Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
driver.c
Go to the documentation of this file.
1 /*
2  * Intel Wireless WiMAX Connection 2400m
3  * Generic probe/disconnect, reset and message passing
4  *
5  *
6  * Copyright (C) 2007-2008 Intel Corporation <[email protected]>
7  * Inaky Perez-Gonzalez <[email protected]>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License version
11  * 2 as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21  * 02110-1301, USA.
22  *
23  *
24  * See i2400m.h for driver documentation. This contains helpers for
25  * the driver model glue [_setup()/_release()], handling device resets
26  * [_dev_reset_handle()], and the backends for the WiMAX stack ops
27  * reset [_op_reset()] and message from user [_op_msg_from_user()].
28  *
29  * ROADMAP:
30  *
31  * i2400m_op_msg_from_user()
32  * i2400m_msg_to_dev()
33  * wimax_msg_to_user_send()
34  *
35  * i2400m_op_reset()
36  * i240m->bus_reset()
37  *
38  * i2400m_dev_reset_handle()
39  * __i2400m_dev_reset_handle()
40  * __i2400m_dev_stop()
41  * __i2400m_dev_start()
42  *
43  * i2400m_setup()
44  * i2400m->bus_setup()
45  * i2400m_bootrom_init()
46  * register_netdev()
47  * wimax_dev_add()
48  * i2400m_dev_start()
49  * __i2400m_dev_start()
50  * i2400m_dev_bootstrap()
51  * i2400m_tx_setup()
52  * i2400m->bus_dev_start()
53  * i2400m_firmware_check()
54  * i2400m_check_mac_addr()
55  *
56  * i2400m_release()
57  * i2400m_dev_stop()
58  * __i2400m_dev_stop()
59  * i2400m_dev_shutdown()
60  * i2400m->bus_dev_stop()
61  * i2400m_tx_release()
62  * i2400m->bus_release()
63  * wimax_dev_rm()
64  * unregister_netdev()
65  */
66 #include "i2400m.h"
67 #include <linux/etherdevice.h>
68 #include <linux/wimax/i2400m.h>
69 #include <linux/module.h>
70 #include <linux/moduleparam.h>
71 #include <linux/suspend.h>
72 #include <linux/slab.h>
73 
74 #define D_SUBMODULE driver
75 #include "debug-levels.h"
76 
77 
78 static char i2400m_debug_params[128];
79 module_param_string(debug, i2400m_debug_params, sizeof(i2400m_debug_params),
80  0644);
82  "String of space-separated NAME:VALUE pairs, where NAMEs "
83  "are the different debug submodules and VALUE are the "
84  "initial debug value to set.");
85 
86 static char i2400m_barkers_params[128];
87 module_param_string(barkers, i2400m_barkers_params,
88  sizeof(i2400m_barkers_params), 0644);
89 MODULE_PARM_DESC(barkers,
90  "String of comma-separated 32-bit values; each is "
91  "recognized as the value the device sends as a reboot "
92  "signal; values are appended to a list--setting one value "
93  "as zero cleans the existing list and starts a new one.");
94 
95 /*
96  * WiMAX stack operation: relay a message from user space
97  *
98  * @wimax_dev: device descriptor
99  * @pipe_name: named pipe the message is for
100  * @msg_buf: pointer to the message bytes
101  * @msg_len: length of the buffer
102  * @genl_info: passed by the generic netlink layer
103  *
104  * The WiMAX stack will call this function when a message was received
105  * from user space.
106  *
107  * For the i2400m, this is an L3L4 message, as specified in
108  * include/linux/wimax/i2400m.h, and thus prefixed with a 'struct
109  * i2400m_l3l4_hdr'. Driver (and device) expect the messages to be
110  * coded in Little Endian.
111  *
112  * This function just verifies that the header declaration and the
113  * payload are consistent and then deals with it, either forwarding it
114  * to the device or procesing it locally.
115  *
116  * In the i2400m, messages are basically commands that will carry an
117  * ack, so we use i2400m_msg_to_dev() and then deliver the ack back to
118  * user space. The rx.c code might intercept the response and use it
119  * to update the driver's state, but then it will pass it on so it can
120  * be relayed back to user space.
121  *
122  * Note that asynchronous events from the device are processed and
123  * sent to user space in rx.c.
