Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
eeh_pe.c
Go to the documentation of this file.
1 /*
2  * The file intends to implement PE based on the information from
3  * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
4  * All the PEs should be organized as hierarchy tree. The first level
5  * of the tree will be associated to existing PHBs since the particular
6  * PE is only meaningful in one PHB domain.
7  *
8  * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23  */
24 
25 #include <linux/export.h>
26 #include <linux/gfp.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/pci.h>
30 #include <linux/string.h>
31 
32 #include <asm/pci-bridge.h>
33 #include <asm/ppc-pci.h>
34 
35 static LIST_HEAD(eeh_phb_pe);
36 
44 static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
45 {
46  struct eeh_pe *pe;
47 
48  /* Allocate PHB PE */
49  pe = kzalloc(sizeof(struct eeh_pe), GFP_KERNEL);
50  if (!pe) return NULL;
51 
52  /* Initialize PHB PE */
53  pe->type = type;
54  pe->phb = phb;
55  INIT_LIST_HEAD(&pe->child_list);
56  INIT_LIST_HEAD(&pe->child);
57  INIT_LIST_HEAD(&pe->edevs);
58 
59  return pe;
60 }
61 
70 {
71  struct eeh_pe *pe;
72 
73  /* Allocate PHB PE */
74  pe = eeh_pe_alloc(phb, EEH_PE_PHB);
75  if (!pe) {
76  pr_err("%s: out of memory!\n", __func__);
77  return -ENOMEM;
78  }
79 
80  /* Put it into the list */
81  eeh_lock();
82  list_add_tail(&pe->child, &eeh_phb_pe);
83  eeh_unlock();
84 
85  pr_debug("EEH: Add PE for PHB#%d\n", phb->global_number);
86 
87  return 0;
88 }
89 
98 static struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
99 {
100  struct eeh_pe *pe;
101 
102  list_for_each_entry(pe, &eeh_phb_pe, child) {
103  /*
104  * Actually, we needn't check the type since
105  * the PE for PHB has been determined when that
106  * was created.
107  */
108  if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
109  return pe;
110  }
111 
112  return NULL;
113 }
114 
123 static struct eeh_pe *eeh_pe_next(struct eeh_pe *pe,
124  struct eeh_pe *root)
125 {
126  struct list_head *next = pe->child_list.next;
127 
128  if (next == &pe->child_list) {
129  while (1) {
130  if (pe == root)
131  return NULL;
132  next = pe->child.next;
133  if (next != &pe->parent->child_list)
134  break;
135  pe = pe->parent;
136  }
137  }
138 
139  return list_entry(next, struct eeh_pe, child);
140 }
141 
153 static void *eeh_pe_traverse(struct eeh_pe *root,
154  eeh_traverse_func fn, void *flag)
155 {
156  struct eeh_pe *pe;
157  void *ret;
158 
159  for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
160  ret = fn(pe, flag);
161  if (ret) return ret;
162  }
163 
164  return NULL;
165 }
166 
176 void *eeh_pe_dev_traverse(struct eeh_pe *root,
177  eeh_traverse_func fn, void *flag)
178 {
179  struct eeh_pe *pe;
180  struct eeh_dev *edev;
181  void *ret;
182 
183  if (!root) {
184  pr_warning("%s: Invalid PE %p\n", __func__, root);
185  return NULL;
186  }
187 
188  eeh_lock();
189 
190  /* Traverse root PE */
191  for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
192  eeh_pe_for_each_dev(pe, edev) {
193  ret = fn(edev, flag);
194  if (ret) {
195  eeh_unlock();
196  return ret;
197  }
198  }
199  }
200 
201  eeh_unlock();
202 
203  return NULL;
204 }
205 
216 static void *__eeh_pe_get(void *data, void *flag)
217 {
218  struct eeh_pe *pe = (struct eeh_pe *)data;
219  struct eeh_dev *edev = (struct eeh_dev *)flag;
220 
221  /* Unexpected PHB PE */
222  if (pe->type & EEH_PE_PHB)
223  return NULL;
224 
225  /* We prefer PE address */
226  if (edev->pe_config_addr &&
227  (edev->pe_config_addr == pe->addr))
228  return pe;
229 
230  /* Try BDF address */
231  if (edev->pe_config_addr &&
232  (edev->config_addr == pe->config_addr))
233  return pe;
234 
235  return NULL;
236 }
237 
249 static struct eeh_pe *eeh_pe_get(struct eeh_dev *edev)
250 {
251  struct eeh_pe *root = eeh_phb_pe_get(edev->phb);
252  struct eeh_pe *pe;
253 
254  pe = eeh_pe_traverse(root, __eeh_pe_get, edev);
255 
256  return pe;
257 }
258 
267 static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev)
268 {
269  struct device_node *dn;
270  struct eeh_dev *parent;
271 
272  /*
273  * It might have the case for the indirect parent
274  * EEH device already having associated PE, but
275  * the direct parent EEH device doesn't have yet.
