /* fall through*/
779  case -EINPROGRESS:
780  this_cc->req = NULL;
781  ctx->cc_sector++;
782  continue;
783 
784  /* sync */
785  case 0:
786  atomic_dec(&ctx->cc_pending);
787  ctx->cc_sector++;
788  cond_resched();
789  continue;
790 
791  /* error */
792  default:
793  atomic_dec(&ctx->cc_pending);
794  return r;
795  }
796  }
797 
798  return 0;
799 }
800 
801 /*
802  * Generate a new unfragmented bio with the given size
803  * This should never violate the device limitations
804  * May return a smaller bio when running out of pages, indicated by
805  * *out_of_pages set to 1.
806  */
807 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
808  unsigned *out_of_pages)
809 {
810  struct crypt_config *cc = io->cc;
811  struct bio *clone;
812  unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
814  unsigned i, len;
815  struct page *page;
816 
817  clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
818  if (!clone)
819  return NULL;
820 
821  clone_init(io, clone);
822  *out_of_pages = 0;
823 
824  for (i = 0; i < nr_iovecs; i++) {
825  page = mempool_alloc(cc->page_pool, gfp_mask);
826  if (!page) {
827  *out_of_pages = 1;
828  break;
829  }
830 
831  /*
832  * If additional pages cannot be allocated without waiting,
833  * return a partially-allocated bio. The caller will then try
834  * to allocate more bios while submitting this partial bio.
835  */
836  gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
837 
838  len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
839 
840  if (!bio_add_page(clone, page, len, 0)) {
841  mempool_free(page, cc->page_pool);
842  break;
843  }
844 
845  size -= len;
846  }
847 
848  if (!clone->bi_size) {
849  bio_put(clone);
850  return NULL;
851  }
852 
853  return clone;
854 }
855 
856 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
857 {
858  unsigned int i;
859  struct bio_vec *bv;
860 
861  for (i = 0; i < clone->bi_vcnt; i++) {
862  bv = bio_iovec_idx(clone, i);
863  BUG_ON(!bv->bv_page);
864  mempool_free(bv->bv_page, cc->page_pool);
865  bv->bv_page = NULL;
866  }
867 }
868 
869 static struct dm_crypt_io *crypt_io_alloc(struct crypt_config *cc,
870  struct bio *bio, sector_t sector)
871 {
872  struct dm_crypt_io *io;
873 
874  io = mempool_alloc(cc->io_pool, GFP_NOIO);
875  io->cc = cc;
876  io->base_bio = bio;
877  io->sector = sector;
878  io->error = 0;
879  io->base_io = NULL;
880  atomic_set(&io->io_pending, 0);
881 
882  return io;
883 }
884 
885 static void crypt_inc_pending(struct dm_crypt_io *io)
886 {
887  atomic_inc(&io->io_pending);
888 }
889 
890 /*
891  * One of the bios was finished. Check for completion of
892  * the whole request and correctly clean up the buffer.
893  * If base_io is set, wait for the last fragment to complete.
894  */
895 static void crypt_dec_pending(struct dm_crypt_io *io)
896 {
897  struct crypt_config *cc = io->cc;
898  struct bio *base_bio = io->base_bio;
899  struct dm_crypt_io *base_io = io->base_io;
900  int error = io->error;
901 
902  if (!atomic_dec_and_test(&io->io_pending))
903  return;
904 
905  mempool_free(io, cc->io_pool);
906 
907  if (likely(!base_io))
908  bio_endio(base_bio, error);
909  else {
910  if (error && !base_io->error)
911  base_io->error = error;
912  crypt_dec_pending(base_io);
913  }
914 }
915 
916 /*
917  * kcryptd/kcryptd_io:
918  *
919  * Needed because it would be very unwise to do decryption in an
920  * interrupt context.
921  *
922  * kcryptd performs the actual encryption or decryption.
923  *
924  * kcryptd_io performs the IO submission.
925  *
926  * They must be separated as otherwise the final stages could be
927  * starved by new requests which can block in the first stages due
928  * to memory allocation.
