Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ehci-q.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2001-2004 by David Brownell
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the
6  * Free Software Foundation; either version 2 of the License, or (at your
7  * option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
11  * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12  * for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software Foundation,
16  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  */
18 
19 /* this file is part of ehci-hcd.c */
20 
21 /*-------------------------------------------------------------------------*/
22 
23 /*
24  * EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
25  *
26  * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
27  * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
28  * buffers needed for the larger number). We use one QH per endpoint, queue
29  * multiple urbs (all three types) per endpoint. URBs may need several qtds.
30  *
31  * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
32  * interrupts) needs careful scheduling. Performance improvements can be
33  * an ongoing challenge. That's in "ehci-sched.c".
34  *
35  * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
36  * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
37  * (b) special fields in qh entries or (c) split iso entries. TTs will
38  * buffer low/full speed data so the host collects it at high speed.
39  */
40 
41 /*-------------------------------------------------------------------------*/
42 
43 /* fill a qtd, returning how much of the buffer we were able to queue up */
44 
45 static int
46 qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
47  size_t len, int token, int maxpacket)
48 {
49  int i, count;
50  u64 addr = buf;
51 
52  /* one buffer entry per 4K ... first might be short or unaligned */
53  qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
54  qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
55  count = 0x1000 - (buf & 0x0fff); /* rest of that page */
56  if (likely (len < count)) /* ... iff needed */
57  count = len;
58  else {
59  buf += 0x1000;
60  buf &= ~0x0fff;
61 
62  /* per-qtd limit: from 16K to 20K (best alignment) */
63  for (i = 1; count < len && i < 5; i++) {
64  addr = buf;
65  qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
66  qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
67  (u32)(addr >> 32));
68  buf += 0x1000;
69  if ((count + 0x1000) < len)
70  count += 0x1000;
71  else
72  count = len;
73  }
74 
75  /* short packets may only terminate transfers */
76  if (count != len)
77  count -= (count % maxpacket);
78  }
79  qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
80  qtd->length = count;
81 
82  return count;
83 }
84 
85 /*-------------------------------------------------------------------------*/
86 
87 static inline void
88 qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
89 {
90  struct ehci_qh_hw *hw = qh->hw;
91 
92  /* writes to an active overlay are unsafe */
94 
95  hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
96  hw->hw_alt_next = EHCI_LIST_END(ehci);
97 
98  /* Except for control endpoints, we make hardware maintain data
99  * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
100  * and set the pseudo-toggle in udev. Only usb_clear_halt() will
101  * ever clear it.
102  */
103  if (!(hw->hw_info1 & cpu_to_hc32(ehci, QH_TOGGLE_CTL))) {
104  unsigned is_out, epnum;
105 
106  is_out = qh->is_out;
107  epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f;
108  if (unlikely (!usb_gettoggle (qh->dev, epnum, is_out))) {
109  hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
110  usb_settoggle (qh->dev, epnum, is_out, 1);
111  }
112  }
113 
115 }
116 
117 /* if it weren't for a common silicon quirk (writing the dummy into the qh
118  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
119  * recovery (including urb dequeue) would need software changes to a QH...
120  */
121 static void
122 qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
123 {
124  struct ehci_qtd *qtd;
125 
126  if (list_empty (&qh->qtd_list))
127  qtd = qh->dummy;
128  else {
129  qtd = list_entry (qh->qtd_list.next,
130  struct ehci_qtd, qtd_list);
131  /*
132  * first qtd may already be partially processed.
133  * If we come here during unlink, the QH overlay region
134  * might have reference to the just unlinked qtd. The
135  * qtd is updated in qh_completions(). Update the QH
136  * overlay here.
137  */
138  if (cpu_to_hc32(ehci, qtd->qtd_dma) == qh->hw->hw_current) {
139  qh->hw->hw_qtd_next = qtd->hw_next;
140  qtd = NULL;
141  }
142  }
143 
144  if (qtd)
145  qh_update (ehci, qh, qtd);
146 }
147 
148 /*-------------------------------------------------------------------------*/
149 
150 static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
151 
152 static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd,
153  struct usb_host_endpoint *ep)
154 {
155  struct ehci_hcd *ehci = hcd_to_ehci(hcd);
156  struct ehci_qh *qh = ep->hcpriv;
157  unsigned long flags;
158 
159  spin_lock_irqsave(&ehci->lock, flags);
160  qh->clearing_tt = 0;
161  if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
162  && ehci->rh_state == EHCI_RH_RUNNING)
163  qh_link_async(ehci, qh);
164  spin_unlock_irqrestore(&ehci->lock, flags);
165 }
166 
167 static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh,
168  struct urb *urb, u32 token)
169 {
170 
171  /* If an async split transaction gets an error or is unlinked,
172  * the TT buffer may be left in an indeterminate state. We
173  * have to clear the TT buffer.
174  *
175  * Note: this routine is never called for Isochronous transfers.
176  */
177  if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
178 #ifdef DEBUG
179  struct usb_device *tt = urb->dev->tt->hub;
180  dev_dbg(&tt->dev,
181  "clear tt buffer port %d, a%d ep%d t%08x\n",
182  urb->dev->ttport, urb->dev->devnum,
183  usb_pipeendpoint(urb->pipe), token);
184 #endif /* DEBUG */
185  if (!ehci_is_TDI(ehci)
186  || urb->dev->tt->hub !=
187  ehci_to_hcd(ehci)->self.root_hub) {
188  if (usb_hub_clear_tt_buffer(urb) == 0)
189  qh->clearing_tt = 1;
190  } else {
191 
192  /* REVISIT ARC-derived cores don't clear the root
193  * hub TT buffer in this way...
