Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
inode.c
Go to the documentation of this file.
1 /*
2  * inode.c -- user mode filesystem api for usb gadget controllers
3  *
4  * Copyright (C) 2003-2004 David Brownell
5  * Copyright (C) 2003 Agilent Technologies
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  */
12 
13 
14 /* #define VERBOSE_DEBUG */
15 
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/fs.h>
19 #include <linux/pagemap.h>
20 #include <linux/uts.h>
21 #include <linux/wait.h>
22 #include <linux/compiler.h>
23 #include <asm/uaccess.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/poll.h>
27 
28 #include <linux/device.h>
29 #include <linux/moduleparam.h>
30 
31 #include <linux/usb/gadgetfs.h>
32 #include <linux/usb/gadget.h>
33 
34 
35 /*
36  * The gadgetfs API maps each endpoint to a file descriptor so that you
37  * can use standard synchronous read/write calls for I/O. There's some
38  * O_NONBLOCK and O_ASYNC/FASYNC style i/o support. Example usermode
39  * drivers show how this works in practice. You can also use AIO to
40  * eliminate I/O gaps between requests, to help when streaming data.
41  *
42  * Key parts that must be USB-specific are protocols defining how the
43  * read/write operations relate to the hardware state machines. There
44  * are two types of files. One type is for the device, implementing ep0.
45  * The other type is for each IN or OUT endpoint. In both cases, the
46  * user mode driver must configure the hardware before using it.
47  *
48  * - First, dev_config() is called when /dev/gadget/$CHIP is configured
49  * (by writing configuration and device descriptors). Afterwards it
50  * may serve as a source of device events, used to handle all control
51  * requests other than basic enumeration.
52  *
53  * - Then, after a SET_CONFIGURATION control request, ep_config() is
54  * called when each /dev/gadget/ep* file is configured (by writing
55  * endpoint descriptors). Afterwards these files are used to write()
56  * IN data or to read() OUT data. To halt the endpoint, a "wrong
57  * direction" request is issued (like reading an IN endpoint).
58  *
59  * Unlike "usbfs" the only ioctl()s are for things that are rare, and maybe
60  * not possible on all hardware. For example, precise fault handling with
61  * respect to data left in endpoint fifos after aborted operations; or
62  * selective clearing of endpoint halts, to implement SET_INTERFACE.
63  */
64 
65 #define DRIVER_DESC "USB Gadget filesystem"
66 #define DRIVER_VERSION "24 Aug 2004"
67 
68 static const char driver_desc [] = DRIVER_DESC;
69 static const char shortname [] = "gadgetfs";
70 
72 MODULE_AUTHOR ("David Brownell");
73 MODULE_LICENSE ("GPL");
74 
75 
76 /*----------------------------------------------------------------------*/
77 
78 #define GADGETFS_MAGIC 0xaee71ee7
79 #define DMA_ADDR_INVALID (~(dma_addr_t)0)
80 
81 /* /dev/gadget/$CHIP represents ep0 and the whole device */
82 enum ep0_state {
83  /* DISBLED is the initial state.
84  */
86 
87  /* Only one open() of /dev/gadget/$CHIP; only one file tracks
88  * ep0/device i/o modes and binding to the controller. Driver
89  * must always write descriptors to initialize the device, then
90  * the device becomes UNCONNECTED until enumeration.
91  */
93 
94  /* From then on, ep0 fd is in either of two basic modes:
95  * - (UN)CONNECTED: read usb_gadgetfs_event(s) from it
96  * - SETUP: read/write will transfer control data and succeed;
97  * or if "wrong direction", performs protocol stall
98  */
102 
103  /* UNBOUND means the driver closed ep0, so the device won't be
104  * accessible again (DEV_DISABLED) until all fds are closed.
105  */
107 };
108 
109 /* enough for the whole queue: most events invalidate others */
110 #define N_EVENT 5
111 
112 struct dev_data {
115  enum ep0_state state; /* P: lock */
117  unsigned ev_next;
120 
121  /* drivers reading ep0 MUST handle control requests (SETUP)
122  * reported that way; else the host will time out.
123  */
124  unsigned usermode_setup : 1,
125  setup_in : 1,
126  setup_can_stall : 1,
127  setup_out_ready : 1,
128  setup_out_error : 1,
129  setup_abort : 1;
130  unsigned setup_wLength;
131 
132  /* the rest is basically write-once */
135  struct usb_request *req;
138  void *buf;
140  struct super_block *sb;
141  struct dentry *dentry;
142 
143  /* except this scratch i/o buffer for ep0 */
144  u8 rbuf [256];
145 };
146 
147 static inline void get_dev (struct dev_data *data)
148 {
149  atomic_inc (&data->count);
150 }
151 
152 static void put_dev (struct dev_data *data)
153 {
154  if (likely (!atomic_dec_and_test (&data->count)))
155  return;
156  /* needs no more cleanup */
157  BUG_ON (waitqueue_active (&data->wait));
158  kfree (data);
159 }
160 
161 static struct dev_data *dev_new (void)
162 {
163  struct dev_data *dev;
164 
165  dev = kzalloc(sizeof(*dev), GFP_KERNEL);
166  if (!dev)
167  return NULL;
168  dev->state = STATE_DEV_DISABLED;
169  atomic_set (&dev->count, 1);
170  spin_lock_init (&dev->lock);
171  INIT_LIST_HEAD (&dev->epfiles);
172  init_waitqueue_head (&dev->wait);
173  return dev;
174 }
175 
176 /*----------------------------------------------------------------------*/
177 
178 /* other /dev/gadget/$ENDPOINT files represent endpoints */
179 enum ep_state {
184 };
185 
186 struct ep_data {
187  struct mutex lock;
190  struct dev_data *dev;
191  /* must hold dev->lock before accessing ep or req */
192  struct usb_ep *ep;
193  struct usb_request *req;
195  char name [16];
199  struct dentry *dentry;
200  struct inode *inode;
201 };
202 
203 static inline void get_ep (struct ep_data *data)
204 {
205  atomic_inc (&data->count);
206 }
207 
208 static void put_ep (struct ep_data *data)
209 {
210  if (likely (!atomic_dec_and_test (&data->count)))
211  return;
212  put_dev (data->dev);
213  /* needs no more cleanup */
214  BUG_ON (!list_empty (&data->epfiles));
215  BUG_ON (waitqueue_active (&data->wait));
216  kfree (data);
217 }
218 
219 /*----------------------------------------------------------------------*/
220 
221 /* most "how to use the hardware" policy choices are in userspace:
222  * mapping endpoint roles (which the driver needs) to the capabilities
223  * which the usb controller has. most of those capabilities are exposed
224  * implicitly, starting with the driver name and then endpoint names.
225  */
226 
227 static const char *CHIP;
228 
229 /*----------------------------------------------------------------------*/
230 
231 /* NOTE: don't use dev_printk calls before binding to the gadget
232  * at the end of ep0 configuration, or after unbind.
233  */
234 
235 /* too wordy: dev_printk(level , &(d)->gadget->dev , fmt , ## args) */
236 #define xprintk(d,level,fmt,args...) \
237  printk(level "%s: " fmt , shortname , ## args)
238 
239 #ifdef DEBUG
240 #define DBG(dev,fmt,args...) \
241  xprintk(dev , KERN_DEBUG , fmt , ## args)
242 #else
243 #define DBG(dev,fmt,args...) \
244  do { } while (0)
245 #endif /* DEBUG */
246 
247 #ifdef VERBOSE_DEBUG
248 #define VDEBUG DBG
249 #else
250 #define VDEBUG(dev,fmt,args...) \
251  do { } while (0)
252 #endif /* DEBUG */
253 
254 #define ERROR(dev,fmt,args...) \
255  xprintk(dev , KERN_ERR , fmt , ## args)
256 #define INFO(dev,fmt,args...) \
257  xprintk(dev , KERN_INFO , fmt , ## args)
258 
259 
260 /*----------------------------------------------------------------------*/
261 
262 /* SYNCHRONOUS ENDPOINT OPERATIONS (bulk/intr/iso)
263  *
264  * After opening, configure non-control endpoints. Then use normal
265  * stream read() and write() requests; and maybe ioctl() to get more
266  * precise FIFO status when recovering from cancellation.
267  */
268 
269 static void epio_complete (struct usb_ep *ep, struct usb_request *req)
270 {
271  struct ep_data *epdata = ep->driver_data;
272 
273  if (!req->context)
274  return;
275  if (req->status)
276  epdata->status = req->status;
277  else
278  epdata->status = req->actual;
279  complete ((struct completion *)req->context);
280 }
281 
282 /* tasklock endpoint, returning when it's connected.
283  * still need dev->lock to use epdata->ep.