929  *
930  * The work is done per CPU global for all dm-crypt instances.
931  * They should not depend on each other and do not block.
932  */
933 static void crypt_endio(struct bio *clone, int error)
934 {
935  struct dm_crypt_io *io = clone->bi_private;
936  struct crypt_config *cc = io->cc;
937  unsigned rw = bio_data_dir(clone);
938 
939  if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
940  error = -EIO;
941 
942  /*
943  * free the processed pages
944  */
945  if (rw == WRITE)
946  crypt_free_buffer_pages(cc, clone);
947 
948  bio_put(clone);
949 
950  if (rw == READ && !error) {
951  kcryptd_queue_crypt(io);
952  return;
953  }
954 
955  if (unlikely(error))
956  io->error = error;
957 
958  crypt_dec_pending(io);
959 }
960 
961 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
962 {
963  struct crypt_config *cc = io->cc;
964 
965  clone->bi_private = io;
966  clone->bi_end_io = crypt_endio;
967  clone->bi_bdev = cc->dev->bdev;
968  clone->bi_rw = io->base_bio->bi_rw;
969 }
970 
971 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
972 {
973  struct crypt_config *cc = io->cc;
974  struct bio *base_bio = io->base_bio;
975  struct bio *clone;
976 
977  /*
978  * The block layer might modify the bvec array, so always
979  * copy the required bvecs because we need the original
980  * one in order to decrypt the whole bio data *afterwards*.
981  */
982  clone = bio_clone_bioset(base_bio, gfp, cc->bs);
983  if (!clone)
984  return 1;
985 
986  crypt_inc_pending(io);
987 
988  clone_init(io, clone);
989  clone->bi_sector = cc->start + io->sector;
990 
991  generic_make_request(clone);
992  return 0;
993 }
994 
995 static void kcryptd_io_write(struct dm_crypt_io *io)
996 {
997  struct bio *clone = io->ctx.bio_out;
998  generic_make_request(clone);
999 }
1000 
1001 static void kcryptd_io(struct work_struct *work)
1002 {
1003  struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1004 
1005  if (bio_data_dir(io->base_bio) == READ) {
1006  crypt_inc_pending(io);
1007  if (kcryptd_io_read(io, GFP_NOIO))
1008  io->error = -ENOMEM;
1009  crypt_dec_pending(io);
1010  } else
1011  kcryptd_io_write(io);
1012 }
1013 
1014 static void kcryptd_queue_io(struct dm_crypt_io *io)
1015 {
1016  struct crypt_config *cc = io->cc;
1017 
1018  INIT_WORK(&io->work, kcryptd_io);
1019  queue_work(cc->io_queue, &io->work);
1020 }
1021 
1022 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1023 {
1024  struct bio *clone = io->ctx.bio_out;
1025  struct crypt_config *cc = io->cc;
1026 
1027  if (unlikely(io->error < 0)) {
1028  crypt_free_buffer_pages(cc, clone);
1029  bio_put(clone);
1030  crypt_dec_pending(io);
1031  return;
1032  }
1033 
1034  /* crypt_convert should have filled the clone bio */
1035  BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
1036 
1037  clone->bi_sector = cc->start + io->sector;
1038 
1039  if (async)
1040  kcryptd_queue_io(io);
1041  else
1042  generic_make_request(clone);
1043 }
1044 
1045 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1046 {
1047  struct crypt_config *cc = io->cc;
1048  struct bio *clone;
1049  struct dm_crypt_io *new_io;
1050  int crypt_finished;
1051  unsigned out_of_pages = 0;
1052  unsigned remaining = io->base_bio->bi_size;
1053  sector_t sector = io->sector;
1054  int r;
1055 
1056  /*
1057  * Prevent io from disappearing until this function completes.
1058  */
1059  crypt_inc_pending(io);
1060  crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1061 
1062  /*
1063  * The allocated buffers can be smaller than the whole bio,
1064  * so repeat the whole process until all the data can be handled.