194  */
195  }
196  }
197 }
198 
199 static int qtd_copy_status (
200  struct ehci_hcd *ehci,
201  struct urb *urb,
202  size_t length,
203  u32 token
204 )
205 {
206  int status = -EINPROGRESS;
207 
208  /* count IN/OUT bytes, not SETUP (even short packets) */
209  if (likely (QTD_PID (token) != 2))
210  urb->actual_length += length - QTD_LENGTH (token);
211 
212  /* don't modify error codes */
213  if (unlikely(urb->unlinked))
214  return status;
215 
216  /* force cleanup after short read; not always an error */
217  if (unlikely (IS_SHORT_READ (token)))
218  status = -EREMOTEIO;
219 
220  /* serious "can't proceed" faults reported by the hardware */
221  if (token & QTD_STS_HALT) {
222  if (token & QTD_STS_BABBLE) {
223  /* FIXME "must" disable babbling device's port too */
224  status = -EOVERFLOW;
225  /* CERR nonzero + halt --> stall */
226  } else if (QTD_CERR(token)) {
227  status = -EPIPE;
228 
229  /* In theory, more than one of the following bits can be set
230  * since they are sticky and the transaction is retried.
231  * Which to test first is rather arbitrary.
232  */
233  } else if (token & QTD_STS_MMF) {
234  /* fs/ls interrupt xfer missed the complete-split */
235  status = -EPROTO;
236  } else if (token & QTD_STS_DBE) {
237  status = (QTD_PID (token) == 1) /* IN ? */
238  ? -ENOSR /* hc couldn't read data */
239  : -ECOMM; /* hc couldn't write data */
240  } else if (token & QTD_STS_XACT) {
241  /* timeout, bad CRC, wrong PID, etc */
242  ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n",
243  urb->dev->devpath,
244  usb_pipeendpoint(urb->pipe),
245  usb_pipein(urb->pipe) ? "in" : "out");
246  status = -EPROTO;
247  } else { /* unknown */
248  status = -EPROTO;
249  }
250 
251  ehci_vdbg (ehci,
252  "dev%d ep%d%s qtd token %08x --> status %d\n",
253  usb_pipedevice (urb->pipe),
254  usb_pipeendpoint (urb->pipe),
255  usb_pipein (urb->pipe) ? "in" : "out",
256  token, status);
257  }
258 
259  return status;
260 }
261 
262 static void
263 ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
264 __releases(ehci->lock)
265 __acquires(ehci->lock)
266 {
267  if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
268  /* ... update hc-wide periodic stats */
269  ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
270  }
271 
272  if (unlikely(urb->unlinked)) {
273  COUNT(ehci->stats.unlink);
274  } else {
275  /* report non-error and short read status as zero */
276  if (status == -EINPROGRESS || status == -EREMOTEIO)
277  status = 0;
278  COUNT(ehci->stats.complete);
279  }
280 
281 #ifdef EHCI_URB_TRACE
282  ehci_dbg (ehci,
283  "%s %s urb %p ep%d%s status %d len %d/%d\n",
284  __func__, urb->dev->devpath, urb,
285  usb_pipeendpoint (urb->pipe),
286  usb_pipein (urb->pipe) ? "in" : "out",
287  status,
288  urb->actual_length, urb->transfer_buffer_length);
289 #endif
290 
291  /* complete() can reenter this HCD */
292  usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
293  spin_unlock (&ehci->lock);
294  usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
295  spin_lock (&ehci->lock);
296 }
297 
298 static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
299 
300 /*
301  * Process and free completed qtds for a qh, returning URBs to drivers.
302  * Chases up to qh->hw_current. Returns number of completions called,
303  * indicating how much "real" work we did.
304  */
305 static unsigned
306 qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
307 {
308  struct ehci_qtd *last, *end = qh->dummy;
309  struct list_head *entry, *tmp;
310  int last_status;
311  int stopped;
312  unsigned count = 0;
313  u8 state;
314  struct ehci_qh_hw *hw = qh->hw;
315 
316  if (unlikely (list_empty (&qh->qtd_list)))
317  return count;
318 
319  /* completions (or tasks on other cpus) must never clobber HALT
320  * till we've gone through and cleaned everything up, even when
321  * they add urbs to this qh's queue or mark them for unlinking.
322  *
323  * NOTE: unlinking expects to be done in queue order.
324  *
325  * It's a bug for qh->qh_state to be anything other than
326  * QH_STATE_IDLE, unless our caller is scan_async() or
327  * scan_intr().
328  */
329  state = qh->qh_state;
331  stopped = (state == QH_STATE_IDLE);
332 
333  rescan:
334  last = NULL;
335  last_status = -EINPROGRESS;
336  qh->needs_rescan = 0;
337 
338  /* remove de-activated QTDs from front of queue.
339  * after faults (including short reads), cleanup this urb
340  * then let the queue advance.
341  * if queue is stopped, handles unlinks.
342  */
343  list_for_each_safe (entry, tmp, &qh->qtd_list) {
344  struct ehci_qtd *qtd;
345  struct urb *urb;
346  u32 token = 0;
347 
348  qtd = list_entry (entry, struct ehci_qtd, qtd_list);
349  urb = qtd->urb;
350 
351  /* clean up any state from previous QTD ...*/
352  if (last) {
353  if (likely (last->urb != urb)) {
354  ehci_urb_done(ehci, last->urb, last_status);
355  count++;
356  last_status = -EINPROGRESS;
357  }
358  ehci_qtd_free (ehci, last);
359  last = NULL;
360  }
361 
362  /* ignore urbs submitted during completions we reported */
363  if (qtd == end)
364  break;
365 
366  /* hardware copies qtd out of qh overlay */
367  rmb ();
368  token = hc32_to_cpu(ehci, qtd->hw_token);
369 
370  /* always clean up qtds the hc de-activated */
371  retry_xacterr:
372  if ((token & QTD_STS_ACTIVE) == 0) {
373 
374  /* Report Data Buffer Error: non-fatal but useful */
375  if (token & QTD_STS_DBE)
376  ehci_dbg(ehci,
377  "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
378  urb,
379  usb_endpoint_num(&urb->ep->desc),
380  usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out",
381  urb->transfer_buffer_length,
382  qtd,
383  qh);
384 
385  /* on STALL, error, and short reads this urb must
386  * complete and all its qtds must be recycled.