124  */
125 static
126 int i2400m_op_msg_from_user(struct wimax_dev *wimax_dev,
127  const char *pipe_name,
128  const void *msg_buf, size_t msg_len,
129  const struct genl_info *genl_info)
130 {
131  int result;
132  struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
133  struct device *dev = i2400m_dev(i2400m);
134  struct sk_buff *ack_skb;
135 
136  d_fnstart(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p "
137  "msg_len %zu genl_info %p)\n", wimax_dev, i2400m,
138  msg_buf, msg_len, genl_info);
139  ack_skb = i2400m_msg_to_dev(i2400m, msg_buf, msg_len);
140  result = PTR_ERR(ack_skb);
141  if (IS_ERR(ack_skb))
142  goto error_msg_to_dev;
143  result = wimax_msg_send(&i2400m->wimax_dev, ack_skb);
144 error_msg_to_dev:
145  d_fnend(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p msg_len %zu "
146  "genl_info %p) = %d\n", wimax_dev, i2400m, msg_buf, msg_len,
147  genl_info, result);
148  return result;
149 }
150 
151 
152 /*
153  * Context to wait for a reset to finalize
154  */
157  int result;
158 };
159 
160 
161 /*
162  * WiMAX stack operation: reset a device
163  *
164  * @wimax_dev: device descriptor
165  *
166  * See the documentation for wimax_reset() and wimax_dev->op_reset for
167  * the requirements of this function. The WiMAX stack guarantees
168  * serialization on calls to this function.
169  *
170  * Do a warm reset on the device; if it fails, resort to a cold reset
171  * and return -ENODEV. On successful warm reset, we need to block
172  * until it is complete.
173  *
174  * The bus-driver implementation of reset takes care of falling back
175  * to cold reset if warm fails.
176  */
177 static
178 int i2400m_op_reset(struct wimax_dev *wimax_dev)
179 {
180  int result;
181  struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
182  struct device *dev = i2400m_dev(i2400m);
183  struct i2400m_reset_ctx ctx = {
185  .result = 0,
186  };
187 
188  d_fnstart(4, dev, "(wimax_dev %p)\n", wimax_dev);
189  mutex_lock(&i2400m->init_mutex);
190  i2400m->reset_ctx = &ctx;
191  mutex_unlock(&i2400m->init_mutex);
192  result = i2400m_reset(i2400m, I2400M_RT_WARM);
193  if (result < 0)
194  goto out;
195  result = wait_for_completion_timeout(&ctx.completion, 4*HZ);
196  if (result == 0)
197  result = -ETIMEDOUT;
198  else if (result > 0)
199  result = ctx.result;
200  /* if result < 0, pass it on */
201  mutex_lock(&i2400m->init_mutex);
202  i2400m->reset_ctx = NULL;
203  mutex_unlock(&i2400m->init_mutex);
204 out:
205  d_fnend(4, dev, "(wimax_dev %p) = %d\n", wimax_dev, result);
206  return result;
207 }
208 
209 
210 /*
211  * Check the MAC address we got from boot mode is ok
212  *
213  * @i2400m: device descriptor
214  *
215  * Returns: 0 if ok, < 0 errno code on error.