276  */
277  dn = edev->dn->parent;
278  while (dn) {
279  /* We're poking out of PCI territory */
280  if (!PCI_DN(dn)) return NULL;
281 
282  parent = of_node_to_eeh_dev(dn);
283  /* We're poking out of PCI territory */
284  if (!parent) return NULL;
285 
286  if (parent->pe)
287  return parent->pe;
288 
289  dn = dn->parent;
290  }
291 
292  return NULL;
293 }
294 
304 int eeh_add_to_parent_pe(struct eeh_dev *edev)
305 {
306  struct eeh_pe *pe, *parent;
307 
308  eeh_lock();
309 
310  /*
311  * Search the PE has been existing or not according
312  * to the PE address. If that has been existing, the
313  * PE should be composed of PCI bus and its subordinate
314  * components.
315  */
316  pe = eeh_pe_get(edev);
317  if (pe && !(pe->type & EEH_PE_INVALID)) {
318  if (!edev->pe_config_addr) {
319  eeh_unlock();
320  pr_err("%s: PE with addr 0x%x already exists\n",
321  __func__, edev->config_addr);
322  return -EEXIST;
323  }
324 
325  /* Mark the PE as type of PCI bus */
326  pe->type = EEH_PE_BUS;
327  edev->pe = pe;
328 
329  /* Put the edev to PE */
330  list_add_tail(&edev->list, &pe->edevs);
331  eeh_unlock();
332  pr_debug("EEH: Add %s to Bus PE#%x\n",
333  edev->dn->full_name, pe->addr);
334 
335  return 0;
336  } else if (pe && (pe->type & EEH_PE_INVALID)) {
337  list_add_tail(&edev->list, &pe->edevs);
338  edev->pe = pe;
339  /*
340  * We're running to here because of PCI hotplug caused by
341  * EEH recovery. We need clear EEH_PE_INVALID until the top.
342  */
343  parent = pe;
344  while (parent) {
345  if (!(parent->type & EEH_PE_INVALID))
346  break;
347  parent->type &= ~EEH_PE_INVALID;
348  parent = parent->parent;
349  }
350  eeh_unlock();
351  pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n",
352  edev->dn->full_name, pe->addr, pe->parent->addr);
353 
354  return 0;
355  }
356 
357  /* Create a new EEH PE */
358  pe = eeh_pe_alloc(edev->phb, EEH_PE_DEVICE);
359  if (!pe) {
360  eeh_unlock();
361  pr_err("%s: out of memory!\n", __func__);
362  return -ENOMEM;
363  }
364  pe->addr = edev->pe_config_addr;
365  pe->config_addr = edev->config_addr;
366 
367  /*
368  * Put the new EEH PE into hierarchy tree. If the parent
369  * can't be found, the newly created PE will be attached
370  * to PHB directly. Otherwise, we have to associate the
371  * PE with its parent.
372  */
373  parent = eeh_pe_get_parent(edev);
374  if (!parent) {
375  parent = eeh_phb_pe_get(edev->phb);
376  if (!parent) {
377  eeh_unlock();
378  pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
379  __func__, edev->phb->global_number);
380  edev->pe = NULL;
381  kfree(pe);
382  return -EEXIST;
383  }
384  }
385  pe->parent = parent;
386 
387  /*
388  * Put the newly created PE into the child list and
389  * link the EEH device accordingly.
390  */
391  list_add_tail(&pe->child, &parent->child_list);
392  list_add_tail(&edev->list, &pe->edevs);
393  edev->pe = pe;
394  eeh_unlock();
395  pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n",
396  edev->dn->full_name, pe->addr, pe->parent->addr);
397 
398  return 0;
399 }
400 
411 int eeh_rmv_from_parent_pe(struct eeh_dev *edev, int purge_pe)
412 {
413  struct eeh_pe *pe, *parent, *child;
414  int cnt;
415 
416  if (!edev->pe) {
417  pr_warning("%s: No PE found for EEH device %s\n",
418  __func__, edev->dn->full_name);
419  return -EEXIST;
420  }
421 
422  eeh_lock();
423 
424  /* Remove the EEH device */
425  pe = edev->pe;
426  edev->pe = NULL;
427  list_del(&edev->list);
428 
429  /*
430  * Check if the parent PE includes any EEH devices.
431  * If not, we should delete that. Also, we should
432  * delete the parent PE if it doesn't have associated
433  * child PEs and EEH devices.