387  */
388  if ((token & QTD_STS_HALT) != 0) {
389 
390  /* retry transaction errors until we
391  * reach the software xacterr limit
392  */
393  if ((token & QTD_STS_XACT) &&
394  QTD_CERR(token) == 0 &&
395  ++qh->xacterrs < QH_XACTERR_MAX &&
396  !urb->unlinked) {
397  ehci_dbg(ehci,
398  "detected XactErr len %zu/%zu retry %d\n",
399  qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
400 
401  /* reset the token in the qtd and the
402  * qh overlay (which still contains
403  * the qtd) so that we pick up from
404  * where we left off
405  */
406  token &= ~QTD_STS_HALT;
407  token |= QTD_STS_ACTIVE |
408  (EHCI_TUNE_CERR << 10);
409  qtd->hw_token = cpu_to_hc32(ehci,
410  token);
411  wmb();
412  hw->hw_token = cpu_to_hc32(ehci,
413  token);
414  goto retry_xacterr;
415  }
416  stopped = 1;
417 
418  /* magic dummy for some short reads; qh won't advance.
419  * that silicon quirk can kick in with this dummy too.
420  *
421  * other short reads won't stop the queue, including
422  * control transfers (status stage handles that) or
423  * most other single-qtd reads ... the queue stops if
424  * URB_SHORT_NOT_OK was set so the driver submitting
425  * the urbs could clean it up.
426  */
427  } else if (IS_SHORT_READ (token)
428  && !(qtd->hw_alt_next
429  & EHCI_LIST_END(ehci))) {
430  stopped = 1;
431  }
432 
433  /* stop scanning when we reach qtds the hc is using */
434  } else if (likely (!stopped
435  && ehci->rh_state >= EHCI_RH_RUNNING)) {
436  break;
437 
438  /* scan the whole queue for unlinks whenever it stops */
439  } else {
440  stopped = 1;
441 
442  /* cancel everything if we halt, suspend, etc */
443  if (ehci->rh_state < EHCI_RH_RUNNING)
444  last_status = -ESHUTDOWN;
445 
446  /* this qtd is active; skip it unless a previous qtd
447  * for its urb faulted, or its urb was canceled.
448  */
449  else if (last_status == -EINPROGRESS && !urb->unlinked)
450  continue;
451 
452  /* qh unlinked; token in overlay may be most current */
453  if (state == QH_STATE_IDLE
454  && cpu_to_hc32(ehci, qtd->qtd_dma)
455  == hw->hw_current) {
456  token = hc32_to_cpu(ehci, hw->hw_token);
457 
458  /* An unlink may leave an incomplete
459  * async transaction in the TT buffer.
460  * We have to clear it.
461  */
462  ehci_clear_tt_buffer(ehci, qh, urb, token);
463  }
464  }
465 
466  /* unless we already know the urb's status, collect qtd status
467  * and update count of bytes transferred. in common short read
468  * cases with only one data qtd (including control transfers),
469  * queue processing won't halt. but with two or more qtds (for
470  * example, with a 32 KB transfer), when the first qtd gets a
471  * short read the second must be removed by hand.
472  */
473  if (last_status == -EINPROGRESS) {
474  last_status = qtd_copy_status(ehci, urb,
475  qtd->length, token);
476  if (last_status == -EREMOTEIO
477  && (qtd->hw_alt_next
478  & EHCI_LIST_END(ehci)))
479  last_status = -EINPROGRESS;
480 
481  /* As part of low/full-speed endpoint-halt processing
482  * we must clear the TT buffer (11.17.5).
483  */
484  if (unlikely(last_status != -EINPROGRESS &&
485  last_status != -EREMOTEIO)) {
486  /* The TT's in some hubs malfunction when they
487  * receive this request following a STALL (they
488  * stop sending isochronous packets). Since a
489  * STALL can't leave the TT buffer in a busy
490  * state (if you believe Figures 11-48 - 11-51
491  * in the USB 2.0 spec), we won't clear the TT
492  * buffer in this case. Strictly speaking this
493  * is a violation of the spec.
494  */
495  if (last_status != -EPIPE)
496  ehci_clear_tt_buffer(ehci, qh, urb,
497  token);
498  }
499  }
500 
501  /* if we're removing something not at the queue head,
502  * patch the hardware queue pointer.
503  */
504  if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
505  last = list_entry (qtd->qtd_list.prev,
506  struct ehci_qtd, qtd_list);
507  last->hw_next = qtd->hw_next;
508  }
509 
510  /* remove qtd; it's recycled after possible urb completion */
511  list_del (&qtd->qtd_list);
512  last = qtd;
513 
514  /* reinit the xacterr counter for the next qtd */
515  qh->xacterrs = 0;
516  }
517 
518  /* last urb's completion might still need calling */
519  if (likely (last != NULL)) {
520  ehci_urb_done(ehci, last->urb, last_status);
521  count++;
522  ehci_qtd_free (ehci, last);
523  }
524 
525  /* Do we need to rescan for URBs dequeued during a giveback? */
526  if (unlikely(qh->needs_rescan)) {
527  /* If the QH is already unlinked, do the rescan now. */
528  if (state == QH_STATE_IDLE)
529  goto rescan;
530 
531  /* Otherwise we have to wait until the QH is fully unlinked.
532  * Our caller will start an unlink if qh->needs_rescan is
533  * set. But if an unlink has already started, nothing needs
534  * to be done.
