Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
emif.c
Go to the documentation of this file.
1 /*
2  * EMIF driver
3  *
4  * Copyright (C) 2012 Texas Instruments, Inc.
5  *
6  * Aneesh V <[email protected]>
7  * Santosh Shilimkar <[email protected]>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/kernel.h>
14 #include <linux/reboot.h>
16 #include <linux/io.h>
17 #include <linux/device.h>
18 #include <linux/platform_device.h>
19 #include <linux/interrupt.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/debugfs.h>
23 #include <linux/seq_file.h>
24 #include <linux/module.h>
25 #include <linux/list.h>
26 #include <linux/spinlock.h>
27 #include <memory/jedec_ddr.h>
28 #include "emif.h"
29 #include "of_memory.h"
30 
56 struct emif_data {
60  struct list_head node;
61  unsigned long irq_state;
62  void __iomem *base;
63  struct device *dev;
70 };
71 
72 static struct emif_data *emif1;
73 static spinlock_t emif_lock;
74 static unsigned long irq_state;
75 static u32 t_ck; /* DDR clock period in ps */
76 static LIST_HEAD(device_list);
77 
78 #ifdef CONFIG_DEBUG_FS
79 static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
80  struct emif_regs *regs)
81 {
82  u32 type = emif->plat_data->device_info->type;
83  u32 ip_rev = emif->plat_data->ip_rev;
84 
85  seq_printf(s, "EMIF register cache dump for %dMHz\n",
86  regs->freq/1000000);
87 
88  seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
89  seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
90  seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
91  seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
92 
93  if (ip_rev == EMIF_4D) {
94  seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
96  seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
98  } else if (ip_rev == EMIF_4D5) {
99  seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
101  seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
103  }
104 
105  if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
106  seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
107  regs->ref_ctrl_shdw_derated);
108  seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
110  seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
112  }
113 }
114 
115 static int emif_regdump_show(struct seq_file *s, void *unused)
116 {
117  struct emif_data *emif = s->private;
118  struct emif_regs **regs_cache;
119  int i;
120 
121  if (emif->duplicate)
122  regs_cache = emif1->regs_cache;
123  else
124  regs_cache = emif->regs_cache;
125 
126  for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
127  do_emif_regdump_show(s, emif, regs_cache[i]);
128  seq_printf(s, "\n");
129  }
130 
131  return 0;
132 }
133 
134 static int emif_regdump_open(struct inode *inode, struct file *file)
135 {
136  return single_open(file, emif_regdump_show, inode->i_private);
137 }
138 
139 static const struct file_operations emif_regdump_fops = {
140  .open = emif_regdump_open,
141  .read = seq_read,
142  .release = single_release,
143 };
144 
145 static int emif_mr4_show(struct seq_file *s, void *unused)
146 {
147  struct emif_data *emif = s->private;
148 
149  seq_printf(s, "MR4=%d\n", emif->temperature_level);
150  return 0;
151 }
152 
153 static int emif_mr4_open(struct inode *inode, struct file *file)
154 {
155  return single_open(file, emif_mr4_show, inode->i_private);
156 }
157 
158 static const struct file_operations emif_mr4_fops = {
159  .open = emif_mr4_open,
160  .read = seq_read,
161  .release = single_release,
162 };
163 
164 static int __init_or_module emif_debugfs_init(struct emif_data *emif)
165 {
166  struct dentry *dentry;
167  int ret;
168 
169  dentry = debugfs_create_dir(dev_name(emif->dev), NULL);
170  if (!dentry) {
171  ret = -ENOMEM;
172  goto err0;
173  }
174  emif->debugfs_root = dentry;
175 
176  dentry = debugfs_create_file("regcache_dump", S_IRUGO,
177  emif->debugfs_root, emif, &emif_regdump_fops);
178  if (!dentry) {
179  ret = -ENOMEM;
180  goto err1;
181  }
182 
183  dentry = debugfs_create_file("mr4", S_IRUGO,
184  emif->debugfs_root, emif, &emif_mr4_fops);
185  if (!dentry) {
186  ret = -ENOMEM;
187  goto err1;
188  }
189 
190  return 0;
191 err1:
193 err0:
194  return ret;
195 }
196 
197 static void __exit emif_debugfs_exit(struct emif_data *emif)
198 {
200  emif->debugfs_root = NULL;
201 }
202 #else
203 static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
204 {
205  return 0;
206 }
207 
208 static inline void __exit emif_debugfs_exit(struct emif_data *emif)
209 {
210 }
211 #endif
212 
213 /*
214  * Calculate the period of DDR clock from frequency value
215  */
216 static void set_ddr_clk_period(u32 freq)
217 {
218  /* Divide 10^12 by frequency to get period in ps */
219  t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
220 }
221 
222 /*
223  * Get bus width used by EMIF. Note that this may be different from the
224  * bus width of the DDR devices used. For instance two 16-bit DDR devices
225  * may be connected to a given CS of EMIF. In this case bus width as far
226  * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
227  */
228 static u32 get_emif_bus_width(struct emif_data *emif)
229 {
230  u32 width;
231  void __iomem *base = emif->base;
232 
233  width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
235  width = width == 0 ? 32 : 16;
236 
237  return width;
238 }
239 
240 /*
241  * Get the CL from SDRAM_CONFIG register
242  */
243 static u32 get_cl(struct emif_data *emif)
244 {
245  u32 cl;
246  void __iomem *base = emif->base;
247 
248  cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
249 
250  return cl;
251 }
252 
253 static void set_lpmode(struct emif_data *emif, u8 lpmode)
254 {
255  u32 temp;
256  void __iomem *base = emif->base;
257 
258  temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
259  temp &= ~LP_MODE_MASK;
260  temp |= (lpmode << LP_MODE_SHIFT);
262 }
263 
264 static void do_freq_update(void)
265 {
266  struct emif_data *emif;
267 
268  /*
269  * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
270  *
271  * i728 DESCRIPTION:
272  * The EMIF automatically puts the SDRAM into self-refresh mode
273  * after the EMIF has not performed accesses during
274  * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
275  * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
276  * to 0x2. If during a small window the following three events
277  * occur:
278  * - The SR_TIMING counter expires
279  * - And frequency change is requested
280  * - And OCP access is requested
281  * Then it causes instable clock on the DDR interface.