216  */
217 static
218 int i2400m_check_mac_addr(struct i2400m *i2400m)
219 {
220  int result;
221  struct device *dev = i2400m_dev(i2400m);
222  struct sk_buff *skb;
223  const struct i2400m_tlv_detailed_device_info *ddi;
224  struct net_device *net_dev = i2400m->wimax_dev.net_dev;
225 
226  d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
227  skb = i2400m_get_device_info(i2400m);
228  if (IS_ERR(skb)) {
229  result = PTR_ERR(skb);
230  dev_err(dev, "Cannot verify MAC address, error reading: %d\n",
231  result);
232  goto error;
233  }
234  /* Extract MAC address */
235  ddi = (void *) skb->data;
236  BUILD_BUG_ON(ETH_ALEN != sizeof(ddi->mac_address));
237  d_printf(2, dev, "GET DEVICE INFO: mac addr %pM\n",
238  ddi->mac_address);
239  if (!memcmp(net_dev->perm_addr, ddi->mac_address,
240  sizeof(ddi->mac_address)))
241  goto ok;
242  dev_warn(dev, "warning: device reports a different MAC address "
243  "to that of boot mode's\n");
244  dev_warn(dev, "device reports %pM\n", ddi->mac_address);
245  dev_warn(dev, "boot mode reported %pM\n", net_dev->perm_addr);
246  if (is_zero_ether_addr(ddi->mac_address))
247  dev_err(dev, "device reports an invalid MAC address, "
248  "not updating\n");
249  else {
250  dev_warn(dev, "updating MAC address\n");
251  net_dev->addr_len = ETH_ALEN;
252  memcpy(net_dev->perm_addr, ddi->mac_address, ETH_ALEN);
253  memcpy(net_dev->dev_addr, ddi->mac_address, ETH_ALEN);
254  }
255 ok:
256  result = 0;
257  kfree_skb(skb);
258 error:
259  d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
260  return result;
261 }
262 
263 
283 static
284 int __i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri flags)
285 {
286  int result;
287  struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
288  struct net_device *net_dev = wimax_dev->net_dev;
289  struct device *dev = i2400m_dev(i2400m);
290  int times = i2400m->bus_bm_retries;
291 
292  d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
293 retry:
294  result = i2400m_dev_bootstrap(i2400m, flags);
295  if (result < 0) {
296  dev_err(dev, "cannot bootstrap device: %d\n", result);
297  goto error_bootstrap;
298  }
299  result = i2400m_tx_setup(i2400m);
300  if (result < 0)
301  goto error_tx_setup;
302  result = i2400m_rx_setup(i2400m);
303  if (result < 0)
304  goto error_rx_setup;
305  i2400m->work_queue = create_singlethread_workqueue(wimax_dev->name);
306  if (i2400m->work_queue == NULL) {
307  result = -ENOMEM;
308  dev_err(dev, "cannot create workqueue\n");
309  goto error_create_workqueue;
310  }
311  if (i2400m->bus_dev_start) {
312  result = i2400m->bus_dev_start(i2400m);
313  if (result < 0)
314  goto error_bus_dev_start;
315  }
316  i2400m->ready = 1;
317  wmb(); /* see i2400m->ready's documentation */
318  /* process pending reports from the device */
319  queue_work(i2400m->work_queue, &i2400m->rx_report_ws);
320  result = i2400m_firmware_check(i2400m); /* fw versions ok? */
321  if (result < 0)
322  goto error_fw_check;
323  /* At this point is ok to send commands to the device */
324  result = i2400m_check_mac_addr(i2400m);
325  if (result < 0)
326  goto error_check_mac_addr;
327  result = i2400m_dev_initialize(i2400m);
328  if (result < 0)
329  goto error_dev_initialize;
330 
331  /* We don't want any additional unwanted error recovery triggered
332  * from any other context so if anything went wrong before we come
333  * here, let's keep i2400m->error_recovery untouched and leave it to
334  * dev_reset_handle(). See dev_reset_handle(). */
335 
336  atomic_dec(&i2400m->error_recovery);
337  /* Every thing works so far, ok, now we are ready to
338  * take error recovery if it's required. */
339 
340  /* At this point, reports will come for the device and set it
341  * to the right state if it is different than UNINITIALIZED */
342  d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
343  net_dev, i2400m, result);
344  return result;
345 
346 error_dev_initialize:
347 error_check_mac_addr:
348 error_fw_check:
349  i2400m->ready = 0;
350  wmb(); /* see i2400m->ready's documentation */
351  flush_workqueue(i2400m->work_queue);
352  if (i2400m->bus_dev_stop)
353  i2400m->bus_dev_stop(i2400m);
354 error_bus_dev_start:
355  destroy_workqueue(i2400m->work_queue);
356 error_create_workqueue:
357  i2400m_rx_release(i2400m);
358 error_rx_setup:
359  i2400m_tx_release(i2400m);
360 error_tx_setup:
361 error_bootstrap:
362  if (result == -EL3RST && times-- > 0) {
364  goto retry;
365  }
366  d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
367  net_dev, i2400m, result);
368  return result;
369 }
370 
371 
372 static
373 int i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri bm_flags)
374 {
375  int result = 0;
376  mutex_lock(&i2400m->init_mutex); /* Well, start the device */
377  if (i2400m->updown == 0) {
378  result = __i2400m_dev_start(i2400m, bm_flags);
379  if (result >= 0) {
380  i2400m->updown = 1;
381  i2400m->alive = 1;
382  wmb();/* see i2400m->updown and i2400m->alive's doc */
383  }
384  }
385  mutex_unlock(&i2400m->init_mutex);
386  return result;
387 }
388 
389 
401 static
402 void __i2400m_dev_stop(struct i2400m *i2400m)
403 {
404  struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
405  struct device *dev = i2400m_dev(i2400m);
406 
407  d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
410  complete(&i2400m->msg_completion);
411  i2400m_net_wake_stop(i2400m);
412  i2400m_dev_shutdown(i2400m);
413  /*
414  * Make sure no report hooks are running *before* we stop the
415  * communication infrastructure with the device.