284  */
285 static int
286 get_ready_ep (unsigned f_flags, struct ep_data *epdata)
287 {
288  int val;
289 
290  if (f_flags & O_NONBLOCK) {
291  if (!mutex_trylock(&epdata->lock))
292  goto nonblock;
293  if (epdata->state != STATE_EP_ENABLED) {
294  mutex_unlock(&epdata->lock);
295 nonblock:
296  val = -EAGAIN;
297  } else
298  val = 0;
299  return val;
300  }
301 
302  val = mutex_lock_interruptible(&epdata->lock);
303  if (val < 0)
304  return val;
305 
306  switch (epdata->state) {
307  case STATE_EP_ENABLED:
308  break;
309  // case STATE_EP_DISABLED: /* "can't happen" */
310  // case STATE_EP_READY: /* "can't happen" */
311  default: /* error! */
312  pr_debug ("%s: ep %p not available, state %d\n",
313  shortname, epdata, epdata->state);
314  // FALLTHROUGH
315  case STATE_EP_UNBOUND: /* clean disconnect */
316  val = -ENODEV;
317  mutex_unlock(&epdata->lock);
318  }
319  return val;
320 }
321 
322 static ssize_t
323 ep_io (struct ep_data *epdata, void *buf, unsigned len)
324 {
326  int value;
327 
328  spin_lock_irq (&epdata->dev->lock);
329  if (likely (epdata->ep != NULL)) {
330  struct usb_request *req = epdata->req;
331 
332  req->context = &done;
333  req->complete = epio_complete;
334  req->buf = buf;
335  req->length = len;
336  value = usb_ep_queue (epdata->ep, req, GFP_ATOMIC);
337  } else
338  value = -ENODEV;
339  spin_unlock_irq (&epdata->dev->lock);
340 
341  if (likely (value == 0)) {
342  value = wait_event_interruptible (done.wait, done.done);
343  if (value != 0) {
344  spin_lock_irq (&epdata->dev->lock);
345  if (likely (epdata->ep != NULL)) {
346  DBG (epdata->dev, "%s i/o interrupted\n",
347  epdata->name);
348  usb_ep_dequeue (epdata->ep, epdata->req);
349  spin_unlock_irq (&epdata->dev->lock);
350 
351  wait_event (done.wait, done.done);
352  if (epdata->status == -ECONNRESET)
353  epdata->status = -EINTR;
354  } else {
355  spin_unlock_irq (&epdata->dev->lock);
356 
357  DBG (epdata->dev, "endpoint gone\n");
358  epdata->status = -ENODEV;
359  }
360  }
361  return epdata->status;
362  }
363  return value;
364 }
365 
366 
367 /* handle a synchronous OUT bulk/intr/iso transfer */
368 static ssize_t
369 ep_read (struct file *fd, char __user *buf, size_t len, loff_t *ptr)
370 {
371  struct ep_data *data = fd->private_data;
372  void *kbuf;
373  ssize_t value;
374 
375  if ((value = get_ready_ep (fd->f_flags, data)) < 0)
376  return value;
377 
378  /* halt any endpoint by doing a "wrong direction" i/o call */
379  if (usb_endpoint_dir_in(&data->desc)) {
380  if (usb_endpoint_xfer_isoc(&data->desc)) {
381  mutex_unlock(&data->lock);
382  return -EINVAL;
383  }
384  DBG (data->dev, "%s halt\n", data->name);
385  spin_lock_irq (&data->dev->lock);
386  if (likely (data->ep != NULL))
387  usb_ep_set_halt (data->ep);
388  spin_unlock_irq (&data->dev->lock);
389  mutex_unlock(&data->lock);
390  return -EBADMSG;
391  }
392 
393  /* FIXME readahead for O_NONBLOCK and poll(); careful with ZLPs */
394 
395  value = -ENOMEM;
396  kbuf = kmalloc (len, GFP_KERNEL);
397  if (unlikely (!kbuf))
398  goto free1;
399 
400  value = ep_io (data, kbuf, len);
401  VDEBUG (data->dev, "%s read %zu OUT, status %d\n",
402  data->name, len, (int) value);
403  if (value >= 0 && copy_to_user (buf, kbuf, value))
404  value = -EFAULT;
405 
406 free1:
407  mutex_unlock(&data->lock);
408  kfree (kbuf);
409  return value;
410 }
411 
412 /* handle a synchronous IN bulk/intr/iso transfer */
413 static ssize_t
414 ep_write (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
415 {
416  struct ep_data *data = fd->private_data;
417  void *kbuf;
418  ssize_t value;
419 
420  if ((value = get_ready_ep (fd->f_flags, data)) < 0)
421  return value;
422 
423  /* halt any endpoint by doing a "wrong direction" i/o call */
424  if (!usb_endpoint_dir_in(&data->desc)) {
425  if (usb_endpoint_xfer_isoc(&data->desc)) {
426  mutex_unlock(&data->lock);
427  return -EINVAL;
428  }
429  DBG (data->dev, "%s halt\n", data->name);
430  spin_lock_irq (&data->dev->lock);
431  if (likely (data->ep != NULL))
432  usb_ep_set_halt (data->ep);
433  spin_unlock_irq (&data->dev->lock);
434  mutex_unlock(&data->lock);
435  return -EBADMSG;
436  }
437 
438  /* FIXME writebehind for O_NONBLOCK and poll(), qlen = 1 */
439 
440  value = -ENOMEM;
441  kbuf = kmalloc (len, GFP_KERNEL);
442  if (!kbuf)
443  goto free1;
444  if (copy_from_user (kbuf, buf, len)) {
445  value = -EFAULT;
446  goto free1;
447  }
448 
449  value = ep_io (data, kbuf, len);
450  VDEBUG (data->dev, "%s write %zu IN, status %d\n",
451  data->name, len, (int) value);
452 free1:
453  mutex_unlock(&data->lock);
454  kfree (kbuf);
455  return value;
456 }
457 
458 static int
459 ep_release (struct inode *inode, struct file *fd)
460 {
461  struct ep_data *data = fd->private_data;
462  int value;
463 
464  value = mutex_lock_interruptible(&data->lock);
465  if (value < 0)
466  return value;
467 
468  /* clean up if this can be reopened */
469  if (data->state != STATE_EP_UNBOUND) {
470  data->state = STATE_EP_DISABLED;
471  data->desc.bDescriptorType = 0;
472  data->hs_desc.bDescriptorType = 0;
473  usb_ep_disable(data->ep);
474  }
475  mutex_unlock(&data->lock);
476  put_ep (data);
477  return 0;
478 }
479 
480 static long ep_ioctl(struct file *fd, unsigned code, unsigned long value)
481 {
482  struct ep_data *data = fd->private_data;
483  int status;
484 
485  if ((status = get_ready_ep (fd->f_flags, data)) < 0)
486  return status;
487 
488  spin_lock_irq (&data->dev->lock);
489  if (likely (data->ep != NULL)) {
490  switch (code) {
492  status = usb_ep_fifo_status (data->ep);
493  break;
494  case GADGETFS_FIFO_FLUSH:
495  usb_ep_fifo_flush (data->ep);
496  break;
497  case GADGETFS_CLEAR_HALT:
498  status = usb_ep_clear_halt (data->ep);
499  break;
500  default:
501  status = -ENOTTY;
502  }
503  } else
504  status = -ENODEV;
505  spin_unlock_irq (&data->dev->lock);
506  mutex_unlock(&data->lock);
507  return status;
508 }
509 
510 /*----------------------------------------------------------------------*/
511 
512 /* ASYNCHRONOUS ENDPOINT I/O OPERATIONS (bulk/intr/iso) */
513 
514 struct kiocb_priv {
515  struct usb_request *req;
516  struct ep_data *epdata;
517  void *buf;
518  const struct iovec *iv;
519  unsigned long nr_segs;
520  unsigned actual;
521 };
522 
523 static int ep_aio_cancel(struct kiocb *iocb, struct io_event *e)
524 {
525  struct kiocb_priv *priv = iocb->private;
526  struct ep_data *epdata;
527  int value;
528 
530  epdata = priv->epdata;
531  // spin_lock(&epdata->dev->lock);
532  kiocbSetCancelled(iocb);
533  if (likely(epdata && epdata->ep && priv->req))
534  value = usb_ep_dequeue (epdata->ep, priv->req);
535  else
536  value = -EINVAL;
537  // spin_unlock(&epdata->dev->lock);
539 
540  aio_put_req(iocb);
541  return value;
542 }
543 
544 static ssize_t ep_aio_read_retry(struct kiocb *iocb)
545 {
546  struct kiocb_priv *priv = iocb->private;
547  ssize_t len, total;
548  void *to_copy;
549  int i;
550 
551  /* we "retry" to get the right mm context for this: */
552 
553  /* copy stuff into user buffers */
554  total = priv->actual;
555  len = 0;
556  to_copy = priv->buf;
557  for (i=0; i < priv->nr_segs; i++) {
558  ssize_t this = min((ssize_t)(priv->iv[i].iov_len), total);
559 
560  if (copy_to_user(priv->iv[i].iov_base, to_copy, this)) {
561  if (len == 0)
562  len = -EFAULT;
563  break;
564  }
565 
566  total -= this;
567  len += this;
568  to_copy += this;
569  if (total == 0)
570  break;
571  }
572  kfree(priv->buf);
573  kfree(priv);
574  return len;
575 }
576 
577 static void ep_aio_complete(struct usb_ep *ep, struct usb_request *req)
578 {
579  struct kiocb *iocb = req->context;
580  struct kiocb_priv *priv = iocb->private;
581  struct ep_data *epdata = priv->epdata;
582 
583  /* lock against disconnect (and ideally, cancel) */
584  spin_lock(&epdata->dev->lock);
585  priv->req = NULL;
586  priv->epdata = NULL;
587 
588  /* if this was a write or a read returning no data then we
589  * don't need to copy anything to userspace, so we can
590  * complete the aio request immediately.