282  *
283  * WORKAROUND
284  * To avoid the occurrence of the three events, the workaround
285  * is to disable the self-refresh when requesting a frequency
286  * change. Before requesting a frequency change the software must
287  * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
288  * frequency change has been done, the software can reprogram
289  * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
290  */
292  if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
293  set_lpmode(emif, EMIF_LP_MODE_DISABLE);
294  }
295 
296  /*
297  * TODO: Do FREQ_UPDATE here when an API
298  * is available for this as part of the new
299  * clock framework
300  */
301 
303  if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
304  set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
305  }
306 }
307 
308 /* Find addressing table entry based on the device's type and density */
309 static const struct lpddr2_addressing *get_addressing_table(
310  const struct ddr_device_info *device_info)
311 {
312  u32 index, type, density;
313 
314  type = device_info->type;
315  density = device_info->density;
316 
317  switch (type) {
318  case DDR_TYPE_LPDDR2_S4:
319  index = density - 1;
320  break;
321  case DDR_TYPE_LPDDR2_S2:
322  switch (density) {
323  case DDR_DENSITY_1Gb:
324  case DDR_DENSITY_2Gb:
325  index = density + 3;
326  break;
327  default:
328  index = density - 1;
329  }
330  break;
331  default:
332  return NULL;
333  }
334 
336 }
337 
338 /*
339  * Find the the right timing table from the array of timing
340  * tables of the device using DDR clock frequency
341  */
342 static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
343  u32 freq)
344 {
345  u32 i, min, max, freq_nearest;
346  const struct lpddr2_timings *timings = NULL;
347  const struct lpddr2_timings *timings_arr = emif->plat_data->timings;
348  struct device *dev = emif->dev;
349 
350  /* Start with a very high frequency - 1GHz */
351  freq_nearest = 1000000000;
352 
353  /*
354  * Find the timings table such that:
355  * 1. the frequency range covers the required frequency(safe) AND
356  * 2. the max_freq is closest to the required frequency(optimal)
357  */
358  for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
359  max = timings_arr[i].max_freq;
360  min = timings_arr[i].min_freq;
361  if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
362  freq_nearest = max;
363  timings = &timings_arr[i];
364  }
365  }
366 
367  if (!timings)
368  dev_err(dev, "%s: couldn't find timings for - %dHz\n",
369  __func__, freq);
370 
371  dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
372  __func__, freq, freq_nearest);
373 
374  return timings;
375 }
376 
377 static u32 get_sdram_ref_ctrl_shdw(u32 freq,
378  const struct lpddr2_addressing *addressing)
379 {
380  u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
381 
382  /* Scale down frequency and t_refi to avoid overflow */
383  freq_khz = freq / 1000;
384  t_refi = addressing->tREFI_ns / 100;
385 
386  /*
387  * refresh rate to be set is 'tREFI(in us) * freq in MHz
388  * division by 10000 to account for change in units
389  */
390  val = t_refi * freq_khz / 10000;
391  ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
392 
393  return ref_ctrl_shdw;
394 }
395 
396 static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
397  const struct lpddr2_min_tck *min_tck,
398  const struct lpddr2_addressing *addressing)
399 {
400  u32 tim1 = 0, val = 0;
401 
402  val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
403  tim1 |= val << T_WTR_SHIFT;
404 
405  if (addressing->num_banks == B8)
406  val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
407  else
408  val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
409  tim1 |= (val - 1) << T_RRD_SHIFT;
410 
411  val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
412  tim1 |= val << T_RC_SHIFT;
413 
414  val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
415  tim1 |= (val - 1) << T_RAS_SHIFT;
416 
417  val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
418  tim1 |= val << T_WR_SHIFT;
419 
420  val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
421  tim1 |= val << T_RCD_SHIFT;
422 
423  val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
424  tim1 |= val << T_RP_SHIFT;
425 
426  return tim1;
427 }
428 
429 static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
430  const struct lpddr2_min_tck *min_tck,
431  const struct lpddr2_addressing *addressing)
432 {
433  u32 tim1 = 0, val = 0;
434 
435  val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
436  tim1 = val << T_WTR_SHIFT;
437 
438  /*
439  * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
440  * to tFAW for de-rating
441  */
442  if (addressing->num_banks == B8) {
443  val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
444  } else {
445  val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
446  val = max(min_tck->tRRD, val) - 1;
447  }
448  tim1 |= val << T_RRD_SHIFT;
449 
450  val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
451  tim1 |= (val - 1) << T_RC_SHIFT;
452 
453  val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
454  val = max(min_tck->tRASmin, val) - 1;
455  tim1 |= val << T_RAS_SHIFT;
456 
457  val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
458  tim1 |= val << T_WR_SHIFT;
459 
460  val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
461  tim1 |= (val - 1) << T_RCD_SHIFT;
462 
463  val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
464  tim1 |= (val - 1) << T_RP_SHIFT;
465 
466  return tim1;
467 }
468 
469 static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
470  const struct lpddr2_min_tck *min_tck,
471  const struct lpddr2_addressing *addressing,
472  u32 type)
473 {
474  u32 tim2 = 0, val = 0;
475 
476  val = min_tck->tCKE - 1;
477  tim2 |= val << T_CKE_SHIFT;
478 
479  val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
480  tim2 |= val << T_RTP_SHIFT;
481 
482  /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
483  val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
484  tim2 |= val << T_XSNR_SHIFT;
485 
486  /* XSRD same as XSNR for LPDDR2 */
487  tim2 |= val << T_XSRD_SHIFT;
488 
489  val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
490  tim2 |= val << T_XP_SHIFT;
491 
492  return tim2;
493 }
494 
495 static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
496  const struct lpddr2_min_tck *min_tck,
497  const struct lpddr2_addressing *addressing,
498  u32 type, u32 ip_rev, u32 derated)
499 {
500  u32 tim3 = 0, val = 0, t_dqsck;
501 
502  val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
503  val = val > 0xF ? 0xF : val;
504  tim3 |= val << T_RAS_MAX_SHIFT;
505 
506  val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
507  tim3 |= val << T_RFC_SHIFT;
508 
509  t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