416  */
417  i2400m->ready = 0; /* nobody can queue work anymore */
418  wmb(); /* see i2400m->ready's documentation */
419  flush_workqueue(i2400m->work_queue);
420 
421  if (i2400m->bus_dev_stop)
422  i2400m->bus_dev_stop(i2400m);
423  destroy_workqueue(i2400m->work_queue);
424  i2400m_rx_release(i2400m);
425  i2400m_tx_release(i2400m);
426  wimax_state_change(wimax_dev, WIMAX_ST_DOWN);
427  d_fnend(3, dev, "(i2400m %p) = 0\n", i2400m);
428 }
429 
430 
431 /*
432  * Watch out -- we only need to stop if there is a need for it. The
433  * device could have reset itself and failed to come up again (see
434  * _i2400m_dev_reset_handle()).
435  */
436 static
437 void i2400m_dev_stop(struct i2400m *i2400m)
438 {
439  mutex_lock(&i2400m->init_mutex);
440  if (i2400m->updown) {
441  __i2400m_dev_stop(i2400m);
442  i2400m->updown = 0;
443  i2400m->alive = 0;
444  wmb(); /* see i2400m->updown and i2400m->alive's doc */
445  }
446  mutex_unlock(&i2400m->init_mutex);
447 }
448 
449 
450 /*
451  * Listen to PM events to cache the firmware before suspend/hibernation
452  *
453  * When the device comes out of suspend, it might go into reset and
454  * firmware has to be uploaded again. At resume, most of the times, we
455  * can't load firmware images from disk, so we need to cache it.
456  *
457  * i2400m_fw_cache() will allocate a kobject and attach the firmware
458  * to it; that way we don't have to worry too much about the fw loader
459  * hitting a race condition.
460  *
461  * Note: modus operandi stolen from the Orinoco driver; thx.
462  */
463 static
464 int i2400m_pm_notifier(struct notifier_block *notifier,
465  unsigned long pm_event,
466  void *unused)
467 {
468  struct i2400m *i2400m =
469  container_of(notifier, struct i2400m, pm_notifier);
470  struct device *dev = i2400m_dev(i2400m);
471 
472  d_fnstart(3, dev, "(i2400m %p pm_event %lx)\n", i2400m, pm_event);
473  switch (pm_event) {
475  case PM_SUSPEND_PREPARE:
476  i2400m_fw_cache(i2400m);
477  break;
478  case PM_POST_RESTORE:
479  /* Restore from hibernation failed. We need to clean
480  * up in exactly the same way, so fall through. */
481  case PM_POST_HIBERNATION:
482  case PM_POST_SUSPEND:
483  i2400m_fw_uncache(i2400m);
484  break;
485 
486  case PM_RESTORE_PREPARE:
487  default:
488  break;
489  }
490  d_fnend(3, dev, "(i2400m %p pm_event %lx) = void\n", i2400m, pm_event);
491  return NOTIFY_DONE;
492 }
493 
494 
495 /*
496  * pre-reset is called before a device is going on reset
497  *
498  * This has to be followed by a call to i2400m_post_reset(), otherwise
499  * bad things might happen.
500  */
501 int i2400m_pre_reset(struct i2400m *i2400m)
502 {
503  int result;
504  struct device *dev = i2400m_dev(i2400m);
505 
506  d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
507  d_printf(1, dev, "pre-reset shut down\n");
508 
509  result = 0;
510  mutex_lock(&i2400m->init_mutex);
511  if (i2400m->updown) {
512  netif_tx_disable(i2400m->wimax_dev.net_dev);
513  __i2400m_dev_stop(i2400m);
514  result = 0;
515  /* down't set updown to zero -- this way
516  * post_reset can restore properly */
517  }
518  mutex_unlock(&i2400m->init_mutex);
519  if (i2400m->bus_release)
520  i2400m->bus_release(i2400m);
521  d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
522  return result;
523 }
525 
526 
527 /*
528  * Restore device state after a reset
529  *
530  * Do the work needed after a device reset to bring it up to the same
531  * state as it was before the reset.