1065  */
1066  while (remaining) {
1067  clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
1068  if (unlikely(!clone)) {
1069  io->error = -ENOMEM;
1070  break;
1071  }
1072 
1073  io->ctx.bio_out = clone;
1074  io->ctx.idx_out = 0;
1075 
1076  remaining -= clone->bi_size;
1077  sector += bio_sectors(clone);
1078 
1079  crypt_inc_pending(io);
1080 
1081  r = crypt_convert(cc, &io->ctx);
1082  if (r < 0)
1083  io->error = -EIO;
1084 
1085  crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1086 
1087  /* Encryption was already finished, submit io now */
1088  if (crypt_finished) {
1089  kcryptd_crypt_write_io_submit(io, 0);
1090 
1091  /*
1092  * If there was an error, do not try next fragments.
1093  * For async, error is processed in async handler.
1094  */
1095  if (unlikely(r < 0))
1096  break;
1097 
1098  io->sector = sector;
1099  }
1100 
1101  /*
1102  * Out of memory -> run queues
1103  * But don't wait if split was due to the io size restriction
1104  */
1105  if (unlikely(out_of_pages))
1107 
1108  /*
1109  * With async crypto it is unsafe to share the crypto context
1110  * between fragments, so switch to a new dm_crypt_io structure.
1111  */
1112  if (unlikely(!crypt_finished && remaining)) {
1113  new_io = crypt_io_alloc(io->cc, io->base_bio,
1114  sector);
1115  crypt_inc_pending(new_io);
1116  crypt_convert_init(cc, &new_io->ctx, NULL,
1117  io->base_bio, sector);
1118  new_io->ctx.idx_in = io->ctx.idx_in;
1119  new_io->ctx.offset_in = io->ctx.offset_in;
1120 
1121  /*
1122  * Fragments after the first use the base_io
1123  * pending count.
1124  */
1125  if (!io->base_io)
1126  new_io->base_io = io;
1127  else {
1128  new_io->base_io = io->base_io;
1129  crypt_inc_pending(io->base_io);
1130  crypt_dec_pending(io);
1131  }
1132 
1133  io = new_io;
1134  }
1135  }
1136 
1137  crypt_dec_pending(io);
1138 }
1139 
1140 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1141 {
1142  crypt_dec_pending(io);
1143 }
1144 
1145 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1146 {
1147  struct crypt_config *cc = io->cc;
1148  int r = 0;
1149 
1150  crypt_inc_pending(io);
1151 
1152  crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1153  io->sector);
1154 
1155  r = crypt_convert(cc, &io->ctx);
1156  if (r < 0)
1157  io->error = -EIO;
1158 
1159  if (atomic_dec_and_test(&io->ctx.cc_pending))
1160  kcryptd_crypt_read_done(io);
1161 
1162  crypt_dec_pending(io);
1163 }
1164 
1165 static void kcryptd_async_done(struct crypto_async_request *async_req,
1166  int error)
1167 {
1168  struct dm_crypt_request *dmreq = async_req->data;
1169  struct convert_context *ctx = dmreq->ctx;
1170  struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1171  struct crypt_config *cc = io->cc;
1172 
1173  if (error == -EINPROGRESS) {
1174  complete(&ctx->restart);
1175  return;
1176  }
1177 
1178  if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1179  error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1180 
1181  if (error < 0)
1182  io->error = -EIO;
1183 
1184  mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
1185 
1186  if (!atomic_dec_and_test(&ctx->cc_pending))
1187  return;
1188 
1189  if (bio_data_dir(io->base_bio) == READ)
1190  kcryptd_crypt_read_done(io);
1191  else
1192  kcryptd_crypt_write_io_submit(io, 1);
1193 }
1194 
1195 static void kcryptd_crypt(struct work_struct *work)
1196 {
1197  struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1198 
1199  if (bio_data_dir(io->base_bio) == READ)
1200  kcryptd_crypt_read_convert(io);