510  timings->tDQSCK_max_derated : timings->tDQSCK_max;
511  if (ip_rev == EMIF_4D5)
512  val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
513  else
514  val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
515 
516  tim3 |= val << T_TDQSCKMAX_SHIFT;
517 
518  val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
519  tim3 |= val << ZQ_ZQCS_SHIFT;
520 
521  val = DIV_ROUND_UP(timings->tCKESR, t_ck);
522  val = max(min_tck->tCKESR, val) - 1;
523  tim3 |= val << T_CKESR_SHIFT;
524 
525  if (ip_rev == EMIF_4D5) {
526  tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
527 
528  val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
529  tim3 |= val << T_PDLL_UL_SHIFT;
530  }
531 
532  return tim3;
533 }
534 
535 static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
536  bool cs1_used, bool cal_resistors_per_cs)
537 {
538  u32 zq = 0, val = 0;
539 
540  val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
541  zq |= val << ZQ_REFINTERVAL_SHIFT;
542 
544  zq |= val << ZQ_ZQCL_MULT_SHIFT;
545 
547  zq |= val << ZQ_ZQINIT_MULT_SHIFT;
548 
550 
551  if (cal_resistors_per_cs)
553  else
555 
556  zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
557 
558  val = cs1_used ? 1 : 0;
559  zq |= val << ZQ_CS1EN_SHIFT;
560 
561  return zq;
562 }
563 
564 static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
565  const struct emif_custom_configs *custom_configs, bool cs1_used,
566  u32 sdram_io_width, u32 emif_bus_width)
567 {
568  u32 alert = 0, interval, devcnt;
569 
570  if (custom_configs && (custom_configs->mask &
572  interval = custom_configs->temp_alert_poll_interval_ms;
573  else
575 
576  interval *= 1000000; /* Convert to ns */
577  interval /= addressing->tREFI_ns; /* Convert to refresh cycles */
578  alert |= (interval << TA_REFINTERVAL_SHIFT);
579 
580  /*
581  * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
582  * also to this form and subtract to get TA_DEVCNT, which is
583  * in log2(x) form.
584  */
585  emif_bus_width = __fls(emif_bus_width) - 1;
586  devcnt = emif_bus_width - sdram_io_width;
587  alert |= devcnt << TA_DEVCNT_SHIFT;
588 
589  /* DEVWDT is in 'log2(x) - 3' form */
590  alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
591 
592  alert |= 1 << TA_SFEXITEN_SHIFT;
593  alert |= 1 << TA_CS0EN_SHIFT;
594  alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
595 
596  return alert;
597 }
598 
599 static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
600 {
601  u32 idle = 0, val = 0;
602 
603  /*
604  * Maximum value in normal conditions and increased frequency
605  * when voltage is ramping
606  */
607  if (volt_ramp)
608  val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
609  else
610  val = 0x1FF;
611 
612  /*
613  * READ_IDLE_CTRL register in EMIF4D has same offset and fields
614  * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
615  */
616  idle |= val << DLL_CALIB_INTERVAL_SHIFT;
618 
619  return idle;
620 }
621 
622 static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
623 {
624  u32 calib = 0, val = 0;
625 
626  if (volt_ramp == DDR_VOLTAGE_RAMPING)
627  val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
628  else
629  val = 0; /* Disabled when voltage is stable */
630 
631  calib |= val << DLL_CALIB_INTERVAL_SHIFT;
633 
634  return calib;
635 }
636 
637 static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
638  u32 freq, u8 RL)
639 {
641 
642  val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
643  phy |= val << READ_LATENCY_SHIFT_4D;
644 
645  if (freq <= 100000000)
647  else if (freq <= 200000000)
649  else
651 
652  phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
653 
654  return phy;
655 }
656 
657 static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
658 {
660 
661  /*
662  * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
663  * half-delay is not needed else set half-delay
664  */
665  if (freq >= 265000000 && freq < 267000000)
666  half_delay = 0;
667  else
668  half_delay = 1;
669 
670  phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
672  t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
673 
674  return phy;
675 }
676 
677 static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
678 {
679  u32 fifo_we_slave_ratio;
680 
681  fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
683 
684  return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
685  fifo_we_slave_ratio << 22;
686 }
687 
688 static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
689 {
690  u32 fifo_we_slave_ratio;
691 
692  fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
694 
695  return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
696  fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
697 }
698 
699 static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
700 {
701  u32 fifo_we_slave_ratio;
702 
703  fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
705 
706  return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
707  fifo_we_slave_ratio << 13;
708 }
709 
710 static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
711 {
712  u32 pwr_mgmt_ctrl = 0, timeout;
714  u32 timeout_perf = EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
715  u32 timeout_pwr = EMIF_LP_MODE_TIMEOUT_POWER;
716  u32 freq_threshold = EMIF_LP_MODE_FREQ_THRESHOLD;
717 
718  struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
719 
720  if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
721  lpmode = cust_cfgs->lpmode;
722  timeout_perf = cust_cfgs->lpmode_timeout_performance;
723  timeout_pwr = cust_cfgs->lpmode_timeout_power;
724  freq_threshold = cust_cfgs->lpmode_freq_threshold;
725  }
726 
727  /* Timeout based on DDR frequency */
728  timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
729 
730  /* The value to be set in register is "log2(timeout) - 3" */
731  if (timeout < 16) {
732  timeout = 0;
733  } else {
734  timeout = __fls(timeout) - 3;
735  if (timeout & (timeout - 1))
736  timeout++;
737  }
738 
739  switch (lpmode) {
741  pwr_mgmt_ctrl = (timeout << CS_TIM_SHIFT) |
743  break;
745  /* Workaround for errata i735 */
746  if (timeout < 6)
747  timeout = 6;
748 
749  pwr_mgmt_ctrl = (timeout << SR_TIM_SHIFT) |
751  break;
752  case EMIF_LP_MODE_PWR_DN:
753  pwr_mgmt_ctrl = (timeout << PD_TIM_SHIFT) |
755  break;
757  default:
758  pwr_mgmt_ctrl = CS_TIM_MASK |
760  }
761 
762  /* No CS_TIM in EMIF_4D5 */
763  if (ip_rev == EMIF_4D5)
764  pwr_mgmt_ctrl &= ~CS_TIM_MASK;
765 
766  pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
767 
768  return pwr_mgmt_ctrl;
769 }
770 
771 /*
772  * Get the temperature level of the EMIF instance:
773  * Reads the MR4 register of attached SDRAM parts to find out the temperature
774  * level. If there are two parts attached(one on each CS), then the temperature
775  * level for the EMIF instance is the higher of the two temperatures.
