Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
dm-mpath.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 
10 #include "dm-path-selector.h"
11 #include "dm-uevent.h"
12 
13 #include <linux/ctype.h>
14 #include <linux/init.h>
15 #include <linux/mempool.h>
16 #include <linux/module.h>
17 #include <linux/pagemap.h>
18 #include <linux/slab.h>
19 #include <linux/time.h>
20 #include <linux/workqueue.h>
21 #include <linux/delay.h>
22 #include <scsi/scsi_dh.h>
23 #include <linux/atomic.h>
24 
25 #define DM_MSG_PREFIX "multipath"
26 #define DM_PG_INIT_DELAY_MSECS 2000
27 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1)
28 
29 /* Path properties */
30 struct pgpath {
31  struct list_head list;
32 
33  struct priority_group *pg; /* Owning PG */
34  unsigned is_active; /* Path status */
35  unsigned fail_count; /* Cumulative failure count */
36 
37  struct dm_path path;
39 };
40 
41 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
42 
43 /*
44  * Paths are grouped into Priority Groups and numbered from 1 upwards.
45  * Each has a path selector which controls which path gets used.
46  */
48  struct list_head list;
49 
50  struct multipath *m; /* Owning multipath instance */
51  struct path_selector ps;
52 
53  unsigned pg_num; /* Reference number */
54  unsigned bypassed; /* Temporarily bypass this PG? */
55 
56  unsigned nr_pgpaths; /* Number of paths in PG */
58 };
59 
60 /* Multipath context */
61 struct multipath {
62  struct list_head list;
63  struct dm_target *ti;
64 
65  const char *hw_handler_name;
67 
69 
72 
73  wait_queue_head_t pg_init_wait; /* Wait for pg_init completion */
74 
75  unsigned pg_init_required; /* pg_init needs calling? */
76  unsigned pg_init_in_progress; /* Only one pg_init allowed at once */
77  unsigned pg_init_delay_retry; /* Delay pg_init retry? */
78 
79  unsigned nr_valid_paths; /* Total number of usable paths */
82  struct priority_group *next_pg; /* Switch to this PG if set */
83  unsigned repeat_count; /* I/Os left before calling PS again */
84 
85  unsigned queue_io:1; /* Must we queue all I/O? */
86  unsigned queue_if_no_path:1; /* Queue I/O if last path fails? */
87  unsigned saved_queue_if_no_path:1; /* Saved state during suspension */
88  unsigned retain_attached_hw_handler:1; /* If there's already a hw_handler present, don't change it. */
89 
90  unsigned pg_init_retries; /* Number of times to retry pg_init */
91  unsigned pg_init_count; /* Number of times pg_init called */
92  unsigned pg_init_delay_msecs; /* Number of msecs before pg_init retry */
93 
94  unsigned queue_size;
97 
99 
100  /*
101  * We must use a mempool of dm_mpath_io structs so that we
102  * can resubmit bios on error.
103  */
105 
107 };
108 
109 /*
110  * Context information attached to each bio we process.
111  */
112 struct dm_mpath_io {
113  struct pgpath *pgpath;
114  size_t nr_bytes;
115 };
116 
117 typedef int (*action_fn) (struct pgpath *pgpath);
118 
119 #define MIN_IOS 256 /* Mempool size */
120 
121 static struct kmem_cache *_mpio_cache;
122 
123 static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
124 static void process_queued_ios(struct work_struct *work);
125 static void trigger_event(struct work_struct *work);
126 static void activate_path(struct work_struct *work);
127 
128 
129 /*-----------------------------------------------
130  * Allocation routines
131  *-----------------------------------------------*/
132 
133 static struct pgpath *alloc_pgpath(void)
134 {
135  struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
136 
137  if (pgpath) {
138  pgpath->is_active = 1;
140  }
141 
142  return pgpath;
143 }
144 
145 static void free_pgpath(struct pgpath *pgpath)
146 {
147  kfree(pgpath);
148 }
149 
150 static struct priority_group *alloc_priority_group(void)
151 {
152  struct priority_group *pg;
153 
154  pg = kzalloc(sizeof(*pg), GFP_KERNEL);
155 
156  if (pg)
157  INIT_LIST_HEAD(&pg->pgpaths);
158 
159  return pg;
160 }
161 
162 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
163 {
164  struct pgpath *pgpath, *tmp;
165  struct multipath *m = ti->private;
166 
167  list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
168  list_del(&pgpath->list);
169  if (m->hw_handler_name)
170  scsi_dh_detach(bdev_get_queue(pgpath->path.dev->bdev));
171  dm_put_device(ti, pgpath->path.dev);
172  free_pgpath(pgpath);
173  }
174 }
175 
176 static void free_priority_group(struct priority_group *pg,
177  struct dm_target *ti)
178 {
179  struct path_selector *ps = &pg->ps;
180 
181  if (ps->type) {
182  ps->type->destroy(ps);
184  }
185 
186  free_pgpaths(&pg->pgpaths, ti);
187  kfree(pg);
188 }
189 
190 static struct multipath *alloc_multipath(struct dm_target *ti)
191 {
192  struct multipath *m;
193 
194  m = kzalloc(sizeof(*m), GFP_KERNEL);
195  if (m) {
196  INIT_LIST_HEAD(&m->priority_groups);
197  INIT_LIST_HEAD(&m->queued_ios);
198  spin_lock_init(&m->lock);
199  m->queue_io = 1;
204  mutex_init(&m->work_mutex);
205  m->mpio_pool = mempool_create_slab_pool(MIN_IOS, _mpio_cache);
206  if (!m->mpio_pool) {
207  kfree(m);
208  return NULL;
209  }
210  m->ti = ti;
211  ti->private = m;
212  }
213 
214  return m;
215 }
216 
217 static void free_multipath(struct multipath *m)
218 {
219  struct priority_group *pg, *tmp;
220 
222  list_del(&pg->list);
223  free_priority_group(pg, m->ti);
224  }
225 
229  kfree(m);
230 }
231 
232 static int set_mapinfo(struct multipath *m, union map_info *info)
233 {
234  struct dm_mpath_io *mpio;
235 
236  mpio = mempool_alloc(m->mpio_pool, GFP_ATOMIC);
237  if (!mpio)
238  return -ENOMEM;
239 
240  memset(mpio, 0, sizeof(*mpio));
241  info->ptr = mpio;