1201  else
1202  kcryptd_crypt_write_convert(io);
1203 }
1204 
1205 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1206 {
1207  struct crypt_config *cc = io->cc;
1208 
1209  INIT_WORK(&io->work, kcryptd_crypt);
1210  queue_work(cc->crypt_queue, &io->work);
1211 }
1212 
1213 /*
1214  * Decode key from its hex representation
1215  */
1216 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1217 {
1218  char buffer[3];
1219  unsigned int i;
1220 
1221  buffer[2] = '\0';
1222 
1223  for (i = 0; i < size; i++) {
1224  buffer[0] = *hex++;
1225  buffer[1] = *hex++;
1226 
1227  if (kstrtou8(buffer, 16, &key[i]))
1228  return -EINVAL;
1229  }
1230 
1231  if (*hex != '\0')
1232  return -EINVAL;
1233 
1234  return 0;
1235 }
1236 
1237 /*
1238  * Encode key into its hex representation
1239  */
1240 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
1241 {
1242  unsigned int i;
1243 
1244  for (i = 0; i < size; i++) {
1245  sprintf(hex, "%02x", *key);
1246  hex += 2;
1247  key++;
1248  }
1249 }
1250 
1251 static void crypt_free_tfms(struct crypt_config *cc)
1252 {
1253  unsigned i;
1254 
1255  if (!cc->tfms)
1256  return;
1257 
1258  for (i = 0; i < cc->tfms_count; i++)
1259  if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1260  crypto_free_ablkcipher(cc->tfms[i]);
1261  cc->tfms[i] = NULL;
1262  }
1263 
1264  kfree(cc->tfms);
1265  cc->tfms = NULL;
1266 }
1267 
1268 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1269 {
1270  unsigned i;
1271  int err;
1272 
1273  cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_ablkcipher *),
1274  GFP_KERNEL);
1275  if (!cc->tfms)
1276  return -ENOMEM;
1277 
1278  for (i = 0; i < cc->tfms_count; i++) {
1279  cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1280  if (IS_ERR(cc->tfms[i])) {
1281  err = PTR_ERR(cc->tfms[i]);
1282  crypt_free_tfms(cc);
1283  return err;
1284  }
1285  }
1286 
1287  return 0;
1288 }
1289 
1290 static int crypt_setkey_allcpus(struct crypt_config *cc)
1291 {
1292  unsigned subkey_size = cc->key_size >> ilog2(cc->tfms_count);
1293  int err = 0, i, r;
1294 
1295  for (i = 0; i < cc->tfms_count; i++) {
1296  r = crypto_ablkcipher_setkey(cc->tfms[i],
1297  cc->key + (i * subkey_size),
1298  subkey_size);
1299  if (r)
1300  err = r;
1301  }
1302 
1303  return err;
1304 }
1305 
1306 static int crypt_set_key(struct crypt_config *cc, char *key)
1307 {
1308  int r = -EINVAL;
1309  int key_string_len = strlen(key);
1310 
1311  /* The key size may not be changed. */
1312  if (cc->key_size != (key_string_len >> 1))
1313  goto out;
1314 
1315  /* Hyphen (which gives a key_size of zero) means there is no key. */
1316  if (!cc->key_size && strcmp(key, "-"))
1317  goto out;
1318 
1319  if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1320  goto out;
1321 
1323 
1324  r = crypt_setkey_allcpus(cc);
1325 
1326 out:
1327  /* Hex key string not needed after here, so wipe it. */
1328  memset(key, '0', key_string_len);
1329 
1330  return r;
1331 }
1332 
1333 static int crypt_wipe_key(struct crypt_config *cc)
1334 {
1336  memset(&cc->key, 0, cc->key_size * sizeof(u8));
1337 
1338  return crypt_setkey_allcpus(cc);
1339 }
1340 
1341 static void crypt_dtr(struct dm_target *ti)
1342 {
1343  struct crypt_config *cc = ti->private;
1344  struct crypt_cpu *cpu_cc;
1345  int cpu;
1346 
1347  ti->private = NULL;
1348 
1349  if (!cc)
1350  return;
1351 
1352  if (cc->io_queue)
1354  if (cc->crypt_queue)
1356 
1357  if (cc->cpu)
1358  for_each_possible_cpu(cpu) {