776  */
777 static void get_temperature_level(struct emif_data *emif)
778 {
779  u32 temp, temperature_level;
780  void __iomem *base;
781 
782  base = emif->base;
783 
784  /* Read mode register 4 */
786  temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
787  temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
789 
790  if (emif->plat_data->device_info->cs1_used) {
792  temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
793  temp = (temp & MR4_SDRAM_REF_RATE_MASK)
795  temperature_level = max(temp, temperature_level);
796  }
797 
798  /* treat everything less than nominal(3) in MR4 as nominal */
799  if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
800  temperature_level = SDRAM_TEMP_NOMINAL;
801 
802  /* if we get reserved value in MR4 persist with the existing value */
803  if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
804  emif->temperature_level = temperature_level;
805 }
806 
807 /*
808  * Program EMIF shadow registers that are not dependent on temperature
809  * or voltage
810  */
811 static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
812 {
813  void __iomem *base = emif->base;
814 
817 
818  /* Settings specific for EMIF4D5 */
819  if (emif->plat_data->ip_rev != EMIF_4D5)
820  return;
824 }
825 
826 /*
827  * When voltage ramps dll calibration and forced read idle should
828  * happen more often
829  */
830 static void setup_volt_sensitive_regs(struct emif_data *emif,
831  struct emif_regs *regs, u32 volt_state)
832 {
833  u32 calib_ctrl;
834  void __iomem *base = emif->base;
835 
836  /*
837  * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
838  * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
839  * is an alias of the respective read_idle_ctrl_shdw_* (members of
840  * a union). So, the below code takes care of both cases
841  */
842  if (volt_state == DDR_VOLTAGE_RAMPING)
843  calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
844  else
845  calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
846 
847  writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
848 }
849 
850 /*
851  * setup_temperature_sensitive_regs() - set the timings for temperature
852  * sensitive registers. This happens once at initialisation time based
853  * on the temperature at boot time and subsequently based on the temperature
854  * alert interrupt. Temperature alert can happen when the temperature
855  * increases or drops. So this function can have the effect of either
856  * derating the timings or going back to nominal values.
857  */
858 static void setup_temperature_sensitive_regs(struct emif_data *emif,
859  struct emif_regs *regs)
860 {
861  u32 tim1, tim3, ref_ctrl, type;
862  void __iomem *base = emif->base;
864 
865  type = emif->plat_data->device_info->type;
866 
867  tim1 = regs->sdram_tim1_shdw;
868  tim3 = regs->sdram_tim3_shdw;
869  ref_ctrl = regs->ref_ctrl_shdw;
870 
871  /* No de-rating for non-lpddr2 devices */
872  if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
873  goto out;
874 
875  temperature = emif->temperature_level;
876  if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
877  ref_ctrl = regs->ref_ctrl_shdw_derated;
878  } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
879  tim1 = regs->sdram_tim1_shdw_derated;
880  tim3 = regs->sdram_tim3_shdw_derated;
881  ref_ctrl = regs->ref_ctrl_shdw_derated;
882  }
883 
884 out:
885  writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
886  writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
887  writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
888 }
889 
890 static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
891 {
892  u32 old_temp_level;
893  irqreturn_t ret = IRQ_HANDLED;
894 
895  spin_lock_irqsave(&emif_lock, irq_state);
896  old_temp_level = emif->temperature_level;
897  get_temperature_level(emif);
898 
899  if (unlikely(emif->temperature_level == old_temp_level)) {
900  goto out;
901  } else if (!emif->curr_regs) {
902  dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
903  goto out;
904  }
905 
906  if (emif->temperature_level < old_temp_level ||
908  /*
909  * Temperature coming down - defer handling to thread OR
910  * Temperature far too high - do kernel_power_off() from
911  * thread context
912  */
913  ret = IRQ_WAKE_THREAD;
914  } else {
915  /* Temperature is going up - handle immediately */
916  setup_temperature_sensitive_regs(emif, emif->curr_regs);
917  do_freq_update();
918  }
919 
920 out:
921  spin_unlock_irqrestore(&emif_lock, irq_state);
922  return ret;
923 }
924 
925 static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
926 {
927  u32 interrupts;
928  struct emif_data *emif = dev_id;
929  void __iomem *base = emif->base;
930  struct device *dev = emif->dev;
931  irqreturn_t ret = IRQ_HANDLED;
932 
933  /* Save the status and clear it */
934  interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
935  writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
936 
937  /*
938  * Handle temperature alert
939  * Temperature alert should be same for all ports
940  * So, it's enough to process it only for one of the ports
941  */
942  if (interrupts & TA_SYS_MASK)
943  ret = handle_temp_alert(base, emif);
944 
945  if (interrupts & ERR_SYS_MASK)
946  dev_err(dev, "Access error from SYS port - %x\n", interrupts);
947 
948  if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
949  /* Save the status and clear it */
950  interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
951  writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
952 
953  if (interrupts & ERR_LL_MASK)
954  dev_err(dev, "Access error from LL port - %x\n",
955  interrupts);
956  }
957 
958  return ret;
959 }
960 
961 static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
962 {
963  struct emif_data *emif = dev_id;
964 
966  dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
968  return IRQ_HANDLED;
969  }
970 
971  spin_lock_irqsave(&emif_lock, irq_state);
972 
973  if (emif->curr_regs) {
974  setup_temperature_sensitive_regs(emif, emif->curr_regs);
975  do_freq_update();
976  } else {
977  dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
978  }
979 
980  spin_unlock_irqrestore(&emif_lock, irq_state);
981 
982  return IRQ_HANDLED;
983 }
984 
985 static void clear_all_interrupts(struct emif_data *emif)
986 {