535  */
536  if (state != QH_STATE_LINKED)
537  qh->needs_rescan = 0;
538  }
539 
540  /* restore original state; caller must unlink or relink */
541  qh->qh_state = state;
542 
543  /* be sure the hardware's done with the qh before refreshing
544  * it after fault cleanup, or recovering from silicon wrongly
545  * overlaying the dummy qtd (which reduces DMA chatter).
546  */
547  if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci)) {
548  switch (state) {
549  case QH_STATE_IDLE:
550  qh_refresh(ehci, qh);
551  break;
552  case QH_STATE_LINKED:
553  /* We won't refresh a QH that's linked (after the HC
554  * stopped the queue). That avoids a race:
555  * - HC reads first part of QH;
556  * - CPU updates that first part and the token;
557  * - HC reads rest of that QH, including token
558  * Result: HC gets an inconsistent image, and then
559  * DMAs to/from the wrong memory (corrupting it).
560  *
561  * That should be rare for interrupt transfers,
562  * except maybe high bandwidth ...
563  */
564 
565  /* Tell the caller to start an unlink */
566  qh->needs_rescan = 1;
567  break;
568  /* otherwise, unlink already started */
569  }
570  }
571 
572  return count;
573 }
574 
575 /*-------------------------------------------------------------------------*/
576 
577 // high bandwidth multiplier, as encoded in highspeed endpoint descriptors
578 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
579 // ... and packet size, for any kind of endpoint descriptor
580 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
581 
582 /*
583  * reverse of qh_urb_transaction: free a list of TDs.
584  * used for cleanup after errors, before HC sees an URB's TDs.
585  */
586 static void qtd_list_free (
587  struct ehci_hcd *ehci,
588  struct urb *urb,
589  struct list_head *qtd_list
590 ) {
591  struct list_head *entry, *temp;
592 
593  list_for_each_safe (entry, temp, qtd_list) {
594  struct ehci_qtd *qtd;
595 
596  qtd = list_entry (entry, struct ehci_qtd, qtd_list);
597  list_del (&qtd->qtd_list);
598  ehci_qtd_free (ehci, qtd);
599  }
600 }
601 
602 /*
603  * create a list of filled qtds for this URB; won't link into qh.
604  */
605 static struct list_head *
606 qh_urb_transaction (
607  struct ehci_hcd *ehci,
608  struct urb *urb,
609  struct list_head *head,
610  gfp_t flags
611 ) {
612  struct ehci_qtd *qtd, *qtd_prev;
613  dma_addr_t buf;
614  int len, this_sg_len, maxpacket;
615  int is_input;
616  u32 token;
617  int i;
618  struct scatterlist *sg;
619 
620  /*
621  * URBs map to sequences of QTDs: one logical transaction
622  */
623  qtd = ehci_qtd_alloc (ehci, flags);
624  if (unlikely (!qtd))
625  return NULL;
626  list_add_tail (&qtd->qtd_list, head);
627  qtd->urb = urb;
628 
629  token = QTD_STS_ACTIVE;
630  token |= (EHCI_TUNE_CERR << 10);
631  /* for split transactions, SplitXState initialized to zero */
632 
633  len = urb->transfer_buffer_length;
634  is_input = usb_pipein (urb->pipe);
635  if (usb_pipecontrol (urb->pipe)) {
636  /* SETUP pid */
637  qtd_fill(ehci, qtd, urb->setup_dma,
638  sizeof (struct usb_ctrlrequest),
639  token | (2 /* "setup" */ << 8), 8);
640 
641  /* ... and always at least one more pid */
642  token ^= QTD_TOGGLE;
643  qtd_prev = qtd;
644  qtd = ehci_qtd_alloc (ehci, flags);
645  if (unlikely (!qtd))
646  goto cleanup;
647  qtd->urb = urb;
648  qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
649  list_add_tail (&qtd->qtd_list, head);
650 
651  /* for zero length DATA stages, STATUS is always IN */
652  if (len == 0)
653  token |= (1 /* "in" */ << 8);
654  }
655 
656  /*
657  * data transfer stage: buffer setup
658  */
659  i = urb->num_mapped_sgs;
660  if (len > 0 && i > 0) {
661  sg = urb->sg;
662  buf = sg_dma_address(sg);
663 
664  /* urb->transfer_buffer_length may be smaller than the
665  * size of the scatterlist (or vice versa)
666  */
667  this_sg_len = min_t(int, sg_dma_len(sg), len);
668  } else {
669  sg = NULL;
670  buf = urb->transfer_dma;
671  this_sg_len = len;
672  }
673 
674  if (is_input)
675  token |= (1 /* "in" */ << 8);
676  /* else it's already initted to "out" pid (0 << 8) */
677 
678  maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
679 
680  /*
681  * buffer gets wrapped in one or more qtds;
682  * last one may be "short" (including zero len)
683  * and may serve as a control status ack
684  */
685  for (;;) {
686  int this_qtd_len;
687 
688  this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token,
689  maxpacket);
690  this_sg_len -= this_qtd_len;
691  len -= this_qtd_len;
692  buf += this_qtd_len;
693 
694  /*
695  * short reads advance to a "magic" dummy instead of the next
696  * qtd ... that forces the queue to stop, for manual cleanup.
697  * (this will usually be overridden later.)
698  */
699  if (is_input)
700  qtd->hw_alt_next = ehci->async->hw->hw_alt_next;
701 
702  /* qh makes control packets use qtd toggle; maybe switch it */
703  if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
704  token ^= QTD_TOGGLE;
705 
706  if (likely(this_sg_len <= 0)) {
707  if (--i <= 0 || len <= 0)
708  break;
709  sg = sg_next(sg);
710  buf = sg_dma_address(sg);
711  this_sg_len = min_t(int, sg_dma_len(sg), len);
712  }
713 
714  qtd_prev = qtd;
715  qtd = ehci_qtd_alloc (ehci, flags);
716  if (unlikely (!qtd))
717  goto cleanup;
718  qtd->urb = urb;
719  qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
720  list_add_tail (&qtd->qtd_list, head);
721  }
722 
723  /*
724  * unless the caller requires manual cleanup after short reads,
725  * have the alt_next mechanism keep the queue running after the
726  * last data qtd (the only one, for control and most other cases).