591  */
592  if (priv->iv == NULL || unlikely(req->actual == 0)) {
593  kfree(req->buf);
594  kfree(priv);
595  iocb->private = NULL;
596  /* aio_complete() reports bytes-transferred _and_ faults */
597  aio_complete(iocb, req->actual ? req->actual : req->status,
598  req->status);
599  } else {
600  /* retry() won't report both; so we hide some faults */
601  if (unlikely(0 != req->status))
602  DBG(epdata->dev, "%s fault %d len %d\n",
603  ep->name, req->status, req->actual);
604 
605  priv->buf = req->buf;
606  priv->actual = req->actual;
607  kick_iocb(iocb);
608  }
609  spin_unlock(&epdata->dev->lock);
610 
611  usb_ep_free_request(ep, req);
612  put_ep(epdata);
613 }
614 
615 static ssize_t
616 ep_aio_rwtail(
617  struct kiocb *iocb,
618  char *buf,
619  size_t len,
620  struct ep_data *epdata,
621  const struct iovec *iv,
622  unsigned long nr_segs
623 )
624 {
625  struct kiocb_priv *priv;
626  struct usb_request *req;
627  ssize_t value;
628 
629  priv = kmalloc(sizeof *priv, GFP_KERNEL);
630  if (!priv) {
631  value = -ENOMEM;
632 fail:
633  kfree(buf);
634  return value;
635  }
636  iocb->private = priv;
637  priv->iv = iv;
638  priv->nr_segs = nr_segs;
639 
640  value = get_ready_ep(iocb->ki_filp->f_flags, epdata);
641  if (unlikely(value < 0)) {
642  kfree(priv);
643  goto fail;
644  }
645 
646  iocb->ki_cancel = ep_aio_cancel;
647  get_ep(epdata);
648  priv->epdata = epdata;
649  priv->actual = 0;
650 
651  /* each kiocb is coupled to one usb_request, but we can't
652  * allocate or submit those if the host disconnected.
653  */
654  spin_lock_irq(&epdata->dev->lock);
655  if (likely(epdata->ep)) {
656  req = usb_ep_alloc_request(epdata->ep, GFP_ATOMIC);
657  if (likely(req)) {
658  priv->req = req;
659  req->buf = buf;
660  req->length = len;
661  req->complete = ep_aio_complete;
662  req->context = iocb;
663  value = usb_ep_queue(epdata->ep, req, GFP_ATOMIC);
664  if (unlikely(0 != value))
665  usb_ep_free_request(epdata->ep, req);
666  } else
667  value = -EAGAIN;
668  } else
669  value = -ENODEV;
670  spin_unlock_irq(&epdata->dev->lock);
671 
672  mutex_unlock(&epdata->lock);
673 
674  if (unlikely(value)) {
675  kfree(priv);
676  put_ep(epdata);
677  } else
678  value = (iv ? -EIOCBRETRY : -EIOCBQUEUED);
679  return value;
680 }
681 
682 static ssize_t
683 ep_aio_read(struct kiocb *iocb, const struct iovec *iov,
684  unsigned long nr_segs, loff_t o)
685 {
686  struct ep_data *epdata = iocb->ki_filp->private_data;
687  char *buf;
688 
689  if (unlikely(usb_endpoint_dir_in(&epdata->desc)))
690  return -EINVAL;
691 
692  buf = kmalloc(iocb->ki_left, GFP_KERNEL);
693  if (unlikely(!buf))
694  return -ENOMEM;
695 
696  iocb->ki_retry = ep_aio_read_retry;
697  return ep_aio_rwtail(iocb, buf, iocb->ki_left, epdata, iov, nr_segs);
698 }
699 
700 static ssize_t
701 ep_aio_write(struct kiocb *iocb, const struct iovec *iov,
702  unsigned long nr_segs, loff_t o)
703 {
704  struct ep_data *epdata = iocb->ki_filp->private_data;
705  char *buf;
706  size_t len = 0;
707  int i = 0;
708 
709  if (unlikely(!usb_endpoint_dir_in(&epdata->desc)))
710  return -EINVAL;
711 
712  buf = kmalloc(iocb->ki_left, GFP_KERNEL);
713  if (unlikely(!buf))
714  return -ENOMEM;
715 
716  for (i=0; i < nr_segs; i++) {
717  if (unlikely(copy_from_user(&buf[len], iov[i].iov_base,
718  iov[i].iov_len) != 0)) {
719  kfree(buf);
720  return -EFAULT;
721  }
722  len += iov[i].iov_len;
723  }
724  return ep_aio_rwtail(iocb, buf, len, epdata, NULL, 0);
725 }
726 
727 /*----------------------------------------------------------------------*/
728 
729 /* used after endpoint configuration */
730 static const struct file_operations ep_io_operations = {
731  .owner = THIS_MODULE,
732  .llseek = no_llseek,
733 
734  .read = ep_read,
735  .write = ep_write,
736  .unlocked_ioctl = ep_ioctl,
737  .release = ep_release,
738 
739  .aio_read = ep_aio_read,
740  .aio_write = ep_aio_write,
741 };
742 
743 /* ENDPOINT INITIALIZATION
744  *
745  * fd = open ("/dev/gadget/$ENDPOINT", O_RDWR)
746  * status = write (fd, descriptors, sizeof descriptors)
747  *
748  * That write establishes the endpoint configuration, configuring
749  * the controller to process bulk, interrupt, or isochronous transfers
750  * at the right maxpacket size, and so on.
751  *
752  * The descriptors are message type 1, identified by a host order u32
753  * at the beginning of what's written. Descriptor order is: full/low
754  * speed descriptor, then optional high speed descriptor.
755  */
756 static ssize_t
757 ep_config (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
758 {
759  struct ep_data *data = fd->private_data;
760  struct usb_ep *ep;
761  u32 tag;
762  int value, length = len;
763 
764  value = mutex_lock_interruptible(&data->lock);
765  if (value < 0)
766  return value;
767 
768  if (data->state != STATE_EP_READY) {
769  value = -EL2HLT;
770  goto fail;
771  }
772 
773  value = len;
774  if (len < USB_DT_ENDPOINT_SIZE + 4)
775  goto fail0;
776 
777  /* we might need to change message format someday */
778  if (copy_from_user (&tag, buf, 4)) {
779  goto fail1;
780  }
781  if (tag != 1) {
782  DBG(data->dev, "config %s, bad tag %d\n", data->name, tag);
783  goto fail0;
784  }
785  buf += 4;
786  len -= 4;
787 
788  /* NOTE: audio endpoint extensions not accepted here;
789  * just don't include the extra bytes.
790  */
791 
792  /* full/low speed descriptor, then high speed */
793  if (copy_from_user (&data->desc, buf, USB_DT_ENDPOINT_SIZE)) {
794  goto fail1;
795  }
796  if (data->desc.bLength != USB_DT_ENDPOINT_SIZE
797  || data->desc.bDescriptorType != USB_DT_ENDPOINT)
798  goto fail0;
799  if (len != USB_DT_ENDPOINT_SIZE) {
800  if (len != 2 * USB_DT_ENDPOINT_SIZE)
801  goto fail0;
802  if (copy_from_user (&data->hs_desc, buf + USB_DT_ENDPOINT_SIZE,
804  goto fail1;
805  }
806  if (data->hs_desc.bLength != USB_DT_ENDPOINT_SIZE
807  || data->hs_desc.bDescriptorType
808  != USB_DT_ENDPOINT) {
809  DBG(data->dev, "config %s, bad hs length or type\n",
810  data->name);
811  goto fail0;
812  }
813  }
814 
815  spin_lock_irq (&data->dev->lock);
816  if (data->dev->state == STATE_DEV_UNBOUND) {
817  value = -ENOENT;
818  goto gone;
819  } else if ((ep = data->ep) == NULL) {
820  value = -ENODEV;
821  goto gone;
822  }
823  switch (data->dev->gadget->speed) {
824  case USB_SPEED_LOW:
825  case USB_SPEED_FULL:
826  ep->desc = &data->desc;
827  value = usb_ep_enable(ep);
828  if (value == 0)
829  data->state = STATE_EP_ENABLED;
830  break;
831  case USB_SPEED_HIGH:
832  /* fails if caller didn't provide that descriptor... */
833  ep->desc = &data->hs_desc;
834  value = usb_ep_enable(ep);
835  if (value == 0)
836  data->state = STATE_EP_ENABLED;
837  break;
838  default:
839  DBG(data->dev, "unconnected, %s init abandoned\n",
840  data->name);
841  value = -EINVAL;
842  }
843  if (value == 0) {
844  fd->f_op = &ep_io_operations;
845  value = length;
846  }
847 gone:
848  spin_unlock_irq (&data->dev->lock);
849  if (value < 0) {
850 fail:
851  data->desc.bDescriptorType = 0;
852  data->hs_desc.bDescriptorType = 0;
853  }
854  mutex_unlock(&data->lock);
855  return value;
856 fail0:
857  value = -EINVAL;
858  goto fail;
859 fail1:
860  value = -EFAULT;
861  goto fail;
862 }
863 
864 static int
865 ep_open (struct inode *inode, struct file *fd)
866 {
867  struct ep_data *data = inode->i_private;
868  int value = -EBUSY;
869 
870  if (mutex_lock_interruptible(&data->lock) != 0)
871  return -EINTR;
872  spin_lock_irq (&data->dev->lock);
873  if (data->dev->state == STATE_DEV_UNBOUND)
874  value = -ENOENT;
875  else if (data->state == STATE_EP_DISABLED) {
876  value = 0;
877  data->state = STATE_EP_READY;
878  get_ep (data);
879  fd->private_data = data;
880  VDEBUG (data->dev, "%s ready\n", data->name);
881  } else
882  DBG (data->dev, "%s state %d\n",
883  data->name, data->state);
884  spin_unlock_irq (&data->dev->lock);
885  mutex_unlock(&data->lock);
886  return value;
887 }
888 
889 /* used before endpoint configuration */
890 static const struct file_operations ep_config_operations = {
891  .owner = THIS_MODULE,
892  .llseek = no_llseek,
893 
894  .open = ep_open,
895  .write = ep_config,
896  .release = ep_release,
897 };
898 
899 /*----------------------------------------------------------------------*/
900 
901 /* EP0 IMPLEMENTATION can be partly in userspace.