1359  cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1360  if (cpu_cc->req)
1361  mempool_free(cpu_cc->req, cc->req_pool);
1362  }
1363 
1364  crypt_free_tfms(cc);
1365 
1366  if (cc->bs)
1367  bioset_free(cc->bs);
1368 
1369  if (cc->page_pool)
1371  if (cc->req_pool)
1373  if (cc->io_pool)
1374  mempool_destroy(cc->io_pool);
1375 
1376  if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1377  cc->iv_gen_ops->dtr(cc);
1378 
1379  if (cc->dev)
1380  dm_put_device(ti, cc->dev);
1381 
1382  if (cc->cpu)
1383  free_percpu(cc->cpu);
1384 
1385  kzfree(cc->cipher);
1386  kzfree(cc->cipher_string);
1387 
1388  /* Must zero key material before freeing */
1389  kzfree(cc);
1390 }
1391 
1392 static int crypt_ctr_cipher(struct dm_target *ti,
1393  char *cipher_in, char *key)
1394 {
1395  struct crypt_config *cc = ti->private;
1396  char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1397  char *cipher_api = NULL;
1398  int ret = -EINVAL;
1399  char dummy;
1400 
1401  /* Convert to crypto api definition? */
1402  if (strchr(cipher_in, '(')) {
1403  ti->error = "Bad cipher specification";
1404  return -EINVAL;
1405  }
1406 
1407  cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1408  if (!cc->cipher_string)
1409  goto bad_mem;
1410 
1411  /*
1412  * Legacy dm-crypt cipher specification
1413  * cipher[:keycount]-mode-iv:ivopts
1414  */
1415  tmp = cipher_in;
1416  keycount = strsep(&tmp, "-");
1417  cipher = strsep(&keycount, ":");
1418 
1419  if (!keycount)
1420  cc->tfms_count = 1;
1421  else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1422  !is_power_of_2(cc->tfms_count)) {
1423  ti->error = "Bad cipher key count specification";
1424  return -EINVAL;
1425  }
1426  cc->key_parts = cc->tfms_count;
1427 
1428  cc->cipher = kstrdup(cipher, GFP_KERNEL);
1429  if (!cc->cipher)
1430  goto bad_mem;
1431 
1432  chainmode = strsep(&tmp, "-");
1433  ivopts = strsep(&tmp, "-");
1434  ivmode = strsep(&ivopts, ":");
1435 
1436  if (tmp)
1437  DMWARN("Ignoring unexpected additional cipher options");
1438 
1439  cc->cpu = __alloc_percpu(sizeof(*(cc->cpu)),
1440  __alignof__(struct crypt_cpu));
1441  if (!cc->cpu) {
1442  ti->error = "Cannot allocate per cpu state";
1443  goto bad_mem;
1444  }
1445 
1446  /*
1447  * For compatibility with the original dm-crypt mapping format, if
1448  * only the cipher name is supplied, use cbc-plain.
1449  */
1450  if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1451  chainmode = "cbc";
1452  ivmode = "plain";
1453  }
1454 
1455  if (strcmp(chainmode, "ecb") && !ivmode) {
1456  ti->error = "IV mechanism required";
1457  return -EINVAL;
1458  }
1459 
1460  cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1461  if (!cipher_api)
1462  goto bad_mem;
1463 
1464  ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1465  "%s(%s)", chainmode, cipher);
1466  if (ret < 0) {
1467  kfree(cipher_api);
1468  goto bad_mem;
1469  }
1470 
1471  /* Allocate cipher */
1472  ret = crypt_alloc_tfms(cc, cipher_api);
1473  if (ret < 0) {
1474  ti->error = "Error allocating crypto tfm";
1475  goto bad;
1476  }
1477 
1478  /* Initialize and set key */
1479  ret = crypt_set_key(cc, key);
1480  if (ret < 0) {
1481  ti->error = "Error decoding and setting key";
1482  goto bad;
1483  }
1484 
1485  /* Initialize IV */
1486  cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1487  if (cc->iv_size)
1488  /* at least a 64 bit sector number should fit in our buffer */
1489  cc->iv_size = max(cc->iv_size,
1490  (unsigned int)(sizeof(u64) / sizeof(u8)));
1491  else if (ivmode) {