727  */
728  if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
729  || usb_pipecontrol (urb->pipe)))
730  qtd->hw_alt_next = EHCI_LIST_END(ehci);
731 
732  /*
733  * control requests may need a terminating data "status" ack;
734  * other OUT ones may need a terminating short packet
735  * (zero length).
736  */
737  if (likely (urb->transfer_buffer_length != 0)) {
738  int one_more = 0;
739 
740  if (usb_pipecontrol (urb->pipe)) {
741  one_more = 1;
742  token ^= 0x0100; /* "in" <--> "out" */
743  token |= QTD_TOGGLE; /* force DATA1 */
744  } else if (usb_pipeout(urb->pipe)
745  && (urb->transfer_flags & URB_ZERO_PACKET)
746  && !(urb->transfer_buffer_length % maxpacket)) {
747  one_more = 1;
748  }
749  if (one_more) {
750  qtd_prev = qtd;
751  qtd = ehci_qtd_alloc (ehci, flags);
752  if (unlikely (!qtd))
753  goto cleanup;
754  qtd->urb = urb;
755  qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
756  list_add_tail (&qtd->qtd_list, head);
757 
758  /* never any data in such packets */
759  qtd_fill(ehci, qtd, 0, 0, token, 0);
760  }
761  }
762 
763  /* by default, enable interrupt on urb completion */
764  if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
765  qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
766  return head;
767 
768 cleanup:
769  qtd_list_free (ehci, urb, head);
770  return NULL;
771 }
772 
773 /*-------------------------------------------------------------------------*/
774 
775 // Would be best to create all qh's from config descriptors,
776 // when each interface/altsetting is established. Unlink
777 // any previous qh and cancel its urbs first; endpoints are
778 // implicitly reset then (data toggle too).
779 // That'd mean updating how usbcore talks to HCDs. (2.7?)
780 
781 
782 /*
783  * Each QH holds a qtd list; a QH is used for everything except iso.
784  *
785  * For interrupt urbs, the scheduler must set the microframe scheduling
786  * mask(s) each time the QH gets scheduled. For highspeed, that's
787  * just one microframe in the s-mask. For split interrupt transactions
788  * there are additional complications: c-mask, maybe FSTNs.
789  */
790 static struct ehci_qh *
791 qh_make (
792  struct ehci_hcd *ehci,
793  struct urb *urb,
794  gfp_t flags
795 ) {
796  struct ehci_qh *qh = ehci_qh_alloc (ehci, flags);
797  u32 info1 = 0, info2 = 0;
798  int is_input, type;
799  int maxp = 0;
800  struct usb_tt *tt = urb->dev->tt;
801  struct ehci_qh_hw *hw;
802 
803  if (!qh)
804  return qh;
805 
806  /*
807  * init endpoint/device data for this QH
808  */
809  info1 |= usb_pipeendpoint (urb->pipe) << 8;
810  info1 |= usb_pipedevice (urb->pipe) << 0;
811 
812  is_input = usb_pipein (urb->pipe);
813  type = usb_pipetype (urb->pipe);
814  maxp = usb_maxpacket (urb->dev, urb->pipe, !is_input);
815 
816  /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
817  * acts like up to 3KB, but is built from smaller packets.
818  */
819  if (max_packet(maxp) > 1024) {
820  ehci_dbg(ehci, "bogus qh maxpacket %d\n", max_packet(maxp));
821  goto done;
822  }
823 
824  /* Compute interrupt scheduling parameters just once, and save.
825  * - allowing for high bandwidth, how many nsec/uframe are used?
826  * - split transactions need a second CSPLIT uframe; same question
827  * - splits also need a schedule gap (for full/low speed I/O)
828  * - qh has a polling interval
829  *
830  * For control/bulk requests, the HC or TT handles these.
831  */
832  if (type == PIPE_INTERRUPT) {
833  qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
834  is_input, 0,
835  hb_mult(maxp) * max_packet(maxp)));
836  qh->start = NO_FRAME;
837 
838  if (urb->dev->speed == USB_SPEED_HIGH) {
839  qh->c_usecs = 0;
840  qh->gap_uf = 0;
841 
842  qh->period = urb->interval >> 3;
843  if (qh->period == 0 && urb->interval != 1) {
844  /* NOTE interval 2 or 4 uframes could work.
845  * But interval 1 scheduling is simpler, and
846  * includes high bandwidth.