902  *
903  * Drivers that use this facility receive various events, including
904  * control requests the kernel doesn't handle. Drivers that don't
905  * use this facility may be too simple-minded for real applications.
906  */
907 
908 static inline void ep0_readable (struct dev_data *dev)
909 {
910  wake_up (&dev->wait);
911  kill_fasync (&dev->fasync, SIGIO, POLL_IN);
912 }
913 
914 static void clean_req (struct usb_ep *ep, struct usb_request *req)
915 {
916  struct dev_data *dev = ep->driver_data;
917 
918  if (req->buf != dev->rbuf) {
919  kfree(req->buf);
920  req->buf = dev->rbuf;
921  req->dma = DMA_ADDR_INVALID;
922  }
923  req->complete = epio_complete;
924  dev->setup_out_ready = 0;
925 }
926 
927 static void ep0_complete (struct usb_ep *ep, struct usb_request *req)
928 {
929  struct dev_data *dev = ep->driver_data;
930  unsigned long flags;
931  int free = 1;
932 
933  /* for control OUT, data must still get to userspace */
934  spin_lock_irqsave(&dev->lock, flags);
935  if (!dev->setup_in) {
936  dev->setup_out_error = (req->status != 0);
937  if (!dev->setup_out_error)
938  free = 0;
939  dev->setup_out_ready = 1;
940  ep0_readable (dev);
941  }
942 
943  /* clean up as appropriate */
944  if (free && req->buf != &dev->rbuf)
945  clean_req (ep, req);
946  req->complete = epio_complete;
947  spin_unlock_irqrestore(&dev->lock, flags);
948 }
949 
950 static int setup_req (struct usb_ep *ep, struct usb_request *req, u16 len)
951 {
952  struct dev_data *dev = ep->driver_data;
953 
954  if (dev->setup_out_ready) {
955  DBG (dev, "ep0 request busy!\n");
956  return -EBUSY;
957  }
958  if (len > sizeof (dev->rbuf))
959  req->buf = kmalloc(len, GFP_ATOMIC);
960  if (req->buf == NULL) {
961  req->buf = dev->rbuf;
962  return -ENOMEM;
963  }
964  req->complete = ep0_complete;
965  req->length = len;
966  req->zero = 0;
967  return 0;
968 }
969 
970 static ssize_t
971 ep0_read (struct file *fd, char __user *buf, size_t len, loff_t *ptr)
972 {
973  struct dev_data *dev = fd->private_data;
974  ssize_t retval;
975  enum ep0_state state;
976 
977  spin_lock_irq (&dev->lock);
978 
979  /* report fd mode change before acting on it */
980  if (dev->setup_abort) {
981  dev->setup_abort = 0;
982  retval = -EIDRM;
983  goto done;
984  }
985 
986  /* control DATA stage */
987  if ((state = dev->state) == STATE_DEV_SETUP) {
988 
989  if (dev->setup_in) { /* stall IN */
990  VDEBUG(dev, "ep0in stall\n");
991  (void) usb_ep_set_halt (dev->gadget->ep0);
992  retval = -EL2HLT;
993  dev->state = STATE_DEV_CONNECTED;
994 
995  } else if (len == 0) { /* ack SET_CONFIGURATION etc */
996  struct usb_ep *ep = dev->gadget->ep0;
997  struct usb_request *req = dev->req;
998 
999  if ((retval = setup_req (ep, req, 0)) == 0)
1000  retval = usb_ep_queue (ep, req, GFP_ATOMIC);
1001  dev->state = STATE_DEV_CONNECTED;
1002 
1003  /* assume that was SET_CONFIGURATION */
1004  if (dev->current_config) {
1005  unsigned power;
1006 
1007  if (gadget_is_dualspeed(dev->gadget)
1008  && (dev->gadget->speed
1009  == USB_SPEED_HIGH))
1010  power = dev->hs_config->bMaxPower;
1011  else
1012  power = dev->config->bMaxPower;
1013  usb_gadget_vbus_draw(dev->gadget, 2 * power);
1014  }
1015 
1016  } else { /* collect OUT data */
1017  if ((fd->f_flags & O_NONBLOCK) != 0
1018  && !dev->setup_out_ready) {
1019  retval = -EAGAIN;
1020  goto done;
1021  }
1022  spin_unlock_irq (&dev->lock);
1023  retval = wait_event_interruptible (dev->wait,
1024  dev->setup_out_ready != 0);
1025 
1026  /* FIXME state could change from under us */
1027  spin_lock_irq (&dev->lock);
1028  if (retval)
1029  goto done;
1030 
1031  if (dev->state != STATE_DEV_SETUP) {
1032  retval = -ECANCELED;
1033  goto done;
1034  }
1035  dev->state = STATE_DEV_CONNECTED;
1036 
1037  if (dev->setup_out_error)
1038  retval = -EIO;
1039  else {
1040  len = min (len, (size_t)dev->req->actual);
1041 // FIXME don't call this with the spinlock held ...
1042  if (copy_to_user (buf, dev->req->buf, len))
1043  retval = -EFAULT;
1044  else
1045  retval = len;
1046  clean_req (dev->gadget->ep0, dev->req);
1047  /* NOTE userspace can't yet choose to stall */
1048  }
1049  }
1050  goto done;
1051  }
1052 
1053  /* else normal: return event data */
1054  if (len < sizeof dev->event [0]) {
1055  retval = -EINVAL;
1056  goto done;
1057  }
1058  len -= len % sizeof (struct usb_gadgetfs_event);
1059  dev->usermode_setup = 1;
1060 
1061 scan:
1062  /* return queued events right away */
1063  if (dev->ev_next != 0) {
1064  unsigned i, n;
1065 
1066  n = len / sizeof (struct usb_gadgetfs_event);
1067  if (dev->ev_next < n)
1068  n = dev->ev_next;
1069 
1070  /* ep0 i/o has special semantics during STATE_DEV_SETUP */
1071  for (i = 0; i < n; i++) {
1072  if (dev->event [i].type == GADGETFS_SETUP) {
1073  dev->state = STATE_DEV_SETUP;
1074  n = i + 1;
1075  break;
1076  }
1077  }
1078  spin_unlock_irq (&dev->lock);
1079  len = n * sizeof (struct usb_gadgetfs_event);
1080  if (copy_to_user (buf, &dev->event, len))
1081  retval = -EFAULT;
1082  else
1083  retval = len;
1084  if (len > 0) {
1085  /* NOTE this doesn't guard against broken drivers;
1086  * concurrent ep0 readers may lose events.