1492  DMWARN("Selected cipher does not support IVs");
1493  ivmode = NULL;
1494  }
1495 
1496  /* Choose ivmode, see comments at iv code. */
1497  if (ivmode == NULL)
1498  cc->iv_gen_ops = NULL;
1499  else if (strcmp(ivmode, "plain") == 0)
1500  cc->iv_gen_ops = &crypt_iv_plain_ops;
1501  else if (strcmp(ivmode, "plain64") == 0)
1502  cc->iv_gen_ops = &crypt_iv_plain64_ops;
1503  else if (strcmp(ivmode, "essiv") == 0)
1504  cc->iv_gen_ops = &crypt_iv_essiv_ops;
1505  else if (strcmp(ivmode, "benbi") == 0)
1506  cc->iv_gen_ops = &crypt_iv_benbi_ops;
1507  else if (strcmp(ivmode, "null") == 0)
1508  cc->iv_gen_ops = &crypt_iv_null_ops;
1509  else if (strcmp(ivmode, "lmk") == 0) {
1510  cc->iv_gen_ops = &crypt_iv_lmk_ops;
1511  /* Version 2 and 3 is recognised according
1512  * to length of provided multi-key string.
1513  * If present (version 3), last key is used as IV seed.
1514  */
1515  if (cc->key_size % cc->key_parts)
1516  cc->key_parts++;
1517  } else {
1518  ret = -EINVAL;
1519  ti->error = "Invalid IV mode";
1520  goto bad;
1521  }
1522 
1523  /* Allocate IV */
1524  if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1525  ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1526  if (ret < 0) {
1527  ti->error = "Error creating IV";
1528  goto bad;
1529  }
1530  }
1531 
1532  /* Initialize IV (set keys for ESSIV etc) */
1533  if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1534  ret = cc->iv_gen_ops->init(cc);
1535  if (ret < 0) {
1536  ti->error = "Error initialising IV";
1537  goto bad;
1538  }
1539  }
1540 
1541  ret = 0;
1542 bad:
1543  kfree(cipher_api);
1544  return ret;
1545 
1546 bad_mem:
1547  ti->error = "Cannot allocate cipher strings";
1548  return -ENOMEM;
1549 }
1550 
1551 /*
1552  * Construct an encryption mapping:
1553  * <cipher> <key> <iv_offset> <dev_path> <start>
1554  */
1555 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1556 {
1557  struct crypt_config *cc;
1558  unsigned int key_size, opt_params;
1559  unsigned long long tmpll;
1560  int ret;
1561  struct dm_arg_set as;
1562  const char *opt_string;
1563  char dummy;
1564 
1565  static struct dm_arg _args[] = {
1566  {0, 1, "Invalid number of feature args"},
1567  };
1568 
1569  if (argc < 5) {
1570  ti->error = "Not enough arguments";
1571  return -EINVAL;
1572  }
1573 
1574  key_size = strlen(argv[1]) >> 1;
1575 
1576  cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1577  if (!cc) {
1578  ti->error = "Cannot allocate encryption context";
1579  return -ENOMEM;
1580  }
1581  cc->key_size = key_size;
1582 
1583  ti->private = cc;
1584  ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1585  if (ret < 0)
1586  goto bad;
1587 
1588  ret = -ENOMEM;
1589  cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1590  if (!cc->io_pool) {
1591  ti->error = "Cannot allocate crypt io mempool";
1592  goto bad;
1593  }
1594 
1595  cc->dmreq_start = sizeof(struct ablkcipher_request);
1596  cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1597  cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
1598  cc->dmreq_start += crypto_ablkcipher_alignmask(any_tfm(cc)) &
1599  ~(crypto_tfm_ctx_alignment() - 1);
1600 
1601  cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1602  sizeof(struct dm_crypt_request) + cc->iv_size);
1603  if (!cc->req_pool) {
1604  ti->error = "Cannot allocate crypt request mempool";
1605  goto bad;
1606  }
1607 
1608  cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1609  if (!cc->page_pool) {
1610  ti->error = "Cannot allocate page mempool";