242 
243  return 0;
244 }
245 
246 static void clear_mapinfo(struct multipath *m, union map_info *info)
247 {
248  struct dm_mpath_io *mpio = info->ptr;
249 
250  info->ptr = NULL;
251  mempool_free(mpio, m->mpio_pool);
252 }
253 
254 /*-----------------------------------------------
255  * Path selection
256  *-----------------------------------------------*/
257 
258 static void __pg_init_all_paths(struct multipath *m)
259 {
260  struct pgpath *pgpath;
261  unsigned long pg_init_delay = 0;
262 
263  m->pg_init_count++;
264  m->pg_init_required = 0;
265  if (m->pg_init_delay_retry)
268  list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) {
269  /* Skip failed paths */
270  if (!pgpath->is_active)
271  continue;
272  if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path,
273  pg_init_delay))
274  m->pg_init_in_progress++;
275  }
276 }
277 
278 static void __switch_pg(struct multipath *m, struct pgpath *pgpath)
279 {
280  m->current_pg = pgpath->pg;
281 
282  /* Must we initialise the PG first, and queue I/O till it's ready? */
283  if (m->hw_handler_name) {
284  m->pg_init_required = 1;
285  m->queue_io = 1;
286  } else {
287  m->pg_init_required = 0;
288  m->queue_io = 0;
289  }
290 
291  m->pg_init_count = 0;
292 }
293 
294 static int __choose_path_in_pg(struct multipath *m, struct priority_group *pg,
295  size_t nr_bytes)
296 {
297  struct dm_path *path;
298 
299  path = pg->ps.type->select_path(&pg->ps, &m->repeat_count, nr_bytes);
300  if (!path)
301  return -ENXIO;
302 
303  m->current_pgpath = path_to_pgpath(path);
304 
305  if (m->current_pg != pg)
306  __switch_pg(m, m->current_pgpath);
307 
308  return 0;
309 }
310 
311 static void __choose_pgpath(struct multipath *m, size_t nr_bytes)
312 {
313  struct priority_group *pg;
314  unsigned bypassed = 1;
315 
316  if (!m->nr_valid_paths)
317  goto failed;
318 
319  /* Were we instructed to switch PG? */
320  if (m->next_pg) {
321  pg = m->next_pg;
322  m->next_pg = NULL;
323  if (!__choose_path_in_pg(m, pg, nr_bytes))
324  return;
325  }
326 
327  /* Don't change PG until it has no remaining paths */
328  if (m->current_pg && !__choose_path_in_pg(m, m->current_pg, nr_bytes))
329  return;
330 
331  /*
332  * Loop through priority groups until we find a valid path.
333  * First time we skip PGs marked 'bypassed'.
334  * Second time we only try the ones we skipped, but set
335  * pg_init_delay_retry so we do not hammer controllers.
336  */
337  do {
339  if (pg->bypassed == bypassed)
340  continue;
341  if (!__choose_path_in_pg(m, pg, nr_bytes)) {
342  if (!bypassed)
343  m->pg_init_delay_retry = 1;
344  return;
345  }
346  }
347  } while (bypassed--);
348 
349 failed:
350  m->current_pgpath = NULL;
351  m->current_pg = NULL;
352 }
353 
354 /*
355  * Check whether bios must be queued in the device-mapper core rather
356  * than here in the target.
357  *
358  * m->lock must be held on entry.
359  *
360  * If m->queue_if_no_path and m->saved_queue_if_no_path hold the
361  * same value then we are not between multipath_presuspend()
362  * and multipath_resume() calls and we have no need to check
363  * for the DMF_NOFLUSH_SUSPENDING flag.
364  */
365 static int __must_push_back(struct multipath *m)
366 {
367  return (m->queue_if_no_path != m->saved_queue_if_no_path &&
369 }
370 
371 static int map_io(struct multipath *m, struct request *clone,
372  union map_info *map_context, unsigned was_queued)
373 {
374  int r = DM_MAPIO_REMAPPED;
375  size_t nr_bytes = blk_rq_bytes(clone);
376  unsigned long flags;
377  struct pgpath *pgpath;
378  struct block_device *bdev;
379  struct dm_mpath_io *mpio = map_context->ptr;
380 
381  spin_lock_irqsave(&m->lock, flags);
382 
383  /* Do we need to select a new pgpath? */
384  if (!m->current_pgpath ||
385  (!m->queue_io && (m->repeat_count && --m->repeat_count == 0)))
386  __choose_pgpath(m, nr_bytes);
387 
388  pgpath = m->current_pgpath;
389 
390  if (was_queued)
391  m->queue_size--;
392 
393  if ((pgpath && m->queue_io) ||
394  (!pgpath && m->queue_if_no_path)) {
395  /* Queue for the daemon to resubmit */
396  list_add_tail(&clone->queuelist, &m->queued_ios);
397  m->queue_size++;
398  if ((m->pg_init_required && !m->pg_init_in_progress) ||
399  !m->queue_io)
400  queue_work(kmultipathd, &m->process_queued_ios);
401  pgpath = NULL;
402  r = DM_MAPIO_SUBMITTED;
403  } else if (pgpath) {
404  bdev = pgpath->path.dev->bdev;
405  clone->q = bdev_get_queue(bdev);
406  clone->rq_disk = bdev->bd_disk;
407  } else if (__must_push_back(m))
408  r = DM_MAPIO_REQUEUE;
409  else
410  r = -EIO; /* Failed */
411 
412  mpio->pgpath = pgpath;
413  mpio->nr_bytes = nr_bytes;
414 
415  if (r == DM_MAPIO_REMAPPED && pgpath->pg->ps.type->start_io)
416  pgpath->pg->ps.type->start_io(&pgpath->pg->ps, &pgpath->path,
417  nr_bytes);
418 
419  spin_unlock_irqrestore(&m->lock, flags);
420 
421  return r;
422 }
423 
424 /*
425  * If we run out of usable paths, should we queue I/O or error it?
426  */
427 static int queue_if_no_path(struct multipath *m, unsigned queue_if_no_path,
428  unsigned save_old_value)
429 {
430  unsigned long flags;
431 
432  spin_lock_irqsave(&m->lock, flags);
433 
434  if (save_old_value)
436  else
437  m->saved_queue_if_no_path = queue_if_no_path;
438  m->queue_if_no_path = queue_if_no_path;
439  if (!m->queue_if_no_path && m->queue_size)
440  queue_work(kmultipathd, &m->process_queued_ios);
441 
442  spin_unlock_irqrestore(&m->lock, flags);
443 
444  return 0;
445 }
446 
447 /*-----------------------------------------------------------------
448  * The multipath daemon is responsible for resubmitting queued ios.