987  void __iomem *base = emif->base;
988 
991  if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
994 }
995 
996 static void disable_and_clear_all_interrupts(struct emif_data *emif)
997 {
998  void __iomem *base = emif->base;
999 
1000  /* Disable all interrupts */
1003  if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1006 
1007  /* Clear all interrupts */
1008  clear_all_interrupts(emif);
1009 }
1010 
1011 static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
1012 {
1013  u32 interrupts, type;
1014  void __iomem *base = emif->base;
1015 
1016  type = emif->plat_data->device_info->type;
1017 
1018  clear_all_interrupts(emif);
1019 
1020  /* Enable interrupts for SYS interface */
1021  interrupts = EN_ERR_SYS_MASK;
1022  if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
1023  interrupts |= EN_TA_SYS_MASK;
1024  writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
1025 
1026  /* Enable interrupts for LL interface */
1027  if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1028  /* TA need not be enabled for LL */
1029  interrupts = EN_ERR_LL_MASK;
1030  writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
1031  }
1032 
1033  /* setup IRQ handlers */
1034  return devm_request_threaded_irq(emif->dev, irq,
1035  emif_interrupt_handler,
1036  emif_threaded_isr,
1037  0, dev_name(emif->dev),
1038  emif);
1039 
1040 }
1041 
1042 static void __init_or_module emif_onetime_settings(struct emif_data *emif)
1043 {
1044  u32 pwr_mgmt_ctrl, zq, temp_alert_cfg;
1045  void __iomem *base = emif->base;
1046  const struct lpddr2_addressing *addressing;
1047  const struct ddr_device_info *device_info;
1048 
1049  device_info = emif->plat_data->device_info;
1050  addressing = get_addressing_table(device_info);
1051 
1052  /*
1053  * Init power management settings
1054  * We don't know the frequency yet. Use a high frequency
1055  * value for a conservative timeout setting
1056  */
1057  pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
1058  emif->plat_data->ip_rev);
1059  emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
1060  writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
1061 
1062  /* Init ZQ calibration settings */
1063  zq = get_zq_config_reg(addressing, device_info->cs1_used,
1064  device_info->cal_resistors_per_cs);
1066 
1067  /* Check temperature level temperature level*/
1068  get_temperature_level(emif);
1070  dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1071 
1072  /* Init temperature polling */
1073  temp_alert_cfg = get_temp_alert_config(addressing,
1074  emif->plat_data->custom_configs, device_info->cs1_used,
1075  device_info->io_width, get_emif_bus_width(emif));
1076  writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
1077 
1078  /*
1079  * Program external PHY control registers that are not frequency
1080  * dependent
1081  */
1082  if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
1083  return;
1105 }
1106 
1107 static void get_default_timings(struct emif_data *emif)
1108 {
1109  struct emif_platform_data *pd = emif->plat_data;
1110 
1113 
1114  dev_warn(emif->dev, "%s: using default timings\n", __func__);
1115 }
1116 
1117 static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
1118  u32 ip_rev, struct device *dev)
1119 {
1120  int valid;
1121 
1122  valid = (type == DDR_TYPE_LPDDR2_S4 ||
1123  type == DDR_TYPE_LPDDR2_S2)
1124  && (density >= DDR_DENSITY_64Mb
1125  && density <= DDR_DENSITY_8Gb)
1126  && (io_width >= DDR_IO_WIDTH_8
1127  && io_width <= DDR_IO_WIDTH_32);
1128 
1129  /* Combinations of EMIF and PHY revisions that we support today */
1130  switch (ip_rev) {
1131  case EMIF_4D:
1132  valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
1133  break;
1134  case EMIF_4D5:
1135  valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
1136  break;
1137  default:
1138  valid = 0;
1139  }
1140 
1141  if (!valid)
1142  dev_err(dev, "%s: invalid DDR details\n", __func__);
1143  return valid;
1144 }
1145 
1146 static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
1147  struct device *dev)
1148 {
1149  int valid = 1;
1150 
1151  if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
1152  (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
1153  valid = cust_cfgs->lpmode_freq_threshold &&
1154  cust_cfgs->lpmode_timeout_performance &&
1155  cust_cfgs->lpmode_timeout_power;
1156 
1158  valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
1159 
1160  if (!valid)
1161  dev_warn(dev, "%s: invalid custom configs\n", __func__);
1162 
1163  return valid;
1164 }
1165 
1166 #if defined(CONFIG_OF)
1167 static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
1168  struct emif_data *emif)
1169 {
1170  struct emif_custom_configs *cust_cfgs = NULL;
1171  int len;
1172  const int *lpmode, *poll_intvl;
1173 
1174  lpmode = of_get_property(np_emif, "low-power-mode", &len);
1175  poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
1176 
1177  if (lpmode || poll_intvl)
1178  cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
1179  GFP_KERNEL);
1180 
1181  if (!cust_cfgs)
1182  return;
1183 
1184  if (lpmode) {
1185  cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
1186  cust_cfgs->lpmode = *lpmode;
1187  of_property_read_u32(np_emif,
1188  "low-power-mode-timeout-performance",
1189  &cust_cfgs->lpmode_timeout_performance);
1190  of_property_read_u32(np_emif,
1191  "low-power-mode-timeout-power",
1192  &cust_cfgs->lpmode_timeout_power);
1193  of_property_read_u32(np_emif,
1194  "low-power-mode-freq-threshold",
1195  &cust_cfgs->lpmode_freq_threshold);
1196  }
1197 
1198  if (poll_intvl) {
1199  cust_cfgs->mask |=
1201  cust_cfgs->temp_alert_poll_interval_ms = *poll_intvl;
1202  }
1203 
1204  if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
1205  devm_kfree(emif->dev, cust_cfgs);
1206  return;
1207  }
1208 
1209  emif->plat_data->custom_configs = cust_cfgs;
1210 }
1211 
1212 static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
1213  struct device_node *np_ddr,
1214  struct ddr_device_info *dev_info)
1215 {
1216  u32 density = 0, io_width = 0;
1217  int len;
1218 
1219  if (of_find_property(np_emif, "cs1-used", &len))
1220  dev_info->cs1_used = true;
1221 
1222  if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
1223  dev_info->cal_resistors_per_cs = true;
1224 
1225  if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s4"))