1611  goto bad;
1612  }
1613 
1614  cc->bs = bioset_create(MIN_IOS, 0);
1615  if (!cc->bs) {
1616  ti->error = "Cannot allocate crypt bioset";
1617  goto bad;
1618  }
1619 
1620  ret = -EINVAL;
1621  if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1622  ti->error = "Invalid iv_offset sector";
1623  goto bad;
1624  }
1625  cc->iv_offset = tmpll;
1626 
1627  if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1628  ti->error = "Device lookup failed";
1629  goto bad;
1630  }
1631 
1632  if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1633  ti->error = "Invalid device sector";
1634  goto bad;
1635  }
1636  cc->start = tmpll;
1637 
1638  argv += 5;
1639  argc -= 5;
1640 
1641  /* Optional parameters */
1642  if (argc) {
1643  as.argc = argc;
1644  as.argv = argv;
1645 
1646  ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1647  if (ret)
1648  goto bad;
1649 
1650  opt_string = dm_shift_arg(&as);
1651 
1652  if (opt_params == 1 && opt_string &&
1653  !strcasecmp(opt_string, "allow_discards"))
1654  ti->num_discard_requests = 1;
1655  else if (opt_params) {
1656  ret = -EINVAL;
1657  ti->error = "Invalid feature arguments";
1658  goto bad;
1659  }
1660  }
1661 
1662  ret = -ENOMEM;
1663  cc->io_queue = alloc_workqueue("kcryptd_io",
1666  1);
1667  if (!cc->io_queue) {
1668  ti->error = "Couldn't create kcryptd io queue";
1669  goto bad;
1670  }
1671 
1672  cc->crypt_queue = alloc_workqueue("kcryptd",
1676  1);
1677  if (!cc->crypt_queue) {
1678  ti->error = "Couldn't create kcryptd queue";
1679  goto bad;
1680  }
1681 
1682  ti->num_flush_requests = 1;
1684 
1685  return 0;
1686 
1687 bad:
1688  crypt_dtr(ti);
1689  return ret;
1690 }
1691 
1692 static int crypt_map(struct dm_target *ti, struct bio *bio,
1693  union map_info *map_context)
1694 {
1695  struct dm_crypt_io *io;
1696  struct crypt_config *cc = ti->private;
1697 
1698  /*
1699  * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1700  * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1701  * - for REQ_DISCARD caller must use flush if IO ordering matters
1702  */
1703  if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1704  bio->bi_bdev = cc->dev->bdev;
1705  if (bio_sectors(bio))
1706  bio->bi_sector = cc->start + dm_target_offset(ti, bio->bi_sector);
1707  return DM_MAPIO_REMAPPED;
1708  }
1709 
1710  io = crypt_io_alloc(cc, bio, dm_target_offset(ti, bio->bi_sector));
1711 
1712  if (bio_data_dir(io->base_bio) == READ) {
1713  if (kcryptd_io_read(io, GFP_NOWAIT))
1714  kcryptd_queue_io(io);
1715  } else
1716  kcryptd_queue_crypt(io);
1717 
1718  return DM_MAPIO_SUBMITTED;
1719 }
1720 
1721 static int crypt_status(struct dm_target *ti, status_type_t type,
1722  unsigned status_flags, char *result, unsigned maxlen)
1723 {
1724  struct crypt_config *cc = ti->private;
1725  unsigned int sz = 0;
1726 
1727  switch (type) {
1728  case STATUSTYPE_INFO:
1729  result[0] = '\0';
1730  break;
1731 
1732  case STATUSTYPE_TABLE:
1733  DMEMIT("%s ", cc->cipher_string);
1734 
1735  if (cc->key_size > 0) {
1736  if ((maxlen - sz) < ((cc->key_size << 1) + 1))
1737  return -ENOMEM;
1738 
1739  crypt_encode_key(result + sz, cc->key, cc->key_size);
1740  sz += cc->key_size << 1;
1741  } else {
1742  if (sz >= maxlen)
1743  return -ENOMEM;
1744  result[sz++] = '-';
1745  }
1746 
1747  DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1748  cc->dev->name, (unsigned long long)cc->start);
1749 
1750  if (ti->num_discard_requests)
1751  DMEMIT(" 1 allow_discards");
1752 
1753  break;
1754  }