847  */
848  urb->interval = 1;
849  } else if (qh->period > ehci->periodic_size) {
850  qh->period = ehci->periodic_size;
851  urb->interval = qh->period << 3;
852  }
853  } else {
854  int think_time;
855 
856  /* gap is f(FS/LS transfer times) */
857  qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
858  is_input, 0, maxp) / (125 * 1000);
859 
860  /* FIXME this just approximates SPLIT/CSPLIT times */
861  if (is_input) { // SPLIT, gap, CSPLIT+DATA
862  qh->c_usecs = qh->usecs + HS_USECS (0);
863  qh->usecs = HS_USECS (1);
864  } else { // SPLIT+DATA, gap, CSPLIT
865  qh->usecs += HS_USECS (1);
866  qh->c_usecs = HS_USECS (0);
867  }
868 
869  think_time = tt ? tt->think_time : 0;
870  qh->tt_usecs = NS_TO_US (think_time +
871  usb_calc_bus_time (urb->dev->speed,
872  is_input, 0, max_packet (maxp)));
873  qh->period = urb->interval;
874  if (qh->period > ehci->periodic_size) {
875  qh->period = ehci->periodic_size;
876  urb->interval = qh->period;
877  }
878  }
879  }
880 
881  /* support for tt scheduling, and access to toggles */
882  qh->dev = urb->dev;
883 
884  /* using TT? */
885  switch (urb->dev->speed) {
886  case USB_SPEED_LOW:
887  info1 |= QH_LOW_SPEED;
888  /* FALL THROUGH */
889 
890  case USB_SPEED_FULL:
891  /* EPS 0 means "full" */
892  if (type != PIPE_INTERRUPT)
893  info1 |= (EHCI_TUNE_RL_TT << 28);
894  if (type == PIPE_CONTROL) {
895  info1 |= QH_CONTROL_EP; /* for TT */
896  info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
897  }
898  info1 |= maxp << 16;
899 
900  info2 |= (EHCI_TUNE_MULT_TT << 30);
901 
902  /* Some Freescale processors have an erratum in which the
903  * port number in the queue head was 0..N-1 instead of 1..N.
904  */
905  if (ehci_has_fsl_portno_bug(ehci))
906  info2 |= (urb->dev->ttport-1) << 23;
907  else
908  info2 |= urb->dev->ttport << 23;
909 
910  /* set the address of the TT; for TDI's integrated
911  * root hub tt, leave it zeroed.
912  */
913  if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
914  info2 |= tt->hub->devnum << 16;
915 
916  /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
917 
918  break;
919 
920  case USB_SPEED_HIGH: /* no TT involved */
921  info1 |= QH_HIGH_SPEED;
922  if (type == PIPE_CONTROL) {
923  info1 |= (EHCI_TUNE_RL_HS << 28);
924  info1 |= 64 << 16; /* usb2 fixed maxpacket */
925  info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
926  info2 |= (EHCI_TUNE_MULT_HS << 30);
927  } else if (type == PIPE_BULK) {
928  info1 |= (EHCI_TUNE_RL_HS << 28);
929  /* The USB spec says that high speed bulk endpoints
930  * always use 512 byte maxpacket. But some device
931  * vendors decided to ignore that, and MSFT is happy
932  * to help them do so. So now people expect to use
933  * such nonconformant devices with Linux too; sigh.
934  */
935  info1 |= max_packet(maxp) << 16;
936  info2 |= (EHCI_TUNE_MULT_HS << 30);
937  } else { /* PIPE_INTERRUPT */
938  info1 |= max_packet (maxp) << 16;
939  info2 |= hb_mult (maxp) << 30;
940  }
941  break;
942  default:
943  ehci_dbg(ehci, "bogus dev %p speed %d\n", urb->dev,
944  urb->dev->speed);
945 done:
946  qh_destroy(ehci, qh);
947  return NULL;
948  }
949 
950  /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
951 
952  /* init as live, toggle clear, advance to dummy */
953  qh->qh_state = QH_STATE_IDLE;
954  hw = qh->hw;
955  hw->hw_info1 = cpu_to_hc32(ehci, info1);
956  hw->hw_info2 = cpu_to_hc32(ehci, info2);
957  qh->is_out = !is_input;
958  usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
959  qh_refresh (ehci, qh);
960  return qh;
961 }
962 
963 /*-------------------------------------------------------------------------*/
964 
965 static void enable_async(struct ehci_hcd *ehci)
966 {
967  if (ehci->async_count++)
968  return;
969 
970  /* Stop waiting to turn off the async schedule */
972 
973  /* Don't start the schedule until ASS is 0 */
974  ehci_poll_ASS(ehci);
975  turn_on_io_watchdog(ehci);
976 }
977 
978 static void disable_async(struct ehci_hcd *ehci)
979 {
980  if (--ehci->async_count)
981  return;
982 
983  /* The async schedule and async_unlink list are supposed to be empty */
984  WARN_ON(ehci->async->qh_next.qh || ehci->async_unlink);
985 
986  /* Don't turn off the schedule until ASS is 1 */
987  ehci_poll_ASS(ehci);
988 }
989 
990 /* move qh (and its qtds) onto async queue; maybe enable queue. */
991 
992 static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
993 {
994  __hc32 dma = QH_NEXT(ehci, qh->qh_dma);
995  struct ehci_qh *head;
996 
997  /* Don't link a QH if there's a Clear-TT-Buffer pending */
998  if (unlikely(qh->clearing_tt))
999  return;
1000 
1001  WARN_ON(qh->qh_state != QH_STATE_IDLE);
1002 
1003  /* clear halt and/or toggle; and maybe recover from silicon quirk */
1004  qh_refresh(ehci, qh);
1005 
1006  /* splice right after start */
1007  head = ehci->async;
1008  qh->qh_next = head->qh_next;
1009  qh->hw->hw_next = head->hw->hw_next;
1010  wmb ();
1011 
1012  head->qh_next.qh = qh;
1013  head->hw->hw_next = dma;
1014 
1015  qh->xacterrs = 0;
1016  qh->qh_state = QH_STATE_LINKED;
1017  /* qtd completions reported later by interrupt */
1018 
1019  enable_async(ehci);
1020 }
1021 
1022 /*-------------------------------------------------------------------------*/
1023 
1024 /*
1025  * For control/bulk/interrupt, return QH with these TDs appended.
1026  * Allocates and initializes the QH if necessary.
1027  * Returns null if it can't allocate a QH it needs to.
1028  * If the QH has TDs (urbs) already, that's great.