532  *
533  * NOTE: this requires i2400m->init_mutex taken
534  */
535 int i2400m_post_reset(struct i2400m *i2400m)
536 {
537  int result = 0;
538  struct device *dev = i2400m_dev(i2400m);
539 
540  d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
541  d_printf(1, dev, "post-reset start\n");
542  if (i2400m->bus_setup) {
543  result = i2400m->bus_setup(i2400m);
544  if (result < 0) {
545  dev_err(dev, "bus-specific setup failed: %d\n",
546  result);
547  goto error_bus_setup;
548  }
549  }
550  mutex_lock(&i2400m->init_mutex);
551  if (i2400m->updown) {
552  result = __i2400m_dev_start(
554  if (result < 0)
555  goto error_dev_start;
556  }
557  mutex_unlock(&i2400m->init_mutex);
558  d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
559  return result;
560 
561 error_dev_start:
562  if (i2400m->bus_release)
563  i2400m->bus_release(i2400m);
564  /* even if the device was up, it could not be recovered, so we
565  * mark it as down. */
566  i2400m->updown = 0;
567  wmb(); /* see i2400m->updown's documentation */
568  mutex_unlock(&i2400m->init_mutex);
569 error_bus_setup:
570  d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
571  return result;
572 }
574 
575 
576 /*
577  * The device has rebooted; fix up the device and the driver
578  *
579  * Tear down the driver communication with the device, reload the
580  * firmware and reinitialize the communication with the device.
581  *
582  * If someone calls a reset when the device's firmware is down, in
583  * theory we won't see it because we are not listening. However, just
584  * in case, leave the code to handle it.
585  *
586  * If there is a reset context, use it; this means someone is waiting
587  * for us to tell him when the reset operation is complete and the
588  * device is ready to rock again.
589  *
590  * NOTE: if we are in the process of bringing up or down the
591  * communication with the device [running i2400m_dev_start() or
592  * _stop()], don't do anything, let it fail and handle it.
593  *
594  * This function is ran always in a thread context
595  *
596  * This function gets passed, as payload to i2400m_work() a 'const
597  * char *' ptr with a "reason" why the reset happened (for messages).
598  */
599 static
600 void __i2400m_dev_reset_handle(struct work_struct *ws)
601 {
602  struct i2400m *i2400m = container_of(ws, struct i2400m, reset_ws);
603  const char *reason = i2400m->reset_reason;
604  struct device *dev = i2400m_dev(i2400m);
605  struct i2400m_reset_ctx *ctx = i2400m->reset_ctx;
606  int result;
607 
608  d_fnstart(3, dev, "(ws %p i2400m %p reason %s)\n", ws, i2400m, reason);
609 
610  i2400m->boot_mode = 1;
611  wmb(); /* Make sure i2400m_msg_to_dev() sees boot_mode */
612 
613  result = 0;
614  if (mutex_trylock(&i2400m->init_mutex) == 0) {
615  /* We are still in i2400m_dev_start() [let it fail] or
616  * i2400m_dev_stop() [we are shutting down anyway, so
617  * ignore it] or we are resetting somewhere else. */
618  dev_err(dev, "device rebooted somewhere else?\n");
620  complete(&i2400m->msg_completion);
621  goto out;
622  }
623 
624  dev_err(dev, "%s: reinitializing driver\n", reason);
625  rmb();
626  if (i2400m->updown) {
627  __i2400m_dev_stop(i2400m);
628  i2400m->updown = 0;
629  wmb(); /* see i2400m->updown's documentation */
630  }
631 
632  if (i2400m->alive) {
633  result = __i2400m_dev_start(i2400m,
635  if (result < 0) {
636  dev_err(dev, "%s: cannot start the device: %d\n",
637  reason, result);
638  result = -EUCLEAN;
639  if (atomic_read(&i2400m->bus_reset_retries)
641  result = -ENODEV;
642  dev_err(dev, "tried too many times to "
643  "reset the device, giving up\n");
644  }
645  }
646  }
647 
648  if (i2400m->reset_ctx) {
649  ctx->result = result;
650  complete(&ctx->completion);
651  }
652  mutex_unlock(&i2400m->init_mutex);
653  if (result == -EUCLEAN) {
654  /*