1087  */
1088  spin_lock_irq (&dev->lock);
1089  if (dev->ev_next > n) {
1090  memmove(&dev->event[0], &dev->event[n],
1091  sizeof (struct usb_gadgetfs_event)
1092  * (dev->ev_next - n));
1093  }
1094  dev->ev_next -= n;
1095  spin_unlock_irq (&dev->lock);
1096  }
1097  return retval;
1098  }
1099  if (fd->f_flags & O_NONBLOCK) {
1100  retval = -EAGAIN;
1101  goto done;
1102  }
1103 
1104  switch (state) {
1105  default:
1106  DBG (dev, "fail %s, state %d\n", __func__, state);
1107  retval = -ESRCH;
1108  break;
1109  case STATE_DEV_UNCONNECTED:
1110  case STATE_DEV_CONNECTED:
1111  spin_unlock_irq (&dev->lock);
1112  DBG (dev, "%s wait\n", __func__);
1113 
1114  /* wait for events */
1115  retval = wait_event_interruptible (dev->wait,
1116  dev->ev_next != 0);
1117  if (retval < 0)
1118  return retval;
1119  spin_lock_irq (&dev->lock);
1120  goto scan;
1121  }
1122 
1123 done:
1124  spin_unlock_irq (&dev->lock);
1125  return retval;
1126 }
1127 
1128 static struct usb_gadgetfs_event *
1129 next_event (struct dev_data *dev, enum usb_gadgetfs_event_type type)
1130 {
1131  struct usb_gadgetfs_event *event;
1132  unsigned i;
1133 
1134  switch (type) {
1135  /* these events purge the queue */
1136  case GADGETFS_DISCONNECT:
1137  if (dev->state == STATE_DEV_SETUP)
1138  dev->setup_abort = 1;
1139  // FALL THROUGH
1140  case GADGETFS_CONNECT:
1141  dev->ev_next = 0;
1142  break;
1143  case GADGETFS_SETUP: /* previous request timed out */
1144  case GADGETFS_SUSPEND: /* same effect */
1145  /* these events can't be repeated */
1146  for (i = 0; i != dev->ev_next; i++) {
1147  if (dev->event [i].type != type)
1148  continue;
1149  DBG(dev, "discard old event[%d] %d\n", i, type);
1150  dev->ev_next--;
1151  if (i == dev->ev_next)
1152  break;
1153  /* indices start at zero, for simplicity */
1154  memmove (&dev->event [i], &dev->event [i + 1],
1155  sizeof (struct usb_gadgetfs_event)
1156  * (dev->ev_next - i));
1157  }
1158  break;
1159  default:
1160  BUG ();
1161  }
1162  VDEBUG(dev, "event[%d] = %d\n", dev->ev_next, type);
1163  event = &dev->event [dev->ev_next++];
1164  BUG_ON (dev->ev_next > N_EVENT);
1165  memset (event, 0, sizeof *event);
1166  event->type = type;
1167  return event;
1168 }
1169 
1170 static ssize_t
1171 ep0_write (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
1172 {
1173  struct dev_data *dev = fd->private_data;
1174  ssize_t retval = -ESRCH;
1175 
1176  spin_lock_irq (&dev->lock);
1177 
1178  /* report fd mode change before acting on it */
1179  if (dev->setup_abort) {
1180  dev->setup_abort = 0;
1181  retval = -EIDRM;
1182 
1183  /* data and/or status stage for control request */
1184  } else if (dev->state == STATE_DEV_SETUP) {
1185 
1186  /* IN DATA+STATUS caller makes len <= wLength */
1187  if (dev->setup_in) {
1188  retval = setup_req (dev->gadget->ep0, dev->req, len);
1189  if (retval == 0) {
1190  dev->state = STATE_DEV_CONNECTED;
1191  spin_unlock_irq (&dev->lock);
1192  if (copy_from_user (dev->req->buf, buf, len))
1193  retval = -EFAULT;
1194  else {
1195  if (len < dev->setup_wLength)
1196  dev->req->zero = 1;
1197  retval = usb_ep_queue (
1198  dev->gadget->ep0, dev->req,
1199  GFP_KERNEL);
1200  }
1201  if (retval < 0) {
1202  spin_lock_irq (&dev->lock);
1203  clean_req (dev->gadget->ep0, dev->req);
1204  spin_unlock_irq (&dev->lock);
1205  } else
1206  retval = len;
1207 
1208  return retval;
1209  }
1210 
1211  /* can stall some OUT transfers */
1212  } else if (dev->setup_can_stall) {
1213  VDEBUG(dev, "ep0out stall\n");
1214  (void) usb_ep_set_halt (dev->gadget->ep0);
1215  retval = -EL2HLT;
1216  dev->state = STATE_DEV_CONNECTED;
1217  } else {
1218  DBG(dev, "bogus ep0out stall!\n");
1219  }
1220  } else
1221  DBG (dev, "fail %s, state %d\n", __func__, dev->state);
1222 
1223  spin_unlock_irq (&dev->lock);
1224  return retval;
1225 }
1226 
1227 static int
1228 ep0_fasync (int f, struct file *fd, int on)
1229 {
1230  struct dev_data *dev = fd->private_data;
1231  // caller must F_SETOWN before signal delivery happens
1232  VDEBUG (dev, "%s %s\n", __func__, on ? "on" : "off");
1233  return fasync_helper (f, fd, on, &dev->fasync);
1234 }
1235 
1236 static struct usb_gadget_driver gadgetfs_driver;
1237 
1238 static int
1239 dev_release (struct inode *inode, struct file *fd)
1240 {
1241  struct dev_data *dev = fd->private_data;
1242 
1243  /* closing ep0 === shutdown all */
1244 
1245  usb_gadget_unregister_driver (&gadgetfs_driver);
1246 
1247  /* at this point "good" hardware has disconnected the
1248  * device from USB; the host won't see it any more.
1249  * alternatively, all host requests will time out.
1250  */
1251 
1252  kfree (dev->buf);
1253  dev->buf = NULL;
1254  put_dev (dev);
1255 
1256  /* other endpoints were all decoupled from this device */
1257  spin_lock_irq(&dev->lock);
1258  dev->state = STATE_DEV_DISABLED;
1259  spin_unlock_irq(&dev->lock);
1260  return 0;
1261 }
1262 
1263 static unsigned int
1264 ep0_poll (struct file *fd, poll_table *wait)
1265 {
1266  struct dev_data *dev = fd->private_data;
1267  int mask = 0;
1268 
1269  poll_wait(fd, &dev->wait, wait);
1270 
1271  spin_lock_irq (&dev->lock);
1272 
1273  /* report fd mode change before acting on it */
1274  if (dev->setup_abort) {
1275  dev->setup_abort = 0;
1276  mask = POLLHUP;
1277  goto out;
1278  }
1279 
1280  if (dev->state == STATE_DEV_SETUP) {
1281  if (dev->setup_in || dev->setup_can_stall)
1282  mask = POLLOUT;
1283  } else {
1284  if (dev->ev_next != 0)
1285  mask = POLLIN;
1286  }
1287 out:
1288  spin_unlock_irq(&dev->lock);
1289  return mask;
1290 }
1291 
1292 static long dev_ioctl (struct file *fd, unsigned code, unsigned long value)
1293 {
1294  struct dev_data *dev = fd->private_data;
1295  struct usb_gadget *gadget = dev->gadget;
1296  long ret = -ENOTTY;
1297 
1298  if (gadget->ops->ioctl)
1299  ret = gadget->ops->ioctl (gadget, code, value);
1300 
1301  return ret;
1302 }
1303 
1304 /* used after device configuration */
1305 static const struct file_operations ep0_io_operations = {
1306  .owner = THIS_MODULE,
1307  .llseek = no_llseek,
1308 
1309  .read = ep0_read,
1310  .write = ep0_write,
1311  .fasync = ep0_fasync,
1312  .poll = ep0_poll,
1313  .unlocked_ioctl = dev_ioctl,
1314  .release = dev_release,
1315 };
1316 
1317 /*----------------------------------------------------------------------*/
1318 
1319 /* The in-kernel gadget driver handles most ep0 issues, in particular
1320  * enumerating the single configuration (as provided from user space).
1321  *
1322  * Unrecognized ep0 requests may be handled in user space.