1755  return 0;
1756 }
1757 
1758 static void crypt_postsuspend(struct dm_target *ti)
1759 {
1760  struct crypt_config *cc = ti->private;
1761 
1763 }
1764 
1765 static int crypt_preresume(struct dm_target *ti)
1766 {
1767  struct crypt_config *cc = ti->private;
1768 
1769  if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1770  DMERR("aborting resume - crypt key is not set.");
1771  return -EAGAIN;
1772  }
1773 
1774  return 0;
1775 }
1776 
1777 static void crypt_resume(struct dm_target *ti)
1778 {
1779  struct crypt_config *cc = ti->private;
1780 
1782 }
1783 
1784 /* Message interface
1785  * key set <key>
1786  * key wipe
1787  */
1788 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1789 {
1790  struct crypt_config *cc = ti->private;
1791  int ret = -EINVAL;
1792 
1793  if (argc < 2)
1794  goto error;
1795 
1796  if (!strcasecmp(argv[0], "key")) {
1797  if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1798  DMWARN("not suspended during key manipulation.");
1799  return -EINVAL;
1800  }
1801  if (argc == 3 && !strcasecmp(argv[1], "set")) {
1802  ret = crypt_set_key(cc, argv[2]);
1803  if (ret)
1804  return ret;
1805  if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1806  ret = cc->iv_gen_ops->init(cc);
1807  return ret;
1808  }
1809  if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
1810  if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1811  ret = cc->iv_gen_ops->wipe(cc);
1812  if (ret)
1813  return ret;
1814  }
1815  return crypt_wipe_key(cc);
1816  }
1817  }
1818 
1819 error:
1820  DMWARN("unrecognised message received.");
1821  return -EINVAL;
1822 }
1823 
1824 static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1825  struct bio_vec *biovec, int max_size)
1826 {
1827  struct crypt_config *cc = ti->private;
1828  struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1829 
1830  if (!q->merge_bvec_fn)
1831  return max_size;
1832 
1833  bvm->bi_bdev = cc->dev->bdev;
1834  bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
1835 
1836  return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1837 }
1838 
1839 static int crypt_iterate_devices(struct dm_target *ti,
1840  iterate_devices_callout_fn fn, void *data)
1841 {
1842  struct crypt_config *cc = ti->private;
1843 
1844  return fn(ti, cc->dev, cc->start, ti->len, data);
1845 }
1846 
1847 static struct target_type crypt_target = {
1848  .name = "crypt",
1849  .version = {1, 11, 0},
1850  .module = THIS_MODULE,
1851  .ctr = crypt_ctr,
1852  .dtr = crypt_dtr,
1853  .map = crypt_map,
1854  .status = crypt_status,
1855  .postsuspend = crypt_postsuspend,
1856  .preresume = crypt_preresume,
1857  .resume = crypt_resume,
1858  .message = crypt_message,
1859  .merge = crypt_merge,
1860  .iterate_devices = crypt_iterate_devices,
1861 };
1862 
1863 static int __init dm_crypt_init(void)
1864 {
1865  int r;
1866 
1867  _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1868  if (!_crypt_io_pool)
1869  return -ENOMEM;
1870 
1871  r = dm_register_target(&crypt_target);
1872  if (r < 0) {
1873  DMERR("register failed %d", r);
1874  kmem_cache_destroy(_crypt_io_pool);
1875  }
1876 
1877  return r;
1878 }
1879 
1880 static void __exit dm_crypt_exit(void)
1881 {
1882  dm_unregister_target(&crypt_target);
1883  kmem_cache_destroy(_crypt_io_pool);
1884 }
1885 
1886 module_init(dm_crypt_init);
1887 module_exit(dm_crypt_exit);
1888 
1889 MODULE_AUTHOR("Christophe Saout <[email protected]>");
1890 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1891 MODULE_LICENSE("GPL");