655  * We come here because the reset during operational mode
656  * wasn't successfully done and need to proceed to a bus
657  * reset. For the dev_reset_handle() to be able to handle
658  * the reset event later properly, we restore boot_mode back
659  * to the state before previous reset. ie: just like we are
660  * issuing the bus reset for the first time
661  */
662  i2400m->boot_mode = 0;
663  wmb();
664 
665  atomic_inc(&i2400m->bus_reset_retries);
666  /* ops, need to clean up [w/ init_mutex not held] */
667  result = i2400m_reset(i2400m, I2400M_RT_BUS);
668  if (result >= 0)
669  result = -ENODEV;
670  } else {
671  rmb();
672  if (i2400m->alive) {
673  /* great, we expect the device state up and
674  * dev_start() actually brings the device state up */
675  i2400m->updown = 1;
676  wmb();
677  atomic_set(&i2400m->bus_reset_retries, 0);
678  }
679  }
680 out:
681  d_fnend(3, dev, "(ws %p i2400m %p reason %s) = void\n",
682  ws, i2400m, reason);
683 }
684 
685 
698 int i2400m_dev_reset_handle(struct i2400m *i2400m, const char *reason)
699 {
700  i2400m->reset_reason = reason;
701  return schedule_work(&i2400m->reset_ws);
702 }
704 
705 
706  /*
707  * The actual work of error recovery.
708  *
709  * The current implementation of error recovery is to trigger a bus reset.
710  */
711 static
712 void __i2400m_error_recovery(struct work_struct *ws)
713 {
714  struct i2400m *i2400m = container_of(ws, struct i2400m, recovery_ws);
715 
716  i2400m_reset(i2400m, I2400M_RT_BUS);
717 }
718 
719 /*
720  * Schedule a work struct for error recovery.
721  *
722  * The intention of error recovery is to bring back the device to some
723  * known state whenever TX sees -110 (-ETIMEOUT) on copying the data to
724  * the device. The TX failure could mean a device bus stuck, so the current
725  * error recovery implementation is to trigger a bus reset to the device
726  * and hopefully it can bring back the device.
727  *
728  * The actual work of error recovery has to be in a thread context because
729  * it is kicked off in the TX thread (i2400ms->tx_workqueue) which is to be
730  * destroyed by the error recovery mechanism (currently a bus reset).
731  *
732  * Also, there may be already a queue of TX works that all hit
733  * the -ETIMEOUT error condition because the device is stuck already.
734  * Since bus reset is used as the error recovery mechanism and we don't
735  * want consecutive bus resets simply because the multiple TX works
736  * in the queue all hit the same device erratum, the flag "error_recovery"
737  * is introduced for preventing unwanted consecutive bus resets.
738  *
739  * Error recovery shall only be invoked again if previous one was completed.
740  * The flag error_recovery is set when error recovery mechanism is scheduled,
741  * and is checked when we need to schedule another error recovery. If it is
742  * in place already, then we shouldn't schedule another one.
743  */
744 void i2400m_error_recovery(struct i2400m *i2400m)
745 {
746  if (atomic_add_return(1, &i2400m->error_recovery) == 1)
747  schedule_work(&i2400m->recovery_ws);
748  else
749  atomic_dec(&i2400m->error_recovery);
750 }
752 
753 /*
754  * Alloc the command and ack buffers for boot mode
755  *
756  * Get the buffers needed to deal with boot mode messages.
757  */
758 static
759 int i2400m_bm_buf_alloc(struct i2400m *i2400m)
760 {
761  int result;
762 
763  result = -ENOMEM;
764  i2400m->bm_cmd_buf = kzalloc(I2400M_BM_CMD_BUF_SIZE, GFP_KERNEL);
765  if (i2400m->bm_cmd_buf == NULL)
766  goto error_bm_cmd_kzalloc;
767  i2400m->bm_ack_buf = kzalloc(I2400M_BM_ACK_BUF_SIZE, GFP_KERNEL);
768  if (i2400m->bm_ack_buf == NULL)
769  goto error_bm_ack_buf_kzalloc;
770  return 0;
771 
772 error_bm_ack_buf_kzalloc:
773  kfree(i2400m->bm_cmd_buf);
774 error_bm_cmd_kzalloc:
775  return result;
776 }
777 
778 
779 /*
780  * Free boot mode command and ack buffers.