1323  */
1324 
1325 static void make_qualifier (struct dev_data *dev)
1326 {
1327  struct usb_qualifier_descriptor qual;
1328  struct usb_device_descriptor *desc;
1329 
1330  qual.bLength = sizeof qual;
1331  qual.bDescriptorType = USB_DT_DEVICE_QUALIFIER;
1332  qual.bcdUSB = cpu_to_le16 (0x0200);
1333 
1334  desc = dev->dev;
1335  qual.bDeviceClass = desc->bDeviceClass;
1336  qual.bDeviceSubClass = desc->bDeviceSubClass;
1337  qual.bDeviceProtocol = desc->bDeviceProtocol;
1338 
1339  /* assumes ep0 uses the same value for both speeds ... */
1340  qual.bMaxPacketSize0 = dev->gadget->ep0->maxpacket;
1341 
1342  qual.bNumConfigurations = 1;
1343  qual.bRESERVED = 0;
1344 
1345  memcpy (dev->rbuf, &qual, sizeof qual);
1346 }
1347 
1348 static int
1349 config_buf (struct dev_data *dev, u8 type, unsigned index)
1350 {
1351  int len;
1352  int hs = 0;
1353 
1354  /* only one configuration */
1355  if (index > 0)
1356  return -EINVAL;
1357 
1358  if (gadget_is_dualspeed(dev->gadget)) {
1359  hs = (dev->gadget->speed == USB_SPEED_HIGH);
1360  if (type == USB_DT_OTHER_SPEED_CONFIG)
1361  hs = !hs;
1362  }
1363  if (hs) {
1364  dev->req->buf = dev->hs_config;
1365  len = le16_to_cpu(dev->hs_config->wTotalLength);
1366  } else {
1367  dev->req->buf = dev->config;
1368  len = le16_to_cpu(dev->config->wTotalLength);
1369  }
1370  ((u8 *)dev->req->buf) [1] = type;
1371  return len;
1372 }
1373 
1374 static int
1375 gadgetfs_setup (struct usb_gadget *gadget, const struct usb_ctrlrequest *ctrl)
1376 {
1377  struct dev_data *dev = get_gadget_data (gadget);
1378  struct usb_request *req = dev->req;
1379  int value = -EOPNOTSUPP;
1380  struct usb_gadgetfs_event *event;
1381  u16 w_value = le16_to_cpu(ctrl->wValue);
1382  u16 w_length = le16_to_cpu(ctrl->wLength);
1383 
1384  spin_lock (&dev->lock);
1385  dev->setup_abort = 0;
1386  if (dev->state == STATE_DEV_UNCONNECTED) {
1387  if (gadget_is_dualspeed(gadget)
1388  && gadget->speed == USB_SPEED_HIGH
1389  && dev->hs_config == NULL) {
1390  spin_unlock(&dev->lock);
1391  ERROR (dev, "no high speed config??\n");
1392  return -EINVAL;
1393  }
1394 
1395  dev->state = STATE_DEV_CONNECTED;
1396 
1397  INFO (dev, "connected\n");
1398  event = next_event (dev, GADGETFS_CONNECT);
1399  event->u.speed = gadget->speed;
1400  ep0_readable (dev);
1401 
1402  /* host may have given up waiting for response. we can miss control
1403  * requests handled lower down (device/endpoint status and features);
1404  * then ep0_{read,write} will report the wrong status. controller
1405  * driver will have aborted pending i/o.
1406  */
1407  } else if (dev->state == STATE_DEV_SETUP)
1408  dev->setup_abort = 1;
1409 
1410  req->buf = dev->rbuf;
1411  req->dma = DMA_ADDR_INVALID;
1412  req->context = NULL;
1413  value = -EOPNOTSUPP;
1414  switch (ctrl->bRequest) {
1415 
1417  if (ctrl->bRequestType != USB_DIR_IN)
1418  goto unrecognized;
1419  switch (w_value >> 8) {
1420 
1421  case USB_DT_DEVICE:
1422  value = min (w_length, (u16) sizeof *dev->dev);
1423  dev->dev->bMaxPacketSize0 = dev->gadget->ep0->maxpacket;
1424  req->buf = dev->dev;
1425  break;
1427  if (!dev->hs_config)
1428  break;
1429  value = min (w_length, (u16)
1430  sizeof (struct usb_qualifier_descriptor));
1431  make_qualifier (dev);
1432  break;
1434  // FALLTHROUGH
1435  case USB_DT_CONFIG:
1436  value = config_buf (dev,
1437  w_value >> 8,
1438  w_value & 0xff);
1439  if (value >= 0)
1440  value = min (w_length, (u16) value);
1441  break;
1442  case USB_DT_STRING:
1443  goto unrecognized;
1444 
1445  default: // all others are errors
1446  break;
1447  }
1448  break;
1449 
1450  /* currently one config, two speeds */
1452  if (ctrl->bRequestType != 0)
1453  goto unrecognized;
1454  if (0 == (u8) w_value) {
1455  value = 0;
1456  dev->current_config = 0;
1457  usb_gadget_vbus_draw(gadget, 8 /* mA */ );
1458  // user mode expected to disable endpoints
1459  } else {
1460  u8 config, power;
1461 
1462  if (gadget_is_dualspeed(gadget)
1463  && gadget->speed == USB_SPEED_HIGH) {
1464  config = dev->hs_config->bConfigurationValue;
1465  power = dev->hs_config->bMaxPower;
1466  } else {
1467  config = dev->config->bConfigurationValue;
1468  power = dev->config->bMaxPower;
1469  }
1470 
1471  if (config == (u8) w_value) {
1472  value = 0;
1473  dev->current_config = config;
1474  usb_gadget_vbus_draw(gadget, 2 * power);
1475  }
1476  }
1477 
1478  /* report SET_CONFIGURATION like any other control request,
1479  * except that usermode may not stall this. the next
1480  * request mustn't be allowed start until this finishes:
1481  * endpoints and threads set up, etc.
1482  *
1483  * NOTE: older PXA hardware (before PXA 255: without UDCCFR)
1484  * has bad/racey automagic that prevents synchronizing here.
1485  * even kernel mode drivers often miss them.
1486  */
1487  if (value == 0) {
1488  INFO (dev, "configuration #%d\n", dev->current_config);
1489  if (dev->usermode_setup) {
1490  dev->setup_can_stall = 0;
1491  goto delegate;
1492  }
1493  }
1494  break;
1495 
1496 #ifndef CONFIG_USB_GADGET_PXA25X
1497  /* PXA automagically handles this request too */
1499  if (ctrl->bRequestType != 0x80)
1500  goto unrecognized;
1501  *(u8 *)req->buf = dev->current_config;
1502  value = min (w_length, (u16) 1);
1503  break;
1504 #endif
1505 
1506  default:
1507 unrecognized:
1508  VDEBUG (dev, "%s req%02x.%02x v%04x i%04x l%d\n",
1509  dev->usermode_setup ? "delegate" : "fail",
1510  ctrl->bRequestType, ctrl->bRequest,
1511  w_value, le16_to_cpu(ctrl->wIndex), w_length);
1512 
1513  /* if there's an ep0 reader, don't stall */
1514  if (dev->usermode_setup) {
1515  dev->setup_can_stall = 1;
1516 delegate:
1517  dev->setup_in = (ctrl->bRequestType & USB_DIR_IN)
1518  ? 1 : 0;
1519  dev->setup_wLength = w_length;
1520  dev->setup_out_ready = 0;
1521  dev->setup_out_error = 0;
1522  value = 0;
1523 
1524  /* read DATA stage for OUT right away */
1525  if (unlikely (!dev->setup_in && w_length)) {
1526  value = setup_req (gadget->ep0, dev->req,
1527  w_length);
1528  if (value < 0)
1529  break;
1530  value = usb_ep_queue (gadget->ep0, dev->req,
1531  GFP_ATOMIC);
1532  if (value < 0) {
1533  clean_req (gadget->ep0, dev->req);
1534  break;
1535  }
1536 
1537  /* we can't currently stall these */
1538  dev->setup_can_stall = 0;
1539  }
1540 
1541  /* state changes when reader collects event */
1542  event = next_event (dev, GADGETFS_SETUP);
1543  event->u.setup = *ctrl;
1544  ep0_readable (dev);
1545  spin_unlock (&dev->lock);
1546  return 0;
1547  }
1548  }
1549 
1550  /* proceed with data transfer and status phases? */
1551  if (value >= 0 && dev->state != STATE_DEV_SETUP) {
1552  req->length = value;
1553  req->zero = value < w_length;
1554  value = usb_ep_queue (gadget->ep0, req, GFP_ATOMIC);
1555  if (value < 0) {
1556  DBG (dev, "ep_queue --> %d\n", value);
1557  req->status = 0;
1558  }
1559  }
1560 
1561  /* device stalls when value < 0 */
1562  spin_unlock (&dev->lock);
1563  return value;
1564 }
1565 
1566 static void destroy_ep_files (struct dev_data *dev)
1567 {
1568  DBG (dev, "%s %d\n", __func__, dev->state);
1569 
1570  /* dev->state must prevent interference */