434  */
435  while (1) {
436  parent = pe->parent;
437  if (pe->type & EEH_PE_PHB)
438  break;
439 
440  if (purge_pe) {
441  if (list_empty(&pe->edevs) &&
442  list_empty(&pe->child_list)) {
443  list_del(&pe->child);
444  kfree(pe);
445  } else {
446  break;
447  }
448  } else {
449  if (list_empty(&pe->edevs)) {
450  cnt = 0;
451  list_for_each_entry(child, &pe->child_list, child) {
452  if (!(child->type & EEH_PE_INVALID)) {
453  cnt++;
454  break;
455  }
456  }
457 
458  if (!cnt)
459  pe->type |= EEH_PE_INVALID;
460  else
461  break;
462  }
463  }
464 
465  pe = parent;
466  }
467 
468  eeh_unlock();
469 
470  return 0;
471 }
472 
482 static void *__eeh_pe_state_mark(void *data, void *flag)
483 {
484  struct eeh_pe *pe = (struct eeh_pe *)data;
485  int state = *((int *)flag);
486  struct eeh_dev *tmp;
487  struct pci_dev *pdev;
488 
489  /*
490  * Mark the PE with the indicated state. Also,
491  * the associated PCI device will be put into
492  * I/O frozen state to avoid I/O accesses from
493  * the PCI device driver.
494  */
495  pe->state |= state;
496  eeh_pe_for_each_dev(pe, tmp) {
497  pdev = eeh_dev_to_pci_dev(tmp);
498  if (pdev)
500  }
501 
502  return NULL;
503 }
504 
513 void eeh_pe_state_mark(struct eeh_pe *pe, int state)
514 {
515  eeh_lock();
516  eeh_pe_traverse(pe, __eeh_pe_state_mark, &state);
517  eeh_unlock();
518 }
519 
529 static void *__eeh_pe_state_clear(void *data, void *flag)
530 {
531  struct eeh_pe *pe = (struct eeh_pe *)data;
532  int state = *((int *)flag);
533 
534  pe->state &= ~state;
535  pe->check_count = 0;
536 
537  return NULL;
538 }
539 
549 void eeh_pe_state_clear(struct eeh_pe *pe, int state)
550 {
551  eeh_lock();
552  eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
553  eeh_unlock();
554 }
555 
565 static void *eeh_restore_one_device_bars(void *data, void *flag)
566 {
567  int i;
568  u32 cmd;
569  struct eeh_dev *edev = (struct eeh_dev *)data;
570  struct device_node *dn = eeh_dev_to_of_node(edev);
571 
572  for (i = 4; i < 10; i++)
573  eeh_ops->write_config(dn, i*4, 4, edev->config_space[i]);
574  /* 12 == Expansion ROM Address */
575  eeh_ops->write_config(dn, 12*4, 4, edev->config_space[12]);
576 
577 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
578 #define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
579 
580  eeh_ops->write_config(dn, PCI_CACHE_LINE_SIZE, 1,
582  eeh_ops->write_config(dn, PCI_LATENCY_TIMER, 1,
584 
585  /* max latency, min grant, interrupt pin and line */
586  eeh_ops->write_config(dn, 15*4, 4, edev->config_space[15]);
587 
588  /*
589  * Restore PERR & SERR bits, some devices require it,
590  * don't touch the other command bits
591  */
592  eeh_ops->read_config(dn, PCI_COMMAND, 4, &cmd);
593  if (edev->config_space[1] & PCI_COMMAND_PARITY)
594  cmd |= PCI_COMMAND_PARITY;
595  else
596  cmd &= ~PCI_COMMAND_PARITY;
597  if (edev->config_space[1] & PCI_COMMAND_SERR)
598  cmd |= PCI_COMMAND_SERR;
599  else
600  cmd &= ~PCI_COMMAND_SERR;
601  eeh_ops->write_config(dn, PCI_COMMAND, 4, cmd);
602 
603  return NULL;
604 }
605 
613 void eeh_pe_restore_bars(struct eeh_pe *pe)
614 {
615  /*
616  * We needn't take the EEH lock since eeh_pe_dev_traverse()
617  * will take that.
618  */
619  eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
620 }
621 
632 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
633 {
634  struct pci_bus *bus = NULL;
635  struct eeh_dev *edev;
636  struct pci_dev *pdev;
637 
638  eeh_lock();
639 
640  if (pe->type & EEH_PE_PHB) {
641  bus = pe->phb->bus;
642  } else if (pe->type & EEH_PE_BUS) {
643  edev = list_first_entry(&pe->edevs, struct eeh_dev, list);
644  pdev = eeh_dev_to_pci_dev(edev);
645  if (pdev)
646  bus = pdev->bus;
647  }
648 
649  eeh_unlock();
650 
651  return bus;
652 }