449  *---------------------------------------------------------------*/
450 
451 static void dispatch_queued_ios(struct multipath *m)
452 {
453  int r;
454  unsigned long flags;
455  union map_info *info;
456  struct request *clone, *n;
457  LIST_HEAD(cl);
458 
459  spin_lock_irqsave(&m->lock, flags);
460  list_splice_init(&m->queued_ios, &cl);
461  spin_unlock_irqrestore(&m->lock, flags);
462 
463  list_for_each_entry_safe(clone, n, &cl, queuelist) {
464  list_del_init(&clone->queuelist);
465 
466  info = dm_get_rq_mapinfo(clone);
467 
468  r = map_io(m, clone, info, 1);
469  if (r < 0) {
470  clear_mapinfo(m, info);
471  dm_kill_unmapped_request(clone, r);
472  } else if (r == DM_MAPIO_REMAPPED)
473  dm_dispatch_request(clone);
474  else if (r == DM_MAPIO_REQUEUE) {
475  clear_mapinfo(m, info);
477  }
478  }
479 }
480 
481 static void process_queued_ios(struct work_struct *work)
482 {
483  struct multipath *m =
485  struct pgpath *pgpath = NULL;
486  unsigned must_queue = 1;
487  unsigned long flags;
488 
489  spin_lock_irqsave(&m->lock, flags);
490 
491  if (!m->current_pgpath)
492  __choose_pgpath(m, 0);
493 
494  pgpath = m->current_pgpath;
495 
496  if ((pgpath && !m->queue_io) ||
497  (!pgpath && !m->queue_if_no_path))
498  must_queue = 0;
499 
500  if (m->pg_init_required && !m->pg_init_in_progress && pgpath)
501  __pg_init_all_paths(m);
502 
503  spin_unlock_irqrestore(&m->lock, flags);
504  if (!must_queue)
505  dispatch_queued_ios(m);
506 }
507 
508 /*
509  * An event is triggered whenever a path is taken out of use.
510  * Includes path failure and PG bypass.
511  */
512 static void trigger_event(struct work_struct *work)
513 {
514  struct multipath *m =
515  container_of(work, struct multipath, trigger_event);
516 
517  dm_table_event(m->ti->table);
518 }
519 
520 /*-----------------------------------------------------------------
521  * Constructor/argument parsing:
522  * <#multipath feature args> [<arg>]*
523  * <#hw_handler args> [hw_handler [<arg>]*]
524  * <#priority groups>
525  * <initial priority group>
526  * [<selector> <#selector args> [<arg>]*
527  * <#paths> <#per-path selector args>
528  * [<path> [<arg>]* ]+ ]+
529  *---------------------------------------------------------------*/
530 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg,
531  struct dm_target *ti)
532 {
533  int r;
534  struct path_selector_type *pst;
535  unsigned ps_argc;
536 
537  static struct dm_arg _args[] = {
538  {0, 1024, "invalid number of path selector args"},
539  };
540 
542  if (!pst) {
543  ti->error = "unknown path selector type";
544  return -EINVAL;
545  }
546 
547  r = dm_read_arg_group(_args, as, &ps_argc, &ti->error);
548  if (r) {
550  return -EINVAL;
551  }
552 
553  r = pst->create(&pg->ps, ps_argc, as->argv);
554  if (r) {
556  ti->error = "path selector constructor failed";
557  return r;
558  }
559 
560  pg->ps.type = pst;
561  dm_consume_args(as, ps_argc);
562 
563  return 0;
564 }
565 
566 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps,
567  struct dm_target *ti)
568 {
569  int r;
570  struct pgpath *p;
571  struct multipath *m = ti->private;
572  struct request_queue *q = NULL;
573  const char *attached_handler_name;
574 
575  /* we need at least a path arg */
576  if (as->argc < 1) {
577  ti->error = "no device given";
578  return ERR_PTR(-EINVAL);
579  }
580 
581  p = alloc_pgpath();
582  if (!p)
583  return ERR_PTR(-ENOMEM);
584 
586  &p->path.dev);
587  if (r) {
588  ti->error = "error getting device";
589  goto bad;
590  }
591 
593  q = bdev_get_queue(p->path.dev->bdev);
594 
596  attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL);
597  if (attached_handler_name) {
598  /*
599  * Reset hw_handler_name to match the attached handler
600  * and clear any hw_handler_params associated with the
601  * ignored handler.
602  *
603  * NB. This modifies the table line to show the actual
604  * handler instead of the original table passed in.
605  */
607  m->hw_handler_name = attached_handler_name;
608 
610  m->hw_handler_params = NULL;
611  }
612  }
613 
614  if (m->hw_handler_name) {
615  /*
616  * Increments scsi_dh reference, even when using an
617  * already-attached handler.
618  */
619  r = scsi_dh_attach(q, m->hw_handler_name);
620  if (r == -EBUSY) {
621  /*
622  * Already attached to different hw_handler:
623  * try to reattach with correct one.