1029  */
1030 static struct ehci_qh *qh_append_tds (
1031  struct ehci_hcd *ehci,
1032  struct urb *urb,
1033  struct list_head *qtd_list,
1034  int epnum,
1035  void **ptr
1036 )
1037 {
1038  struct ehci_qh *qh = NULL;
1039  __hc32 qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
1040 
1041  qh = (struct ehci_qh *) *ptr;
1042  if (unlikely (qh == NULL)) {
1043  /* can't sleep here, we have ehci->lock... */
1044  qh = qh_make (ehci, urb, GFP_ATOMIC);
1045  *ptr = qh;
1046  }
1047  if (likely (qh != NULL)) {
1048  struct ehci_qtd *qtd;
1049 
1050  if (unlikely (list_empty (qtd_list)))
1051  qtd = NULL;
1052  else
1053  qtd = list_entry (qtd_list->next, struct ehci_qtd,
1054  qtd_list);
1055 
1056  /* control qh may need patching ... */
1057  if (unlikely (epnum == 0)) {
1058 
1059  /* usb_reset_device() briefly reverts to address 0 */
1060  if (usb_pipedevice (urb->pipe) == 0)
1061  qh->hw->hw_info1 &= ~qh_addr_mask;
1062  }
1063 
1064  /* just one way to queue requests: swap with the dummy qtd.
1065  * only hc or qh_refresh() ever modify the overlay.
1066  */
1067  if (likely (qtd != NULL)) {
1068  struct ehci_qtd *dummy;
1069  dma_addr_t dma;
1070  __hc32 token;
1071 
1072  /* to avoid racing the HC, use the dummy td instead of
1073  * the first td of our list (becomes new dummy). both
1074  * tds stay deactivated until we're done, when the
1075  * HC is allowed to fetch the old dummy (4.10.2).
1076  */
1077  token = qtd->hw_token;
1078  qtd->hw_token = HALT_BIT(ehci);
1079 
1080  dummy = qh->dummy;
1081 
1082  dma = dummy->qtd_dma;
1083  *dummy = *qtd;
1084  dummy->qtd_dma = dma;
1085 
1086  list_del (&qtd->qtd_list);
1087  list_add (&dummy->qtd_list, qtd_list);
1088  list_splice_tail(qtd_list, &qh->qtd_list);
1089 
1090  ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
1091  qh->dummy = qtd;
1092 
1093  /* hc must see the new dummy at list end */
1094  dma = qtd->qtd_dma;
1095  qtd = list_entry (qh->qtd_list.prev,
1096  struct ehci_qtd, qtd_list);
1097  qtd->hw_next = QTD_NEXT(ehci, dma);
1098 
1099  /* let the hc process these next qtds */
1100  wmb ();
1101  dummy->hw_token = token;
1102 
1103  urb->hcpriv = qh;
1104  }
1105  }
1106  return qh;
1107 }
1108 
1109 /*-------------------------------------------------------------------------*/
1110 
1111 static int
1112 submit_async (
1113  struct ehci_hcd *ehci,
1114  struct urb *urb,
1115  struct list_head *qtd_list,
1116  gfp_t mem_flags
1117 ) {
1118  int epnum;
1119  unsigned long flags;
1120  struct ehci_qh *qh = NULL;
1121  int rc;
1122 
1123  epnum = urb->ep->desc.bEndpointAddress;
1124 
1125 #ifdef EHCI_URB_TRACE
1126  {
1127  struct ehci_qtd *qtd;
1128  qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1129  ehci_dbg(ehci,
1130  "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1131  __func__, urb->dev->devpath, urb,
1132  epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1133  urb->transfer_buffer_length,
1134  qtd, urb->ep->hcpriv);
1135  }
1136 #endif
1137 
1138  spin_lock_irqsave (&ehci->lock, flags);
1139  if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1140  rc = -ESHUTDOWN;
1141  goto done;
1142  }
1143  rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1144  if (unlikely(rc))
1145  goto done;
1146 
1147  qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
1148  if (unlikely(qh == NULL)) {
1149  usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1150  rc = -ENOMEM;
1151  goto done;
1152  }
1153 
1154  /* Control/bulk operations through TTs don't need scheduling,
1155  * the HC and TT handle it when the TT has a buffer ready.
1156  */
1157  if (likely (qh->qh_state == QH_STATE_IDLE))
1158  qh_link_async(ehci, qh);
1159  done:
1160  spin_unlock_irqrestore (&ehci->lock, flags);
1161  if (unlikely (qh == NULL))
1162  qtd_list_free (ehci, urb, qtd_list);
1163  return rc;
1164 }
1165 
1166 /*-------------------------------------------------------------------------*/
1167 
1168 static void single_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1169 {
1170  struct ehci_qh *prev;
1171 
1172  /* Add to the end of the list of QHs waiting for the next IAAD */
1173  qh->qh_state = QH_STATE_UNLINK;
1174  if (ehci->async_unlink)
1175  ehci->async_unlink_last->unlink_next = qh;
1176  else
1177  ehci->async_unlink = qh;
1178  ehci->async_unlink_last = qh;
1179 
1180  /* Unlink it from the schedule */
1181  prev = ehci->async;
1182  while (prev->qh_next.qh != qh)
1183  prev = prev->qh_next.qh;
1184 
1185  prev->hw->hw_next = qh->hw->hw_next;
1186  prev->qh_next = qh->qh_next;
1187  if (ehci->qh_scan_next == qh)
1188  ehci->qh_scan_next = qh->qh_next.qh;
1189 }
1190 
1191 static void start_iaa_cycle(struct ehci_hcd *ehci, bool nested)
1192 {
1193  /*
1194  * Do nothing if an IAA cycle is already running or
1195  * if one will be started shortly.