781  */
782 static
783 void i2400m_bm_buf_free(struct i2400m *i2400m)
784 {
785  kfree(i2400m->bm_ack_buf);
786  kfree(i2400m->bm_cmd_buf);
787 }
788 
789 
795 void i2400m_init(struct i2400m *i2400m)
796 {
797  wimax_dev_init(&i2400m->wimax_dev);
798 
799  i2400m->boot_mode = 1;
800  i2400m->rx_reorder = 1;
801  init_waitqueue_head(&i2400m->state_wq);
802 
803  spin_lock_init(&i2400m->tx_lock);
804  i2400m->tx_pl_min = UINT_MAX;
805  i2400m->tx_size_min = UINT_MAX;
806 
807  spin_lock_init(&i2400m->rx_lock);
808  i2400m->rx_pl_min = UINT_MAX;
809  i2400m->rx_size_min = UINT_MAX;
810  INIT_LIST_HEAD(&i2400m->rx_reports);
812 
813  mutex_init(&i2400m->msg_mutex);
814  init_completion(&i2400m->msg_completion);
815 
816  mutex_init(&i2400m->init_mutex);
817  /* wake_tx_ws is initialized in i2400m_tx_setup() */
818 
819  INIT_WORK(&i2400m->reset_ws, __i2400m_dev_reset_handle);
820  INIT_WORK(&i2400m->recovery_ws, __i2400m_error_recovery);
821 
822  atomic_set(&i2400m->bus_reset_retries, 0);
823 
824  i2400m->alive = 0;
825 
826  /* initialize error_recovery to 1 for denoting we
827  * are not yet ready to take any error recovery */
828  atomic_set(&i2400m->error_recovery, 1);
829 }
831 
832 
833 int i2400m_reset(struct i2400m *i2400m, enum i2400m_reset_type rt)
834 {
835  struct net_device *net_dev = i2400m->wimax_dev.net_dev;
836 
837  /*
838  * Make sure we stop TXs and down the carrier before
839  * resetting; this is needed to avoid things like
840  * i2400m_wake_tx() scheduling stuff in parallel.
841  */
842  if (net_dev->reg_state == NETREG_REGISTERED) {
843  netif_tx_disable(net_dev);
844  netif_carrier_off(net_dev);
845  }
846  return i2400m->bus_reset(i2400m, rt);
847 }
849 
850 
862 int i2400m_setup(struct i2400m *i2400m, enum i2400m_bri bm_flags)
863 {
864  int result = -ENODEV;
865  struct device *dev = i2400m_dev(i2400m);
866  struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
867  struct net_device *net_dev = i2400m->wimax_dev.net_dev;
868 
869  d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
870 
871  snprintf(wimax_dev->name, sizeof(wimax_dev->name),
872  "i2400m-%s:%s", dev->bus->name, dev_name(dev));
873 
874  result = i2400m_bm_buf_alloc(i2400m);
875  if (result < 0) {
876  dev_err(dev, "cannot allocate bootmode scratch buffers\n");
877  goto error_bm_buf_alloc;
878  }
879 
880  if (i2400m->bus_setup) {
881  result = i2400m->bus_setup(i2400m);
882  if (result < 0) {
883  dev_err(dev, "bus-specific setup failed: %d\n",
884  result);
885  goto error_bus_setup;
886  }
887  }
888 
889  result = i2400m_bootrom_init(i2400m, bm_flags);
890  if (result < 0) {
891  dev_err(dev, "read mac addr: bootrom init "
892  "failed: %d\n", result);
893  goto error_bootrom_init;
894  }
895  result = i2400m_read_mac_addr(i2400m);
896  if (result < 0)
897  goto error_read_mac_addr;
898  eth_random_addr(i2400m->src_mac_addr);
899 
900  i2400m->pm_notifier.notifier_call = i2400m_pm_notifier;
901  register_pm_notifier(&i2400m->pm_notifier);
902 
903  result = register_netdev(net_dev); /* Okey dokey, bring it up */
904  if (result < 0) {
905  dev_err(dev, "cannot register i2400m network device: %d\n",
906  result);