624  */
625  scsi_dh_detach(q);
626  r = scsi_dh_attach(q, m->hw_handler_name);
627  }
628 
629  if (r < 0) {
630  ti->error = "error attaching hardware handler";
631  dm_put_device(ti, p->path.dev);
632  goto bad;
633  }
634 
635  if (m->hw_handler_params) {
637  if (r < 0) {
638  ti->error = "unable to set hardware "
639  "handler parameters";
640  scsi_dh_detach(q);
641  dm_put_device(ti, p->path.dev);
642  goto bad;
643  }
644  }
645  }
646 
647  r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
648  if (r) {
649  dm_put_device(ti, p->path.dev);
650  goto bad;
651  }
652 
653  return p;
654 
655  bad:
656  free_pgpath(p);
657  return ERR_PTR(r);
658 }
659 
660 static struct priority_group *parse_priority_group(struct dm_arg_set *as,
661  struct multipath *m)
662 {
663  static struct dm_arg _args[] = {
664  {1, 1024, "invalid number of paths"},
665  {0, 1024, "invalid number of selector args"}
666  };
667 
668  int r;
669  unsigned i, nr_selector_args, nr_args;
670  struct priority_group *pg;
671  struct dm_target *ti = m->ti;
672 
673  if (as->argc < 2) {
674  as->argc = 0;
675  ti->error = "not enough priority group arguments";
676  return ERR_PTR(-EINVAL);
677  }
678 
679  pg = alloc_priority_group();
680  if (!pg) {
681  ti->error = "couldn't allocate priority group";
682  return ERR_PTR(-ENOMEM);
683  }
684  pg->m = m;
685 
686  r = parse_path_selector(as, pg, ti);
687  if (r)
688  goto bad;
689 
690  /*
691  * read the paths
692  */
693  r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error);
694  if (r)
695  goto bad;
696 
697  r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error);
698  if (r)
699  goto bad;
700 
701  nr_args = 1 + nr_selector_args;
702  for (i = 0; i < pg->nr_pgpaths; i++) {
703  struct pgpath *pgpath;
704  struct dm_arg_set path_args;
705 
706  if (as->argc < nr_args) {
707  ti->error = "not enough path parameters";
708  r = -EINVAL;
709  goto bad;
710  }
711 
712  path_args.argc = nr_args;
713  path_args.argv = as->argv;
714 
715  pgpath = parse_path(&path_args, &pg->ps, ti);
716  if (IS_ERR(pgpath)) {
717  r = PTR_ERR(pgpath);
718  goto bad;
719  }
720 
721  pgpath->pg = pg;
722  list_add_tail(&pgpath->list, &pg->pgpaths);
723  dm_consume_args(as, nr_args);
724  }
725 
726  return pg;
727 
728  bad:
729  free_priority_group(pg, ti);
730  return ERR_PTR(r);
731 }
732 
733 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m)
734 {
735  unsigned hw_argc;
736  int ret;
737  struct dm_target *ti = m->ti;
738 
739  static struct dm_arg _args[] = {
740  {0, 1024, "invalid number of hardware handler args"},
741  };
742 
743  if (dm_read_arg_group(_args, as, &hw_argc, &ti->error))
744  return -EINVAL;
745 
746  if (!hw_argc)
747  return 0;
748 
751  "scsi_dh_%s", m->hw_handler_name)) {
752  ti->error = "unknown hardware handler type";
753  ret = -EINVAL;
754  goto fail;
755  }
756 
757  if (hw_argc > 1) {
758  char *p;
759  int i, j, len = 4;
760 
761  for (i = 0; i <= hw_argc - 2; i++)
762  len += strlen(as->argv[i]) + 1;
763  p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
764  if (!p) {
765  ti->error = "memory allocation failed";
766  ret = -ENOMEM;
767  goto fail;
768  }
769  j = sprintf(p, "%d", hw_argc - 1);
770  for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1)
771  j = sprintf(p, "%s", as->argv[i]);
772  }
773  dm_consume_args(as, hw_argc - 1);
774 
775  return 0;
776 fail:
778  m->hw_handler_name = NULL;
779  return ret;
780 }
781 
782 static int parse_features(struct dm_arg_set *as, struct multipath *m)
783 {
784  int r;
785  unsigned argc;
786  struct dm_target *ti = m->ti;
787  const char *arg_name;
788 
789  static struct dm_arg _args[] = {
790  {0, 6, "invalid number of feature args"},
791  {1, 50, "pg_init_retries must be between 1 and 50"},
792  {0, 60000, "pg_init_delay_msecs must be between 0 and 60000"},
793  };
794 
795  r = dm_read_arg_group(_args, as, &argc, &ti->error);
796  if (r)
797  return -EINVAL;
798 
799  if (!argc)
800  return 0;
801 
802  do {
803  arg_name = dm_shift_arg(as);
804  argc--;
805 
806  if (!strcasecmp(arg_name, "queue_if_no_path")) {
807  r = queue_if_no_path(m, 1, 0);
808  continue;
809  }
810 
811  if (!strcasecmp(arg_name, "retain_attached_hw_handler")) {
813  continue;
814  }
815 
816  if (!strcasecmp(arg_name, "pg_init_retries") &&
817  (argc >= 1)) {
818  r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error);
819  argc--;
820  continue;
821  }
822 
823  if (!strcasecmp(arg_name, "pg_init_delay_msecs") &&
824  (argc >= 1)) {
825  r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error);
826  argc--;
827  continue;
828  }
829 
830  ti->error = "Unrecognised multipath feature request";
831  r = -EINVAL;
832  } while (argc && !r);
833 
834  return r;
835 }
836 
837 static int multipath_ctr(struct dm_target *ti, unsigned int argc,
838  char **argv)
839 {
840  /* target arguments */
841  static struct dm_arg _args[] = {
842  {0, 1024, "invalid number of priority groups"},
843  {0, 1024, "invalid initial priority group number"},
844  };
845 
846  int r;
847  struct multipath *m;
848  struct dm_arg_set as;
849  unsigned pg_count = 0;
850  unsigned next_pg_num;
851 
852  as.argc = argc;
853  as.argv = argv;
854 
855  m = alloc_multipath(ti);
856  if (!m) {
857  ti->error = "can't allocate multipath";
858  return -EINVAL;
859  }
860 
861  r = parse_features(&as, m);
862  if (r)
863  goto bad;
864 
865  r = parse_hw_handler(&as, m);
866  if (r)
867  goto bad;
868 
869  r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error);
870  if (r)
871  goto bad;
872 
873  r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error);
874  if (r)
875  goto bad;
876 
877  if ((!m->nr_priority_groups && next_pg_num) ||
878  (m->nr_priority_groups && !next_pg_num)) {
879  ti->error = "invalid initial priority group";
880  r = -EINVAL;
881  goto bad;
882  }
883 
884  /* parse the priority groups */
885  while (as.argc) {
886  struct priority_group *pg;
887 
888  pg = parse_priority_group(&as, m);
889  if (IS_ERR(pg)) {
890  r = PTR_ERR(pg);
891  goto bad;
892  }
893 
894  m->nr_valid_paths += pg->nr_pgpaths;
896  pg_count++;
897  pg->pg_num = pg_count;
898  if (!--next_pg_num)
899  m->next_pg = pg;
900  }
901 
902  if (pg_count != m->nr_priority_groups) {
903  ti->error = "priority group count mismatch";
904  r = -EINVAL;
905  goto bad;
906  }
907 
908  ti->num_flush_requests = 1;
909  ti->num_discard_requests = 1;
910 
911  return 0;
912 
913  bad:
914  free_multipath(m);
915  return r;
916 }
917 
918 static void multipath_wait_for_pg_init_completion(struct multipath *m)
919 {
921  unsigned long flags;
922 
924 
925  while (1) {
927 
928  spin_lock_irqsave(&m->lock, flags);
929  if (!m->pg_init_in_progress) {
930  spin_unlock_irqrestore(&m->lock, flags);
931  break;
932  }
933  spin_unlock_irqrestore(&m->lock, flags);
934 
935  io_schedule();
936  }
938 
940 }
941 
942 static void flush_multipath_work(struct multipath *m)
943 {
944  flush_workqueue(kmpath_handlerd);
945  multipath_wait_for_pg_init_completion(m);
946  flush_workqueue(kmultipathd);
948 }
949 
950 static void multipath_dtr(struct dm_target *ti)
951 {
952  struct multipath *m = ti->private;
953 
954  flush_multipath_work(m);
955  free_multipath(m);
956 }
957 
958 /*
959  * Map cloned requests
960  */
961 static int multipath_map(struct dm_target *ti, struct request *clone,
962  union map_info *map_context)
963 {
964  int r;
965  struct multipath *m = (struct multipath *) ti->private;
966 
967  if (set_mapinfo(m, map_context) < 0)
968  /* ENOMEM, requeue */
969  return DM_MAPIO_REQUEUE;
970 
971  clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
972  r = map_io(m, clone, map_context, 0);
973  if (r < 0 || r == DM_MAPIO_REQUEUE)
974  clear_mapinfo(m, map_context);
975 
976  return r;
977 }
978 
979 /*
980  * Take a path out of use.