1196  */
1197  if (ehci->async_iaa || ehci->async_unlinking)
1198  return;
1199 
1200  /* Do all the waiting QHs at once */
1201  ehci->async_iaa = ehci->async_unlink;
1202  ehci->async_unlink = NULL;
1203 
1204  /* If the controller isn't running, we don't have to wait for it */
1205  if (unlikely(ehci->rh_state < EHCI_RH_RUNNING)) {
1206  if (!nested) /* Avoid recursion */
1207  end_unlink_async(ehci);
1208 
1209  /* Otherwise start a new IAA cycle */
1210  } else if (likely(ehci->rh_state == EHCI_RH_RUNNING)) {
1211  /* Make sure the unlinks are all visible to the hardware */
1212  wmb();
1213 
1214  ehci_writel(ehci, ehci->command | CMD_IAAD,
1215  &ehci->regs->command);
1216  ehci_readl(ehci, &ehci->regs->command);
1217  ehci_enable_event(ehci, EHCI_HRTIMER_IAA_WATCHDOG, true);
1218  }
1219 }
1220 
1221 /* the async qh for the qtds being unlinked are now gone from the HC */
1222 
1223 static void end_unlink_async(struct ehci_hcd *ehci)
1224 {
1225  struct ehci_qh *qh;
1226 
1227  if (ehci->has_synopsys_hc_bug)
1228  ehci_writel(ehci, (u32) ehci->async->qh_dma,
1229  &ehci->regs->async_next);
1230 
1231  /* Process the idle QHs */
1232  restart:
1233  ehci->async_unlinking = true;
1234  while (ehci->async_iaa) {
1235  qh = ehci->async_iaa;
1236  ehci->async_iaa = qh->unlink_next;
1237  qh->unlink_next = NULL;
1238 
1239  qh->qh_state = QH_STATE_IDLE;
1240  qh->qh_next.qh = NULL;
1241 
1242  qh_completions(ehci, qh);
1243  if (!list_empty(&qh->qtd_list) &&
1244  ehci->rh_state == EHCI_RH_RUNNING)
1245  qh_link_async(ehci, qh);
1246  disable_async(ehci);
1247  }
1248  ehci->async_unlinking = false;
1249 
1250  /* Start a new IAA cycle if any QHs are waiting for it */
1251  if (ehci->async_unlink) {
1252  start_iaa_cycle(ehci, true);
1253  if (unlikely(ehci->rh_state < EHCI_RH_RUNNING))
1254  goto restart;
1255  }
1256 }
1257 
1258 static void unlink_empty_async(struct ehci_hcd *ehci)
1259 {
1260  struct ehci_qh *qh, *next;
1261  bool stopped = (ehci->rh_state < EHCI_RH_RUNNING);
1262  bool check_unlinks_later = false;
1263 
1264  /* Unlink all the async QHs that have been empty for a timer cycle */
1265  next = ehci->async->qh_next.qh;
1266  while (next) {
1267  qh = next;
1268  next = qh->qh_next.qh;
1269 
1270  if (list_empty(&qh->qtd_list) &&
1271  qh->qh_state == QH_STATE_LINKED) {
1272  if (!stopped && qh->unlink_cycle ==
1273  ehci->async_unlink_cycle)
1274  check_unlinks_later = true;
1275  else
1276  single_unlink_async(ehci, qh);
1277  }
1278  }
1279 
1280  /* Start a new IAA cycle if any QHs are waiting for it */
1281  if (ehci->async_unlink)
1282  start_iaa_cycle(ehci, false);
1283 
1284  /* QHs that haven't been empty for long enough will be handled later */
1285  if (check_unlinks_later) {
1286  ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1287  ++ehci->async_unlink_cycle;
1288  }
1289 }
1290 
1291 /* makes sure the async qh will become idle */
1292 /* caller must own ehci->lock */
1293 
1294 static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1295 {
1296  /*
1297  * If the QH isn't linked then there's nothing we can do
1298  * unless we were called during a giveback, in which case
1299  * qh_completions() has to deal with it.
1300  */
1301  if (qh->qh_state != QH_STATE_LINKED) {
1302  if (qh->qh_state == QH_STATE_COMPLETING)
1303  qh->needs_rescan = 1;
1304  return;
1305  }
1306 
1307  single_unlink_async(ehci, qh);
1308  start_iaa_cycle(ehci, false);
1309 }
1310 
1311 /*-------------------------------------------------------------------------*/
1312 
1313 static void scan_async (struct ehci_hcd *ehci)
1314 {
1315  struct ehci_qh *qh;
1316  bool check_unlinks_later = false;
1317 
1318  ehci->qh_scan_next = ehci->async->qh_next.qh;
1319  while (ehci->qh_scan_next) {
1320  qh = ehci->qh_scan_next;
1321  ehci->qh_scan_next = qh->qh_next.qh;
1322  rescan:
1323  /* clean any finished work for this qh */
1324  if (!list_empty(&qh->qtd_list)) {
1325  int temp;
1326 
1327  /*
1328  * Unlinks could happen here; completion reporting
1329  * drops the lock. That's why ehci->qh_scan_next
1330  * always holds the next qh to scan; if the next qh
1331  * gets unlinked then ehci->qh_scan_next is adjusted
1332  * in single_unlink_async().
1333  */
1334  temp = qh_completions(ehci, qh);
1335  if (qh->needs_rescan) {
1336  start_unlink_async(ehci, qh);
1337  } else if (list_empty(&qh->qtd_list)
1338  && qh->qh_state == QH_STATE_LINKED) {
1339  qh->unlink_cycle = ehci->async_unlink_cycle;
1340  check_unlinks_later = true;
1341  } else if (temp != 0)
1342  goto rescan;
1343  }
1344  }
1345 
1346  /*
1347  * Unlink empty entries, reducing DMA usage as well
1348  * as HCD schedule-scanning costs. Delay for any qh
1349  * we just scanned, there's a not-unusual case that it
1350  * doesn't stay idle for long.
1351  */
1352  if (check_unlinks_later && ehci->rh_state == EHCI_RH_RUNNING &&
1353  !(ehci->enabled_hrtimer_events &
1355  ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1356  ++ehci->async_unlink_cycle;
1357  }
1358 }