1226  dev_info->type = DDR_TYPE_LPDDR2_S4;
1227  else if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s2"))
1228  dev_info->type = DDR_TYPE_LPDDR2_S2;
1229 
1230  of_property_read_u32(np_ddr, "density", &density);
1231  of_property_read_u32(np_ddr, "io-width", &io_width);
1232 
1233  /* Convert from density in Mb to the density encoding in jedc_ddr.h */
1234  if (density & (density - 1))
1235  dev_info->density = 0;
1236  else
1237  dev_info->density = __fls(density) - 5;
1238 
1239  /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
1240  if (io_width & (io_width - 1))
1241  dev_info->io_width = 0;
1242  else
1243  dev_info->io_width = __fls(io_width) - 1;
1244 }
1245 
1246 static struct emif_data * __init_or_module of_get_memory_device_details(
1247  struct device_node *np_emif, struct device *dev)
1248 {
1249  struct emif_data *emif = NULL;
1250  struct ddr_device_info *dev_info = NULL;
1251  struct emif_platform_data *pd = NULL;
1252  struct device_node *np_ddr;
1253  int len;
1254 
1255  np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
1256  if (!np_ddr)
1257  goto error;
1258  emif = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
1259  pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1260  dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1261 
1262  if (!emif || !pd || !dev_info) {
1263  dev_err(dev, "%s: Out of memory!!\n",
1264  __func__);
1265  goto error;
1266  }
1267 
1268  emif->plat_data = pd;
1269  pd->device_info = dev_info;
1270  emif->dev = dev;
1271  emif->np_ddr = np_ddr;
1273 
1274  if (of_device_is_compatible(np_emif, "ti,emif-4d"))
1275  emif->plat_data->ip_rev = EMIF_4D;
1276  else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
1277  emif->plat_data->ip_rev = EMIF_4D5;
1278 
1279  of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
1280 
1281  if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
1283 
1284  of_get_ddr_info(np_emif, np_ddr, dev_info);
1285  if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
1286  pd->device_info->io_width, pd->phy_type, pd->ip_rev,
1287  emif->dev)) {
1288  dev_err(dev, "%s: invalid device data!!\n", __func__);
1289  goto error;
1290  }
1291  /*
1292  * For EMIF instances other than EMIF1 see if the devices connected
1293  * are exactly same as on EMIF1(which is typically the case). If so,
1294  * mark it as a duplicate of EMIF1. This will save some memory and
1295  * computation.
1296  */
1297  if (emif1 && emif1->np_ddr == np_ddr) {
1298  emif->duplicate = true;
1299  goto out;
1300  } else if (emif1) {
1301  dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1302  __func__);
1303  }
1304 
1305  of_get_custom_configs(np_emif, emif);
1306  emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
1307  emif->plat_data->device_info->type,
1308  &emif->plat_data->timings_arr_size);
1309 
1310  emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
1311  goto out;
1312 
1313 error:
1314  return NULL;
1315 out:
1316  return emif;
1317 }
1318 
1319 #else
1320 
1321 static struct emif_data * __init_or_module of_get_memory_device_details(
1322  struct device_node *np_emif, struct device *dev)
1323 {
1324  return NULL;
1325 }
1326 #endif
1327 
1328 static struct emif_data *__init_or_module get_device_details(
1329  struct platform_device *pdev)
1330 {
1331  u32 size;
1332  struct emif_data *emif = NULL;
1333  struct ddr_device_info *dev_info;
1334  struct emif_custom_configs *cust_cfgs;
1335  struct emif_platform_data *pd;
1336  struct device *dev;
1337  void *temp;
1338 
1339  pd = pdev->dev.platform_data;
1340  dev = &pdev->dev;
1341 
1342  if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1343  pd->device_info->density, pd->device_info->io_width,
1344  pd->phy_type, pd->ip_rev, dev))) {
1345  dev_err(dev, "%s: invalid device data\n", __func__);
1346  goto error;
1347  }
1348 
1349  emif = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1350  temp = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1351  dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1352 
1353  if (!emif || !pd || !dev_info) {
1354  dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
1355  goto error;
1356  }
1357 
1358  memcpy(temp, pd, sizeof(*pd));
1359  pd = temp;
1360  memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1361 
1362  pd->device_info = dev_info;
1363  emif->plat_data = pd;
1364  emif->dev = dev;
1366 
1367  /*
1368  * For EMIF instances other than EMIF1 see if the devices connected
1369  * are exactly same as on EMIF1(which is typically the case). If so,
1370  * mark it as a duplicate of EMIF1 and skip copying timings data.
1371  * This will save some memory and some computation later.
1372  */
1373  emif->duplicate = emif1 && (memcmp(dev_info,
1374  emif1->plat_data->device_info,
1375  sizeof(struct ddr_device_info)) == 0);
1376 
1377  if (emif->duplicate) {
1378  pd->timings = NULL;
1379  pd->min_tck = NULL;
1380  goto out;
1381  } else if (emif1) {
1382  dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1383  __func__);
1384  }
1385 
1386  /*
1387  * Copy custom configs - ignore allocation error, if any, as
1388  * custom_configs is not very critical
1389  */
1390  cust_cfgs = pd->custom_configs;
1391  if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1392  temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1393  if (temp)
1394  memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1395  else
1396  dev_warn(dev, "%s:%d: allocation error\n", __func__,
1397  __LINE__);
1398  pd->custom_configs = temp;
1399  }
1400 
1401  /*
1402  * Copy timings and min-tck values from platform data. If it is not
1403  * available or if memory allocation fails, use JEDEC defaults
1404  */
1405  size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1406  if (pd->timings) {
1407  temp = devm_kzalloc(dev, size, GFP_KERNEL);
1408  if (temp) {
1409  memcpy(temp, pd->timings, sizeof(*pd->timings));
1410  pd->timings = temp;
1411  } else {
1412  dev_warn(dev, "%s:%d: allocation error\n", __func__,
1413  __LINE__);
1414  get_default_timings(emif);
1415  }
1416  } else {
1417  get_default_timings(emif);
1418  }
1419 
1420  if (pd->min_tck) {
1421  temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1422  if (temp) {
1423  memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1424  pd->min_tck = temp;