981  */
982 static int fail_path(struct pgpath *pgpath)
983 {
984  unsigned long flags;
985  struct multipath *m = pgpath->pg->m;
986 
987  spin_lock_irqsave(&m->lock, flags);
988 
989  if (!pgpath->is_active)
990  goto out;
991 
992  DMWARN("Failing path %s.", pgpath->path.dev->name);
993 
994  pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
995  pgpath->is_active = 0;
996  pgpath->fail_count++;
997 
998  m->nr_valid_paths--;
999 
1000  if (pgpath == m->current_pgpath)
1001  m->current_pgpath = NULL;
1002 
1004  pgpath->path.dev->name, m->nr_valid_paths);
1005 
1007 
1008 out:
1009  spin_unlock_irqrestore(&m->lock, flags);
1010 
1011  return 0;
1012 }
1013 
1014 /*
1015  * Reinstate a previously-failed path
1016  */
1017 static int reinstate_path(struct pgpath *pgpath)
1018 {
1019  int r = 0;
1020  unsigned long flags;
1021  struct multipath *m = pgpath->pg->m;
1022 
1023  spin_lock_irqsave(&m->lock, flags);
1024 
1025  if (pgpath->is_active)
1026  goto out;
1027 
1028  if (!pgpath->pg->ps.type->reinstate_path) {
1029  DMWARN("Reinstate path not supported by path selector %s",
1030  pgpath->pg->ps.type->name);
1031  r = -EINVAL;
1032  goto out;
1033  }
1034 
1035  r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
1036  if (r)
1037  goto out;
1038 
1039  pgpath->is_active = 1;
1040 
1041  if (!m->nr_valid_paths++ && m->queue_size) {
1042  m->current_pgpath = NULL;
1043  queue_work(kmultipathd, &m->process_queued_ios);
1044  } else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
1045  if (queue_work(kmpath_handlerd, &pgpath->activate_path.work))
1046  m->pg_init_in_progress++;
1047  }
1048 
1050  pgpath->path.dev->name, m->nr_valid_paths);
1051 
1053 
1054 out:
1055  spin_unlock_irqrestore(&m->lock, flags);
1056 
1057  return r;
1058 }
1059 
1060 /*
1061  * Fail or reinstate all paths that match the provided struct dm_dev.
1062  */
1063 static int action_dev(struct multipath *m, struct dm_dev *dev,
1064  action_fn action)
1065 {
1066  int r = -EINVAL;
1067  struct pgpath *pgpath;
1068  struct priority_group *pg;
1069 
1071  list_for_each_entry(pgpath, &pg->pgpaths, list) {
1072  if (pgpath->path.dev == dev)
1073  r = action(pgpath);
1074  }
1075  }
1076 
1077  return r;
1078 }
1079 
1080 /*
1081  * Temporarily try to avoid having to use the specified PG
1082  */
1083 static void bypass_pg(struct multipath *m, struct priority_group *pg,
1084  int bypassed)
1085 {
1086  unsigned long flags;
1087 
1088  spin_lock_irqsave(&m->lock, flags);
1089 
1090  pg->bypassed = bypassed;
1091  m->current_pgpath = NULL;
1092  m->current_pg = NULL;
1093 
1094  spin_unlock_irqrestore(&m->lock, flags);
1095 
1097 }
1098 
1099 /*
1100  * Switch to using the specified PG from the next I/O that gets mapped
1101  */
1102 static int switch_pg_num(struct multipath *m, const char *pgstr)
1103 {
1104  struct priority_group *pg;
1105  unsigned pgnum;
1106  unsigned long flags;
1107  char dummy;
1108 
1109  if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1110  (pgnum > m->nr_priority_groups)) {
1111  DMWARN("invalid PG number supplied to switch_pg_num");
1112  return -EINVAL;
1113  }
1114 
1115  spin_lock_irqsave(&m->lock, flags);
1117  pg->bypassed = 0;
1118  if (--pgnum)
1119  continue;
1120 
1121  m->current_pgpath = NULL;
1122  m->current_pg = NULL;
1123  m->next_pg = pg;
1124  }
1125  spin_unlock_irqrestore(&m->lock, flags);
1126 
1128  return 0;
1129 }
1130 
1131 /*
1132  * Set/clear bypassed status of a PG.
1133  * PGs are numbered upwards from 1 in the order they were declared.
1134  */
1135 static int bypass_pg_num(struct multipath *m, const char *pgstr, int bypassed)
1136 {
1137  struct priority_group *pg;
1138  unsigned pgnum;
1139  char dummy;
1140 
1141  if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1142  (pgnum > m->nr_priority_groups)) {
1143  DMWARN("invalid PG number supplied to bypass_pg");
1144  return -EINVAL;
1145  }
1146 
1148  if (!--pgnum)
1149  break;
1150  }
1151 
1152  bypass_pg(m, pg, bypassed);
1153  return 0;
1154 }
1155 
1156 /*
1157  * Should we retry pg_init immediately?
1158  */
1159 static int pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
1160 {
1161  unsigned long flags;
1162  int limit_reached = 0;
1163 
1164  spin_lock_irqsave(&m->lock, flags);
1165 
1166  if (m->pg_init_count <= m->pg_init_retries)
1167  m->pg_init_required = 1;
1168  else
1169  limit_reached = 1;
1170 
1171  spin_unlock_irqrestore(&m->lock, flags);
1172 
1173  return limit_reached;
1174 }
1175 
1176 static void pg_init_done(void *data, int errors)
1177 {
1178  struct pgpath *pgpath = data;
1179  struct priority_group *pg = pgpath->pg;
1180  struct multipath *m = pg->m;
1181  unsigned long flags;
1182  unsigned delay_retry = 0;
1183 
1184  /* device or driver problems */
1185  switch (errors) {
1186  case SCSI_DH_OK:
1187  break;
1188  case SCSI_DH_NOSYS:
1189  if (!m->hw_handler_name) {
1190  errors = 0;
1191  break;
1192  }
1193  DMERR("Could not failover the device: Handler scsi_dh_%s "
1194  "Error %d.", m->hw_handler_name, errors);
1195  /*
1196  * Fail path for now, so we do not ping pong
1197  */
1198  fail_path(pgpath);
1199  break;
1200  case SCSI_DH_DEV_TEMP_BUSY:
1201  /*
1202  * Probably doing something like FW upgrade on the
1203  * controller so try the other pg.