1571  spin_lock_irq (&dev->lock);
1572  while (!list_empty(&dev->epfiles)) {
1573  struct ep_data *ep;
1574  struct inode *parent;
1575  struct dentry *dentry;
1576 
1577  /* break link to FS */
1578  ep = list_first_entry (&dev->epfiles, struct ep_data, epfiles);
1579  list_del_init (&ep->epfiles);
1580  dentry = ep->dentry;
1581  ep->dentry = NULL;
1582  parent = dentry->d_parent->d_inode;
1583 
1584  /* break link to controller */
1585  if (ep->state == STATE_EP_ENABLED)
1586  (void) usb_ep_disable (ep->ep);
1587  ep->state = STATE_EP_UNBOUND;
1588  usb_ep_free_request (ep->ep, ep->req);
1589  ep->ep = NULL;
1590  wake_up (&ep->wait);
1591  put_ep (ep);
1592 
1593  spin_unlock_irq (&dev->lock);
1594 
1595  /* break link to dcache */
1596  mutex_lock (&parent->i_mutex);
1597  d_delete (dentry);
1598  dput (dentry);
1599  mutex_unlock (&parent->i_mutex);
1600 
1601  spin_lock_irq (&dev->lock);
1602  }
1603  spin_unlock_irq (&dev->lock);
1604 }
1605 
1606 
1607 static struct inode *
1608 gadgetfs_create_file (struct super_block *sb, char const *name,
1609  void *data, const struct file_operations *fops,
1610  struct dentry **dentry_p);
1611 
1612 static int activate_ep_files (struct dev_data *dev)
1613 {
1614  struct usb_ep *ep;
1615  struct ep_data *data;
1616 
1617  gadget_for_each_ep (ep, dev->gadget) {
1618 
1619  data = kzalloc(sizeof(*data), GFP_KERNEL);
1620  if (!data)
1621  goto enomem0;
1622  data->state = STATE_EP_DISABLED;
1623  mutex_init(&data->lock);
1624  init_waitqueue_head (&data->wait);
1625 
1626  strncpy (data->name, ep->name, sizeof (data->name) - 1);
1627  atomic_set (&data->count, 1);
1628  data->dev = dev;
1629  get_dev (dev);
1630 
1631  data->ep = ep;
1632  ep->driver_data = data;
1633 
1634  data->req = usb_ep_alloc_request (ep, GFP_KERNEL);
1635  if (!data->req)
1636  goto enomem1;
1637 
1638  data->inode = gadgetfs_create_file (dev->sb, data->name,
1639  data, &ep_config_operations,
1640  &data->dentry);
1641  if (!data->inode)
1642  goto enomem2;
1643  list_add_tail (&data->epfiles, &dev->epfiles);
1644  }
1645  return 0;
1646 
1647 enomem2:
1648  usb_ep_free_request (ep, data->req);
1649 enomem1:
1650  put_dev (dev);
1651  kfree (data);
1652 enomem0:
1653  DBG (dev, "%s enomem\n", __func__);
1654  destroy_ep_files (dev);
1655  return -ENOMEM;
1656 }
1657 
1658 static void
1659 gadgetfs_unbind (struct usb_gadget *gadget)
1660 {
1661  struct dev_data *dev = get_gadget_data (gadget);
1662 
1663  DBG (dev, "%s\n", __func__);
1664 
1665  spin_lock_irq (&dev->lock);
1666  dev->state = STATE_DEV_UNBOUND;
1667  spin_unlock_irq (&dev->lock);
1668 
1669  destroy_ep_files (dev);
1670  gadget->ep0->driver_data = NULL;
1671  set_gadget_data (gadget, NULL);
1672 
1673  /* we've already been disconnected ... no i/o is active */
1674  if (dev->req)
1675  usb_ep_free_request (gadget->ep0, dev->req);
1676  DBG (dev, "%s done\n", __func__);
1677  put_dev (dev);
1678 }
1679 
1680 static struct dev_data *the_device;
1681 
1682 static int gadgetfs_bind(struct usb_gadget *gadget,
1683  struct usb_gadget_driver *driver)
1684 {
1685  struct dev_data *dev = the_device;
1686 
1687  if (!dev)
1688  return -ESRCH;
1689  if (0 != strcmp (CHIP, gadget->name)) {
1690  pr_err("%s expected %s controller not %s\n",
1691  shortname, CHIP, gadget->name);
1692  return -ENODEV;
1693  }
1694 
1695  set_gadget_data (gadget, dev);
1696  dev->gadget = gadget;
1697  gadget->ep0->driver_data = dev;
1698 
1699  /* preallocate control response and buffer */
1700  dev->req = usb_ep_alloc_request (gadget->ep0, GFP_KERNEL);
1701  if (!dev->req)
1702  goto enomem;
1703  dev->req->context = NULL;
1704  dev->req->complete = epio_complete;
1705 
1706  if (activate_ep_files (dev) < 0)
1707  goto enomem;
1708 
1709  INFO (dev, "bound to %s driver\n", gadget->name);
1710  spin_lock_irq(&dev->lock);
1712  spin_unlock_irq(&dev->lock);
1713  get_dev (dev);
1714  return 0;
1715 
1716 enomem:
1717  gadgetfs_unbind (gadget);
1718  return -ENOMEM;
1719 }
1720 
1721 static void
1722 gadgetfs_disconnect (struct usb_gadget *gadget)
1723 {
1724  struct dev_data *dev = get_gadget_data (gadget);
1725  unsigned long flags;
1726 
1727  spin_lock_irqsave (&dev->lock, flags);
1728  if (dev->state == STATE_DEV_UNCONNECTED)
1729  goto exit;
1731 
1732  INFO (dev, "disconnected\n");
1733  next_event (dev, GADGETFS_DISCONNECT);
1734  ep0_readable (dev);
1735 exit:
1736  spin_unlock_irqrestore (&dev->lock, flags);
1737 }
1738 
1739 static void
1740 gadgetfs_suspend (struct usb_gadget *gadget)
1741 {
1742  struct dev_data *dev = get_gadget_data (gadget);
1743 
1744  INFO (dev, "suspended from state %d\n", dev->state);
1745  spin_lock (&dev->lock);
1746  switch (dev->state) {
1747  case STATE_DEV_SETUP: // VERY odd... host died??
1748  case STATE_DEV_CONNECTED:
1749  case STATE_DEV_UNCONNECTED:
1750  next_event (dev, GADGETFS_SUSPEND);
1751  ep0_readable (dev);
1752  /* FALLTHROUGH */
1753  default:
1754  break;
1755  }
1756  spin_unlock (&dev->lock);
1757 }
1758 
1759 static struct usb_gadget_driver gadgetfs_driver = {
1760  .function = (char *) driver_desc,
1761  .bind = gadgetfs_bind,
1762  .unbind = gadgetfs_unbind,
1763  .setup = gadgetfs_setup,
1764  .disconnect = gadgetfs_disconnect,
1765  .suspend = gadgetfs_suspend,
1766 
1767  .driver = {
1768  .name = (char *) shortname,
1769  },
1770 };
1771 
1772 /*----------------------------------------------------------------------*/
1773 
1774 static void gadgetfs_nop(struct usb_gadget *arg) { }
1775 
1776 static int gadgetfs_probe(struct usb_gadget *gadget,
1777  struct usb_gadget_driver *driver)
1778 {
1779  CHIP = gadget->name;
1780  return -EISNAM;
1781 }
1782 
1783 static struct usb_gadget_driver probe_driver = {
1784  .max_speed = USB_SPEED_HIGH,
1785  .bind = gadgetfs_probe,
1786  .unbind = gadgetfs_nop,
1787  .setup = (void *)gadgetfs_nop,
1788  .disconnect = gadgetfs_nop,
1789  .driver = {
1790  .name = "nop",
1791  },
1792 };
1793 
1794 
1795 /* DEVICE INITIALIZATION
1796  *
1797  * fd = open ("/dev/gadget/$CHIP", O_RDWR)
1798  * status = write (fd, descriptors, sizeof descriptors)
1799  *
1800  * That write establishes the device configuration, so the kernel can
1801  * bind to the controller ... guaranteeing it can handle enumeration
1802  * at all necessary speeds. Descriptor order is:
1803  *
1804  * . message tag (u32, host order) ... for now, must be zero; it
1805  * would change to support features like multi-config devices
1806  * . full/low speed config ... all wTotalLength bytes (with interface,
1807  * class, altsetting, endpoint, and other descriptors)
1808  * . high speed config ... all descriptors, for high speed operation;
1809  * this one's optional except for high-speed hardware
1810  * . device descriptor
1811  *
1812  * Endpoints are not yet enabled. Drivers must wait until device
1813  * configuration and interface altsetting changes create
1814  * the need to configure (or unconfigure) them.
1815  *
1816  * After initialization, the device stays active for as long as that
1817  * $CHIP file is open. Events must then be read from that descriptor,
1818  * such as configuration notifications.