907  goto error_register_netdev;
908  }
909  netif_carrier_off(net_dev);
910 
911  i2400m->wimax_dev.op_msg_from_user = i2400m_op_msg_from_user;
912  i2400m->wimax_dev.op_rfkill_sw_toggle = i2400m_op_rfkill_sw_toggle;
913  i2400m->wimax_dev.op_reset = i2400m_op_reset;
914 
915  result = wimax_dev_add(&i2400m->wimax_dev, net_dev);
916  if (result < 0)
917  goto error_wimax_dev_add;
918 
919  /* Now setup all that requires a registered net and wimax device. */
920  result = sysfs_create_group(&net_dev->dev.kobj, &i2400m_dev_attr_group);
921  if (result < 0) {
922  dev_err(dev, "cannot setup i2400m's sysfs: %d\n", result);
923  goto error_sysfs_setup;
924  }
925 
926  result = i2400m_debugfs_add(i2400m);
927  if (result < 0) {
928  dev_err(dev, "cannot setup i2400m's debugfs: %d\n", result);
929  goto error_debugfs_setup;
930  }
931 
932  result = i2400m_dev_start(i2400m, bm_flags);
933  if (result < 0)
934  goto error_dev_start;
935  d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
936  return result;
937 
938 error_dev_start:
939  i2400m_debugfs_rm(i2400m);
940 error_debugfs_setup:
941  sysfs_remove_group(&i2400m->wimax_dev.net_dev->dev.kobj,
943 error_sysfs_setup:
944  wimax_dev_rm(&i2400m->wimax_dev);
945 error_wimax_dev_add:
946  unregister_netdev(net_dev);
947 error_register_netdev:
948  unregister_pm_notifier(&i2400m->pm_notifier);
949 error_read_mac_addr:
950 error_bootrom_init:
951  if (i2400m->bus_release)
952  i2400m->bus_release(i2400m);
953 error_bus_setup:
954  i2400m_bm_buf_free(i2400m);
955 error_bm_buf_alloc:
956  d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
957  return result;
958 }
960 
961 
967 void i2400m_release(struct i2400m *i2400m)
968 {
969  struct device *dev = i2400m_dev(i2400m);
970 
971  d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
972  netif_stop_queue(i2400m->wimax_dev.net_dev);
973 
974  i2400m_dev_stop(i2400m);
975 
976  cancel_work_sync(&i2400m->reset_ws);
977  cancel_work_sync(&i2400m->recovery_ws);
978 
979  i2400m_debugfs_rm(i2400m);
980  sysfs_remove_group(&i2400m->wimax_dev.net_dev->dev.kobj,
982  wimax_dev_rm(&i2400m->wimax_dev);
983  unregister_netdev(i2400m->wimax_dev.net_dev);
984  unregister_pm_notifier(&i2400m->pm_notifier);
985  if (i2400m->bus_release)
986  i2400m->bus_release(i2400m);
987  i2400m_bm_buf_free(i2400m);
988  d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
989 }
991 
992 
993 /*
994  * Debug levels control; see debug.h
995  */
996 struct d_level D_LEVEL[] = {
999  D_SUBMODULE_DEFINE(debugfs),
1001  D_SUBMODULE_DEFINE(netdev),
1004  D_SUBMODULE_DEFINE(sysfs),
1006 };
1007 size_t D_LEVEL_SIZE = ARRAY_SIZE(D_LEVEL);
1008 
1009 
1010 static
1011 int __init i2400m_driver_init(void)
1012 {
1013  d_parse_params(D_LEVEL, D_LEVEL_SIZE, i2400m_debug_params,
1014  "i2400m.debug");
1015  return i2400m_barker_db_init(i2400m_barkers_params);
1016 }
1017 module_init(i2400m_driver_init);
1018 
1019 static
1020 void __exit i2400m_driver_exit(void)
1021 {
1023 }
1024 module_exit(i2400m_driver_exit);
1025 
1026 MODULE_AUTHOR("Intel Corporation <[email protected]>");
1027 MODULE_DESCRIPTION("Intel 2400M WiMAX networking bus-generic driver");
1028 MODULE_LICENSE("GPL");