1204  */
1205  bypass_pg(m, pg, 1);
1206  break;
1207  case SCSI_DH_RETRY:
1208  /* Wait before retrying. */
1209  delay_retry = 1;
1210  case SCSI_DH_IMM_RETRY:
1212  if (pg_init_limit_reached(m, pgpath))
1213  fail_path(pgpath);
1214  errors = 0;
1215  break;
1216  default:
1217  /*
1218  * We probably do not want to fail the path for a device
1219  * error, but this is what the old dm did. In future
1220  * patches we can do more advanced handling.
1221  */
1222  fail_path(pgpath);
1223  }
1224 
1225  spin_lock_irqsave(&m->lock, flags);
1226  if (errors) {
1227  if (pgpath == m->current_pgpath) {
1228  DMERR("Could not failover device. Error %d.", errors);
1229  m->current_pgpath = NULL;
1230  m->current_pg = NULL;
1231  }
1232  } else if (!m->pg_init_required)
1233  pg->bypassed = 0;
1234 
1235  if (--m->pg_init_in_progress)
1236  /* Activations of other paths are still on going */
1237  goto out;
1238 
1239  if (!m->pg_init_required)
1240  m->queue_io = 0;
1241 
1242  m->pg_init_delay_retry = delay_retry;
1243  queue_work(kmultipathd, &m->process_queued_ios);
1244 
1245  /*
1246  * Wake up any thread waiting to suspend.
1247  */
1248  wake_up(&m->pg_init_wait);
1249 
1250 out:
1251  spin_unlock_irqrestore(&m->lock, flags);
1252 }
1253 
1254 static void activate_path(struct work_struct *work)
1255 {
1256  struct pgpath *pgpath =
1257  container_of(work, struct pgpath, activate_path.work);
1258 
1259  scsi_dh_activate(bdev_get_queue(pgpath->path.dev->bdev),
1260  pg_init_done, pgpath);
1261 }
1262 
1263 /*
1264  * end_io handling
1265  */
1266 static int do_end_io(struct multipath *m, struct request *clone,
1267  int error, struct dm_mpath_io *mpio)
1268 {
1269  /*
1270  * We don't queue any clone request inside the multipath target
1271  * during end I/O handling, since those clone requests don't have
1272  * bio clones. If we queue them inside the multipath target,
1273  * we need to make bio clones, that requires memory allocation.
1274  * (See drivers/md/dm.c:end_clone_bio() about why the clone requests
1275  * don't have bio clones.)
1276  * Instead of queueing the clone request here, we queue the original
1277  * request into dm core, which will remake a clone request and
1278  * clone bios for it and resubmit it later.
1279  */
1280  int r = DM_ENDIO_REQUEUE;
1281  unsigned long flags;
1282 
1283  if (!error && !clone->errors)
1284  return 0; /* I/O complete */
1285 
1286  if (error == -EOPNOTSUPP || error == -EREMOTEIO || error == -EILSEQ)
1287  return error;
1288 
1289  if (mpio->pgpath)
1290  fail_path(mpio->pgpath);
1291 
1292  spin_lock_irqsave(&m->lock, flags);
1293  if (!m->nr_valid_paths) {
1294  if (!m->queue_if_no_path) {
1295  if (!__must_push_back(m))
1296  r = -EIO;
1297  } else {
1298  if (error == -EBADE)
1299  r = error;
1300  }
1301  }
1302  spin_unlock_irqrestore(&m->lock, flags);
1303 
1304  return r;
1305 }
1306 
1307 static int multipath_end_io(struct dm_target *ti, struct request *clone,
1308  int error, union map_info *map_context)
1309 {
1310  struct multipath *m = ti->private;
1311  struct dm_mpath_io *mpio = map_context->ptr;
1312  struct pgpath *pgpath;
1313  struct path_selector *ps;
1314  int r;
1315 
1316  BUG_ON(!mpio);
1317 
1318  r = do_end_io(m, clone, error, mpio);
1319  pgpath = mpio->pgpath;
1320  if (pgpath) {
1321  ps = &pgpath->pg->ps;
1322  if (ps->type->end_io)
1323  ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1324  }
1325  clear_mapinfo(m, map_context);
1326 
1327  return r;
1328 }
1329 
1330 /*
1331  * Suspend can't complete until all the I/O is processed so if
1332  * the last path fails we must error any remaining I/O.
1333  * Note that if the freeze_bdev fails while suspending, the
1334  * queue_if_no_path state is lost - userspace should reset it.
1335  */
1336 static void multipath_presuspend(struct dm_target *ti)
1337 {
1338  struct multipath *m = (struct multipath *) ti->private;
1339 
1340  queue_if_no_path(m, 0, 1);
1341 }
1342 
1343 static void multipath_postsuspend(struct dm_target *ti)
1344 {
1345  struct multipath *m = ti->private;
1346 
1347  mutex_lock(&m->work_mutex);
1348  flush_multipath_work(m);
1349  mutex_unlock(&m->work_mutex);
1350 }
1351 
1352 /*
1353  * Restore the queue_if_no_path setting.