1425  } else {
1426  dev_warn(dev, "%s:%d: allocation error\n", __func__,
1427  __LINE__);
1429  }
1430  } else {
1432  }
1433 
1434 out:
1435  return emif;
1436 
1437 error:
1438  return NULL;
1439 }
1440 
1441 static int __init_or_module emif_probe(struct platform_device *pdev)
1442 {
1443  struct emif_data *emif;
1444  struct resource *res;
1445  int irq;
1446 
1447  if (pdev->dev.of_node)
1448  emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1449  else
1450  emif = get_device_details(pdev);
1451 
1452  if (!emif) {
1453  pr_err("%s: error getting device data\n", __func__);
1454  goto error;
1455  }
1456 
1457  list_add(&emif->node, &device_list);
1458  emif->addressing = get_addressing_table(emif->plat_data->device_info);
1459 
1460  /* Save pointers to each other in emif and device structures */
1461  emif->dev = &pdev->dev;
1462  platform_set_drvdata(pdev, emif);
1463 
1464  res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1465  if (!res) {
1466  dev_err(emif->dev, "%s: error getting memory resource\n",
1467  __func__);
1468  goto error;
1469  }
1470 
1471  emif->base = devm_request_and_ioremap(emif->dev, res);
1472  if (!emif->base) {
1473  dev_err(emif->dev, "%s: devm_request_and_ioremap() failed\n",
1474  __func__);
1475  goto error;
1476  }
1477 
1478  irq = platform_get_irq(pdev, 0);
1479  if (irq < 0) {
1480  dev_err(emif->dev, "%s: error getting IRQ resource - %d\n",
1481  __func__, irq);
1482  goto error;
1483  }
1484 
1485  emif_onetime_settings(emif);
1486  emif_debugfs_init(emif);
1487  disable_and_clear_all_interrupts(emif);
1488  setup_interrupts(emif, irq);
1489 
1490  /* One-time actions taken on probing the first device */
1491  if (!emif1) {
1492  emif1 = emif;
1493  spin_lock_init(&emif_lock);
1494 
1495  /*
1496  * TODO: register notifiers for frequency and voltage
1497  * change here once the respective frameworks are
1498  * available
1499  */
1500  }
1501 
1502  dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1503  __func__, emif->base, irq);
1504 
1505  return 0;
1506 error:
1507  return -ENODEV;
1508 }
1509 
1510 static int __exit emif_remove(struct platform_device *pdev)
1511 {
1512  struct emif_data *emif = platform_get_drvdata(pdev);
1513 
1514  emif_debugfs_exit(emif);
1515 
1516  return 0;
1517 }
1518 
1519 static void emif_shutdown(struct platform_device *pdev)
1520 {
1521  struct emif_data *emif = platform_get_drvdata(pdev);
1522 
1523  disable_and_clear_all_interrupts(emif);
1524 }
1525 
1526 static int get_emif_reg_values(struct emif_data *emif, u32 freq,
1527  struct emif_regs *regs)
1528 {
1529  u32 cs1_used, ip_rev, phy_type;
1530  u32 cl, type;
1531  const struct lpddr2_timings *timings;
1532  const struct lpddr2_min_tck *min_tck;
1533  const struct ddr_device_info *device_info;
1534  const struct lpddr2_addressing *addressing;
1535  struct emif_data *emif_for_calc;
1536  struct device *dev;
1537  const struct emif_custom_configs *custom_configs;
1538 
1539  dev = emif->dev;
1540  /*
1541  * If the devices on this EMIF instance is duplicate of EMIF1,
1542  * use EMIF1 details for the calculation
1543  */
1544  emif_for_calc = emif->duplicate ? emif1 : emif;
1545  timings = get_timings_table(emif_for_calc, freq);
1546  addressing = emif_for_calc->addressing;
1547  if (!timings || !addressing) {
1548  dev_err(dev, "%s: not enough data available for %dHz",
1549  __func__, freq);
1550  return -1;
1551  }
1552 
1553  device_info = emif_for_calc->plat_data->device_info;
1554  type = device_info->type;
1555  cs1_used = device_info->cs1_used;
1556  ip_rev = emif_for_calc->plat_data->ip_rev;
1557  phy_type = emif_for_calc->plat_data->phy_type;
1558 
1559  min_tck = emif_for_calc->plat_data->min_tck;
1560  custom_configs = emif_for_calc->plat_data->custom_configs;
1561 
1562  set_ddr_clk_period(freq);
1563 
1564  regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
1565  regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
1566  addressing);
1567  regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
1568  addressing, type);
1569  regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
1570  addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
1571 
1572  cl = get_cl(emif);
1573 
1574  if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
1575  regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
1576  timings, freq, cl);
1577  } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
1578  regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
1579  regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
1580  regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
1581  regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
1582  } else {
1583  return -1;
1584  }
1585 
1586  /* Only timeout values in pwr_mgmt_ctrl_shdw register */
1587  regs->pwr_mgmt_ctrl_shdw =
1588  get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
1590 
1591  if (ip_rev & EMIF_4D) {
1593  get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
1594 
1596  get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1597  } else if (ip_rev & EMIF_4D5) {
1599  get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
1600 
1602  get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1603  }
1604 
1605  if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
1606  regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
1607  addressing);
1608 
1609  regs->sdram_tim1_shdw_derated =
1610  get_sdram_tim_1_shdw_derated(timings, min_tck,
1611  addressing);
1612 
1613  regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
1614  min_tck, addressing, type, ip_rev,
1616  }
1617 
1618  regs->freq = freq;
1619 
1620  return 0;
1621 }
1622 
1623 /*
1624  * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1625  * given frequency(freq):
1626  *
1627  * As an optimisation, every EMIF instance other than EMIF1 shares the
1628  * register cache with EMIF1 if the devices connected on this instance
1629  * are same as that on EMIF1(indicated by the duplicate flag)
1630  *
1631  * If we do not have an entry corresponding to the frequency given, we
1632  * allocate a new entry and calculate the values
1633  *
1634  * Upon finding the right reg dump, save it in curr_regs. It can be
1635  * directly used for thermal de-rating and voltage ramping changes.