1819  */
1820 
1821 static int is_valid_config (struct usb_config_descriptor *config)
1822 {
1823  return config->bDescriptorType == USB_DT_CONFIG
1824  && config->bLength == USB_DT_CONFIG_SIZE
1825  && config->bConfigurationValue != 0
1826  && (config->bmAttributes & USB_CONFIG_ATT_ONE) != 0
1827  && (config->bmAttributes & USB_CONFIG_ATT_WAKEUP) == 0;
1828  /* FIXME if gadget->is_otg, _must_ include an otg descriptor */
1829  /* FIXME check lengths: walk to end */
1830 }
1831 
1832 static ssize_t
1833 dev_config (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
1834 {
1835  struct dev_data *dev = fd->private_data;
1836  ssize_t value = len, length = len;
1837  unsigned total;
1838  u32 tag;
1839  char *kbuf;
1840 
1841  if (len < (USB_DT_CONFIG_SIZE + USB_DT_DEVICE_SIZE + 4))
1842  return -EINVAL;
1843 
1844  /* we might need to change message format someday */
1845  if (copy_from_user (&tag, buf, 4))
1846  return -EFAULT;
1847  if (tag != 0)
1848  return -EINVAL;
1849  buf += 4;
1850  length -= 4;
1851 
1852  kbuf = memdup_user(buf, length);
1853  if (IS_ERR(kbuf))
1854  return PTR_ERR(kbuf);
1855 
1856  spin_lock_irq (&dev->lock);
1857  value = -EINVAL;
1858  if (dev->buf)
1859  goto fail;
1860  dev->buf = kbuf;
1861 
1862  /* full or low speed config */
1863  dev->config = (void *) kbuf;
1864  total = le16_to_cpu(dev->config->wTotalLength);
1865  if (!is_valid_config (dev->config) || total >= length)
1866  goto fail;
1867  kbuf += total;
1868  length -= total;
1869 
1870  /* optional high speed config */
1871  if (kbuf [1] == USB_DT_CONFIG) {
1872  dev->hs_config = (void *) kbuf;
1873  total = le16_to_cpu(dev->hs_config->wTotalLength);
1874  if (!is_valid_config (dev->hs_config) || total >= length)
1875  goto fail;
1876  kbuf += total;
1877  length -= total;
1878  }
1879 
1880  /* could support multiple configs, using another encoding! */
1881 
1882  /* device descriptor (tweaked for paranoia) */
1883  if (length != USB_DT_DEVICE_SIZE)
1884  goto fail;
1885  dev->dev = (void *)kbuf;
1886  if (dev->dev->bLength != USB_DT_DEVICE_SIZE
1887  || dev->dev->bDescriptorType != USB_DT_DEVICE
1888  || dev->dev->bNumConfigurations != 1)
1889  goto fail;
1890  dev->dev->bNumConfigurations = 1;
1891  dev->dev->bcdUSB = cpu_to_le16 (0x0200);
1892 
1893  /* triggers gadgetfs_bind(); then we can enumerate. */
1894  spin_unlock_irq (&dev->lock);
1895  if (dev->hs_config)
1896  gadgetfs_driver.max_speed = USB_SPEED_HIGH;
1897  else
1898  gadgetfs_driver.max_speed = USB_SPEED_FULL;
1899 
1900  value = usb_gadget_probe_driver(&gadgetfs_driver);
1901  if (value != 0) {
1902  kfree (dev->buf);
1903  dev->buf = NULL;
1904  } else {
1905  /* at this point "good" hardware has for the first time
1906  * let the USB the host see us. alternatively, if users
1907  * unplug/replug that will clear all the error state.
1908  *
1909  * note: everything running before here was guaranteed
1910  * to choke driver model style diagnostics. from here
1911  * on, they can work ... except in cleanup paths that
1912  * kick in after the ep0 descriptor is closed.
1913  */
1914  fd->f_op = &ep0_io_operations;
1915  value = len;
1916  }
1917  return value;
1918 
1919 fail:
1920  spin_unlock_irq (&dev->lock);
1921  pr_debug ("%s: %s fail %Zd, %p\n", shortname, __func__, value, dev);
1922  kfree (dev->buf);
1923  dev->buf = NULL;
1924  return value;
1925 }
1926 
1927 static int
1928 dev_open (struct inode *inode, struct file *fd)
1929 {
1930  struct dev_data *dev = inode->i_private;
1931  int value = -EBUSY;
1932 
1933  spin_lock_irq(&dev->lock);
1934  if (dev->state == STATE_DEV_DISABLED) {
1935  dev->ev_next = 0;
1936  dev->state = STATE_DEV_OPENED;
1937  fd->private_data = dev;
1938  get_dev (dev);
1939  value = 0;
1940  }
1941  spin_unlock_irq(&dev->lock);
1942  return value;
1943 }
1944 
1945 static const struct file_operations dev_init_operations = {
1946  .owner = THIS_MODULE,
1947  .llseek = no_llseek,
1948 
1949  .open = dev_open,
1950  .write = dev_config,
1951  .fasync = ep0_fasync,
1952  .unlocked_ioctl = dev_ioctl,
1953  .release = dev_release,
1954 };
1955 
1956 /*----------------------------------------------------------------------*/
1957 
1958 /* FILESYSTEM AND SUPERBLOCK OPERATIONS
1959  *
1960  * Mounting the filesystem creates a controller file, used first for
1961  * device configuration then later for event monitoring.
1962  */
1963 
1964 
1965 /* FIXME PAM etc could set this security policy without mount options
1966  * if epfiles inherited ownership and permissons from ep0 ...
1967  */
1968 
1969 static unsigned default_uid;
1970 static unsigned default_gid;
1971 static unsigned default_perm = S_IRUSR | S_IWUSR;
1972 
1973 module_param (default_uid, uint, 0644);
1974 module_param (default_gid, uint, 0644);
1975 module_param (default_perm, uint, 0644);
1976 
1977 
1978 static struct inode *
1979 gadgetfs_make_inode (struct super_block *sb,
1980  void *data, const struct file_operations *fops,
1981  int mode)
1982 {
1983  struct inode *inode = new_inode (sb);
1984 
1985  if (inode) {
1986  inode->i_ino = get_next_ino();
1987  inode->i_mode = mode;
1988  inode->i_uid = make_kuid(&init_user_ns, default_uid);
1989  inode->i_gid = make_kgid(&init_user_ns, default_gid);
1990  inode->i_atime = inode->i_mtime = inode->i_ctime
1991  = CURRENT_TIME;
1992  inode->i_private = data;
1993  inode->i_fop = fops;
1994  }
1995  return inode;
1996 }
1997 
1998 /* creates in fs root directory, so non-renamable and non-linkable.
1999  * so inode and dentry are paired, until device reconfig.
2000  */
2001 static struct inode *
2002 gadgetfs_create_file (struct super_block *sb, char const *name,
2003  void *data, const struct file_operations *fops,
2004  struct dentry **dentry_p)
2005 {
2006  struct dentry *dentry;
2007  struct inode *inode;
2008 
2009  dentry = d_alloc_name(sb->s_root, name);
2010  if (!dentry)
2011  return NULL;
2012 
2013  inode = gadgetfs_make_inode (sb, data, fops,
2014  S_IFREG | (default_perm & S_IRWXUGO));
2015  if (!inode) {
2016  dput(dentry);
2017  return NULL;
2018  }
2019  d_add (dentry, inode);
2020  *dentry_p = dentry;
2021  return inode;
2022 }
2023 
2024 static const struct super_operations gadget_fs_operations = {
2025  .statfs = simple_statfs,
2026  .drop_inode = generic_delete_inode,
2027 };
2028 
2029 static int
2030 gadgetfs_fill_super (struct super_block *sb, void *opts, int silent)
2031 {
2032  struct inode *inode;
2033  struct dev_data *dev;
2034 
2035  if (the_device)
2036  return -ESRCH;
2037 
2038  /* fake probe to determine $CHIP */
2039  usb_gadget_probe_driver(&probe_driver);
2040  if (!CHIP)
2041  return -ENODEV;
2042 
2043  /* superblock */
2046  sb->s_magic = GADGETFS_MAGIC;
2047  sb->s_op = &gadget_fs_operations;
2048  sb->s_time_gran = 1;
2049 
2050  /* root inode */
2051  inode = gadgetfs_make_inode (sb,
2053  S_IFDIR | S_IRUGO | S_IXUGO);
2054  if (!inode)
2055  goto Enomem;
2057  if (!(sb->s_root = d_make_root (inode)))
2058  goto Enomem;
2059 
2060  /* the ep0 file is named after the controller we expect;
2061  * user mode code can use it for sanity checks, like we do.
2062  */
2063  dev = dev_new ();
2064  if (!dev)
2065  goto Enomem;
2066 
2067  dev->sb = sb;
2068  if (!gadgetfs_create_file (sb, CHIP,
2069  dev, &dev_init_operations,
2070  &dev->dentry)) {
2071  put_dev(dev);
2072  goto Enomem;
2073  }
2074 
2075  /* other endpoint files are available after hardware setup,
2076  * from binding to a controller.
2077  */
2078  the_device = dev;
2079  return 0;
2080 
2081 Enomem:
2082  return -ENOMEM;
2083 }
2084 
2085 /* "mount -t gadgetfs path /dev/gadget" ends up here */
2086 static struct dentry *
2087 gadgetfs_mount (struct file_system_type *t, int flags,
2088  const char *path, void *opts)
2089 {
2090  return mount_single (t, flags, opts, gadgetfs_fill_super);
2091 }
2092 
2093 static void
2094 gadgetfs_kill_sb (struct super_block *sb)
2095 {
2096  kill_litter_super (sb);
2097  if (the_device) {
2098  put_dev (the_device);
2099  the_device = NULL;
2100  }
2101 }
2102 
2103 /*----------------------------------------------------------------------*/
2104 
2105 static struct file_system_type gadgetfs_type = {
2106  .owner = THIS_MODULE,
2107  .name = shortname,
2108  .mount = gadgetfs_mount,
2109  .kill_sb = gadgetfs_kill_sb,
2110 };
2111 
2112 /*----------------------------------------------------------------------*/
2113 
2114 static int __init init (void)
2115 {
2116  int status;
2117 
2118  status = register_filesystem (&gadgetfs_type);
2119  if (status == 0)
2120  pr_info ("%s: %s, version " DRIVER_VERSION "\n",
2121  shortname, driver_desc);
2122  return status;
2123 }
2124 module_init (init);
2125 
2126 static void __exit cleanup (void)
2127 {
2128  pr_debug ("unregister %s\n", shortname);
2129  unregister_filesystem (&gadgetfs_type);
2130 }
2131 module_exit (cleanup);
2132