1354  */
1355 static void multipath_resume(struct dm_target *ti)
1356 {
1357  struct multipath *m = (struct multipath *) ti->private;
1358  unsigned long flags;
1359 
1360  spin_lock_irqsave(&m->lock, flags);
1362  spin_unlock_irqrestore(&m->lock, flags);
1363 }
1364 
1365 /*
1366  * Info output has the following format:
1367  * num_multipath_feature_args [multipath_feature_args]*
1368  * num_handler_status_args [handler_status_args]*
1369  * num_groups init_group_number
1370  * [A|D|E num_ps_status_args [ps_status_args]*
1371  * num_paths num_selector_args
1372  * [path_dev A|F fail_count [selector_args]* ]+ ]+
1373  *
1374  * Table output has the following format (identical to the constructor string):
1375  * num_feature_args [features_args]*
1376  * num_handler_args hw_handler [hw_handler_args]*
1377  * num_groups init_group_number
1378  * [priority selector-name num_ps_args [ps_args]*
1379  * num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
1380  */
1381 static int multipath_status(struct dm_target *ti, status_type_t type,
1382  unsigned status_flags, char *result, unsigned maxlen)
1383 {
1384  int sz = 0;
1385  unsigned long flags;
1386  struct multipath *m = (struct multipath *) ti->private;
1387  struct priority_group *pg;
1388  struct pgpath *p;
1389  unsigned pg_num;
1390  char state;
1391 
1392  spin_lock_irqsave(&m->lock, flags);
1393 
1394  /* Features */
1395  if (type == STATUSTYPE_INFO)
1396  DMEMIT("2 %u %u ", m->queue_size, m->pg_init_count);
1397  else {
1398  DMEMIT("%u ", m->queue_if_no_path +
1399  (m->pg_init_retries > 0) * 2 +
1402  if (m->queue_if_no_path)
1403  DMEMIT("queue_if_no_path ");
1404  if (m->pg_init_retries)
1405  DMEMIT("pg_init_retries %u ", m->pg_init_retries);
1407  DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs);
1409  DMEMIT("retain_attached_hw_handler ");
1410  }
1411 
1412  if (!m->hw_handler_name || type == STATUSTYPE_INFO)
1413  DMEMIT("0 ");
1414  else
1415  DMEMIT("1 %s ", m->hw_handler_name);
1416 
1417  DMEMIT("%u ", m->nr_priority_groups);
1418 
1419  if (m->next_pg)
1420  pg_num = m->next_pg->pg_num;
1421  else if (m->current_pg)
1422  pg_num = m->current_pg->pg_num;
1423  else
1424  pg_num = (m->nr_priority_groups ? 1 : 0);
1425 
1426  DMEMIT("%u ", pg_num);
1427 
1428  switch (type) {
1429  case STATUSTYPE_INFO:
1431  if (pg->bypassed)
1432  state = 'D'; /* Disabled */
1433  else if (pg == m->current_pg)
1434  state = 'A'; /* Currently Active */
1435  else
1436  state = 'E'; /* Enabled */
1437 
1438  DMEMIT("%c ", state);
1439 
1440  if (pg->ps.type->status)
1441  sz += pg->ps.type->status(&pg->ps, NULL, type,
1442  result + sz,
1443  maxlen - sz);
1444  else
1445  DMEMIT("0 ");
1446 
1447  DMEMIT("%u %u ", pg->nr_pgpaths,
1448  pg->ps.type->info_args);
1449 
1450  list_for_each_entry(p, &pg->pgpaths, list) {
1451  DMEMIT("%s %s %u ", p->path.dev->name,
1452  p->is_active ? "A" : "F",
1453  p->fail_count);
1454  if (pg->ps.type->status)
1455  sz += pg->ps.type->status(&pg->ps,
1456  &p->path, type, result + sz,
1457  maxlen - sz);
1458  }
1459  }
1460  break;
1461 
1462  case STATUSTYPE_TABLE:
1464  DMEMIT("%s ", pg->ps.type->name);
1465 
1466  if (pg->ps.type->status)
1467  sz += pg->ps.type->status(&pg->ps, NULL, type,
1468  result + sz,
1469  maxlen - sz);
1470  else
1471  DMEMIT("0 ");
1472 
1473  DMEMIT("%u %u ", pg->nr_pgpaths,
1474  pg->ps.type->table_args);
1475 
1476  list_for_each_entry(p, &pg->pgpaths, list) {
1477  DMEMIT("%s ", p->path.dev->name);
1478  if (pg->ps.type->status)
1479  sz += pg->ps.type->status(&pg->ps,
1480  &p->path, type, result + sz,
1481  maxlen - sz);
1482  }
1483  }
1484  break;
1485  }
1486 
1487  spin_unlock_irqrestore(&m->lock, flags);
1488 
1489  return 0;
1490 }
1491 
1492 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv)
1493 {
1494  int r = -EINVAL;
1495  struct dm_dev *dev;
1496  struct multipath *m = (struct multipath *) ti->private;
1497  action_fn action;
1498 
1499  mutex_lock(&m->work_mutex);
1500 
1501  if (dm_suspended(ti)) {
1502  r = -EBUSY;
1503  goto out;
1504  }
1505 
1506  if (argc == 1) {
1507  if (!strcasecmp(argv[0], "queue_if_no_path")) {
1508  r = queue_if_no_path(m, 1, 0);
1509  goto out;
1510  } else if (!strcasecmp(argv[0], "fail_if_no_path")) {
1511  r = queue_if_no_path(m, 0, 0);
1512  goto out;
1513  }
1514  }
1515 
1516  if (argc != 2) {
1517  DMWARN("Unrecognised multipath message received.");
1518  goto out;
1519  }
1520 
1521  if (!strcasecmp(argv[0], "disable_group")) {
1522  r = bypass_pg_num(m, argv[1], 1);
1523  goto out;
1524  } else if (!strcasecmp(argv[0], "enable_group")) {
1525  r = bypass_pg_num(m, argv[1], 0);
1526  goto out;
1527  } else if (!strcasecmp(argv[0], "switch_group")) {
1528  r = switch_pg_num(m, argv[1]);
1529  goto out;
1530  } else if (!strcasecmp(argv[0], "reinstate_path"))
1531  action = reinstate_path;
1532  else if (!strcasecmp(argv[0], "fail_path"))
1533  action = fail_path;
1534  else {
1535  DMWARN("Unrecognised multipath message received.");
1536  goto out;
1537  }
1538 
1539  r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev);
1540  if (r) {
1541  DMWARN("message: error getting device %s",
1542  argv[1]);
1543  goto out;
1544  }
1545 
1546  r = action_dev(m, dev, action);
1547 
1548  dm_put_device(ti, dev);
1549 
1550 out:
1551  mutex_unlock(&m->work_mutex);
1552  return r;
1553 }
1554 
1555 static int multipath_ioctl(struct dm_target *ti, unsigned int cmd,
1556  unsigned long arg)
1557 {
1558  struct multipath *m = ti->private;
1559  struct pgpath *pgpath;
1560  struct block_device *bdev;
1561  fmode_t mode;
1562  unsigned long flags;
1563  int r;
1564 
1565 again:
1566  bdev = NULL;
1567  mode = 0;
1568  r = 0;
1569 
1570  spin_lock_irqsave(&m->lock, flags);
1571 
1572  if (!m->current_pgpath)
1573  __choose_pgpath(m, 0);
1574 
1575  pgpath = m->current_pgpath;
1576 
1577  if (pgpath) {
1578  bdev = pgpath->path.dev->bdev;
1579  mode = pgpath->path.dev->mode;
1580  }
1581 
1582  if ((pgpath && m->queue_io) || (!pgpath && m->queue_if_no_path))
1583  r = -EAGAIN;
1584  else if (!bdev)
1585  r = -EIO;
1586 
1587  spin_unlock_irqrestore(&m->lock, flags);
1588 
1589  /*
1590  * Only pass ioctls through if the device sizes match exactly.