1636  */
1637 static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
1638 {
1639  int i;
1640  struct emif_regs **regs_cache;
1641  struct emif_regs *regs = NULL;
1642  struct device *dev;
1643 
1644  dev = emif->dev;
1645  if (emif->curr_regs && emif->curr_regs->freq == freq) {
1646  dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
1647  return emif->curr_regs;
1648  }
1649 
1650  if (emif->duplicate)
1651  regs_cache = emif1->regs_cache;
1652  else
1653  regs_cache = emif->regs_cache;
1654 
1655  for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
1656  if (regs_cache[i]->freq == freq) {
1657  regs = regs_cache[i];
1658  dev_dbg(dev,
1659  "%s: reg dump found in reg cache for %u Hz\n",
1660  __func__, freq);
1661  break;
1662  }
1663  }
1664 
1665  /*
1666  * If we don't have an entry for this frequency in the cache create one
1667  * and calculate the values
1668  */
1669  if (!regs) {
1670  regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
1671  if (!regs)
1672  return NULL;
1673 
1674  if (get_emif_reg_values(emif, freq, regs)) {
1675  devm_kfree(emif->dev, regs);
1676  return NULL;
1677  }
1678 
1679  /*
1680  * Now look for an un-used entry in the cache and save the
1681  * newly created struct. If there are no free entries
1682  * over-write the last entry
1683  */
1684  for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
1685  ;
1686 
1687  if (i >= EMIF_MAX_NUM_FREQUENCIES) {
1688  dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
1689  __func__);
1690  i = EMIF_MAX_NUM_FREQUENCIES - 1;
1691  devm_kfree(emif->dev, regs_cache[i]);
1692  }
1693  regs_cache[i] = regs;
1694  }
1695 
1696  return regs;
1697 }
1698 
1699 static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
1700 {
1701  dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
1702  volt_state);
1703 
1704  if (!emif->curr_regs) {
1705  dev_err(emif->dev,
1706  "%s: volt-notify before registers are ready: %d\n",
1707  __func__, volt_state);
1708  return;
1709  }
1710 
1711  setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
1712 }
1713 
1714 /*
1715  * TODO: voltage notify handling should be hooked up to
1716  * regulator framework as soon as the necessary support
1717  * is available in mainline kernel. This function is un-used
1718  * right now.
1719  */
1720 static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
1721 {
1722  struct emif_data *emif;
1723 
1724  spin_lock_irqsave(&emif_lock, irq_state);
1725 
1727  do_volt_notify_handling(emif, volt_state);
1728  do_freq_update();
1729 
1730  spin_unlock_irqrestore(&emif_lock, irq_state);
1731 }
1732 
1733 static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
1734 {
1735  struct emif_regs *regs;
1736 
1737  regs = get_regs(emif, new_freq);
1738  if (!regs)
1739  return;
1740 
1741  emif->curr_regs = regs;
1742 
1743  /*
1744  * Update the shadow registers:
1745  * Temperature and voltage-ramp sensitive settings are also configured
1746  * in terms of DDR cycles. So, we need to update them too when there
1747  * is a freq change
1748  */
1749  dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
1750  __func__, new_freq);
1751  setup_registers(emif, regs);
1752  setup_temperature_sensitive_regs(emif, regs);
1753  setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
1754 
1755  /*
1756  * Part of workaround for errata i728. See do_freq_update()
1757  * for more details
1758  */
1759  if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1760  set_lpmode(emif, EMIF_LP_MODE_DISABLE);
1761 }
1762 
1763 /*
1764  * TODO: frequency notify handling should be hooked up to
1765  * clock framework as soon as the necessary support is
1766  * available in mainline kernel. This function is un-used
1767  * right now.
1768  */
1769 static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
1770 {
1771  struct emif_data *emif;
1772 
1773  /*
1774  * NOTE: we are taking the spin-lock here and releases it
1775  * only in post-notifier. This doesn't look good and
1776  * Sparse complains about it, but this seems to be
1777  * un-avoidable. We need to lock a sequence of events
1778  * that is split between EMIF and clock framework.
1779  *
1780  * 1. EMIF driver updates EMIF timings in shadow registers in the
1781  * frequency pre-notify callback from clock framework
1782  * 2. clock framework sets up the registers for the new frequency
1783  * 3. clock framework initiates a hw-sequence that updates
1784  * the frequency EMIF timings synchronously.
1785  *
1786  * All these 3 steps should be performed as an atomic operation
1787  * vis-a-vis similar sequence in the EMIF interrupt handler
1788  * for temperature events. Otherwise, there could be race
1789  * conditions that could result in incorrect EMIF timings for
1790  * a given frequency
1791  */
1792  spin_lock_irqsave(&emif_lock, irq_state);
1793 
1795  do_freq_pre_notify_handling(emif, new_freq);
1796 }
1797 
1798 static void do_freq_post_notify_handling(struct emif_data *emif)
1799 {
1800  /*
1801  * Part of workaround for errata i728. See do_freq_update()
1802  * for more details
1803  */
1804  if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1805  set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
1806 }
1807 
1808 /*
1809  * TODO: frequency notify handling should be hooked up to
1810  * clock framework as soon as the necessary support is
1811  * available in mainline kernel. This function is un-used
1812  * right now.
1813  */
1814 static void __attribute__((unused)) freq_post_notify_handling(void)
1815 {
1816  struct emif_data *emif;
1817 
1819  do_freq_post_notify_handling(emif);
1820 
1821  /*
1822  * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1823  * for more details
1824  */
1825  spin_unlock_irqrestore(&emif_lock, irq_state);
1826 }
1827 
1828 #if defined(CONFIG_OF)
1829 static const struct of_device_id emif_of_match[] = {
1830  { .compatible = "ti,emif-4d" },
1831  { .compatible = "ti,emif-4d5" },
1832  {},
1833 };
1834 MODULE_DEVICE_TABLE(of, emif_of_match);
1835 #endif
1836 
1837 static struct platform_driver emif_driver = {
1838  .remove = __exit_p(emif_remove),
1839  .shutdown = emif_shutdown,
1840  .driver = {
1841  .name = "emif",
1842  .of_match_table = of_match_ptr(emif_of_match),
1843  },
1844 };
1845 
1846 static int __init_or_module emif_register(void)
1847 {
1848  return platform_driver_probe(&emif_driver, emif_probe);
1849 }
1850 
1851 static void __exit emif_unregister(void)
1852 {
1853  platform_driver_unregister(&emif_driver);
1854 }
1855 
1856 module_init(emif_register);
1857 module_exit(emif_unregister);
1858 MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1859 MODULE_LICENSE("GPL");
1860 MODULE_ALIAS("platform:emif");
1861 MODULE_AUTHOR("Texas Instruments Inc");