1591  */
1592  if (!r && ti->len != i_size_read(bdev->bd_inode) >> SECTOR_SHIFT)
1593  r = scsi_verify_blk_ioctl(NULL, cmd);
1594 
1595  if (r == -EAGAIN && !fatal_signal_pending(current)) {
1596  queue_work(kmultipathd, &m->process_queued_ios);
1597  msleep(10);
1598  goto again;
1599  }
1600 
1601  return r ? : __blkdev_driver_ioctl(bdev, mode, cmd, arg);
1602 }
1603 
1604 static int multipath_iterate_devices(struct dm_target *ti,
1605  iterate_devices_callout_fn fn, void *data)
1606 {
1607  struct multipath *m = ti->private;
1608  struct priority_group *pg;
1609  struct pgpath *p;
1610  int ret = 0;
1611 
1613  list_for_each_entry(p, &pg->pgpaths, list) {
1614  ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
1615  if (ret)
1616  goto out;
1617  }
1618  }
1619 
1620 out:
1621  return ret;
1622 }
1623 
1624 static int __pgpath_busy(struct pgpath *pgpath)
1625 {
1626  struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1627 
1628  return dm_underlying_device_busy(q);
1629 }
1630 
1631 /*
1632  * We return "busy", only when we can map I/Os but underlying devices
1633  * are busy (so even if we map I/Os now, the I/Os will wait on
1634  * the underlying queue).
1635  * In other words, if we want to kill I/Os or queue them inside us
1636  * due to map unavailability, we don't return "busy". Otherwise,
1637  * dm core won't give us the I/Os and we can't do what we want.
1638  */
1639 static int multipath_busy(struct dm_target *ti)
1640 {
1641  int busy = 0, has_active = 0;
1642  struct multipath *m = ti->private;
1643  struct priority_group *pg;
1644  struct pgpath *pgpath;
1645  unsigned long flags;
1646 
1647  spin_lock_irqsave(&m->lock, flags);
1648 
1649  /* Guess which priority_group will be used at next mapping time */
1650  if (unlikely(!m->current_pgpath && m->next_pg))
1651  pg = m->next_pg;
1652  else if (likely(m->current_pg))
1653  pg = m->current_pg;
1654  else
1655  /*
1656  * We don't know which pg will be used at next mapping time.
1657  * We don't call __choose_pgpath() here to avoid to trigger
1658  * pg_init just by busy checking.
1659  * So we don't know whether underlying devices we will be using
1660  * at next mapping time are busy or not. Just try mapping.
1661  */
1662  goto out;
1663 
1664  /*
1665  * If there is one non-busy active path at least, the path selector
1666  * will be able to select it. So we consider such a pg as not busy.
1667  */
1668  busy = 1;
1669  list_for_each_entry(pgpath, &pg->pgpaths, list)
1670  if (pgpath->is_active) {
1671  has_active = 1;
1672 
1673  if (!__pgpath_busy(pgpath)) {
1674  busy = 0;
1675  break;
1676  }
1677  }
1678 
1679  if (!has_active)
1680  /*
1681  * No active path in this pg, so this pg won't be used and
1682  * the current_pg will be changed at next mapping time.
1683  * We need to try mapping to determine it.
1684  */
1685  busy = 0;
1686 
1687 out:
1688  spin_unlock_irqrestore(&m->lock, flags);
1689 
1690  return busy;
1691 }
1692 
1693 /*-----------------------------------------------------------------
1694  * Module setup
1695  *---------------------------------------------------------------*/
1696 static struct target_type multipath_target = {
1697  .name = "multipath",
1698  .version = {1, 5, 0},
1699  .module = THIS_MODULE,
1700  .ctr = multipath_ctr,
1701  .dtr = multipath_dtr,
1702  .map_rq = multipath_map,
1703  .rq_end_io = multipath_end_io,
1704  .presuspend = multipath_presuspend,
1705  .postsuspend = multipath_postsuspend,
1706  .resume = multipath_resume,
1707  .status = multipath_status,
1708  .message = multipath_message,
1709  .ioctl = multipath_ioctl,
1710  .iterate_devices = multipath_iterate_devices,
1711  .busy = multipath_busy,
1712 };
1713 
1714 static int __init dm_multipath_init(void)
1715 {
1716  int r;
1717 
1718  /* allocate a slab for the dm_ios */
1719  _mpio_cache = KMEM_CACHE(dm_mpath_io, 0);
1720  if (!_mpio_cache)
1721  return -ENOMEM;
1722 
1723  r = dm_register_target(&multipath_target);
1724  if (r < 0) {
1725  DMERR("register failed %d", r);
1726  kmem_cache_destroy(_mpio_cache);
1727  return -EINVAL;
1728  }
1729 
1730  kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0);
1731  if (!kmultipathd) {
1732  DMERR("failed to create workqueue kmpathd");
1733  dm_unregister_target(&multipath_target);
1734  kmem_cache_destroy(_mpio_cache);
1735  return -ENOMEM;
1736  }
1737 
1738  /*
1739  * A separate workqueue is used to handle the device handlers
1740  * to avoid overloading existing workqueue. Overloading the
1741  * old workqueue would also create a bottleneck in the
1742  * path of the storage hardware device activation.
1743  */
1744  kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd",
1745  WQ_MEM_RECLAIM);
1746  if (!kmpath_handlerd) {
1747  DMERR("failed to create workqueue kmpath_handlerd");
1748  destroy_workqueue(kmultipathd);
1749  dm_unregister_target(&multipath_target);
1750  kmem_cache_destroy(_mpio_cache);
1751  return -ENOMEM;
1752  }
1753 
1754  DMINFO("version %u.%u.%u loaded",
1755  multipath_target.version[0], multipath_target.version[1],
1756  multipath_target.version[2]);
1757 
1758  return r;
1759 }
1760 
1761 static void __exit dm_multipath_exit(void)
1762 {
1763  destroy_workqueue(kmpath_handlerd);
1764  destroy_workqueue(kmultipathd);
1765 
1766  dm_unregister_target(&multipath_target);
1767  kmem_cache_destroy(_mpio_cache);
1768 }
1769 
1770 module_init(dm_multipath_init);
1771 module_exit(dm_multipath_exit);
1772 
1773 MODULE_DESCRIPTION(DM_NAME " multipath target");
1774 MODULE_AUTHOR("Sistina Software <[email protected]>");
1775 MODULE_LICENSE("GPL");