Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
super.c
Go to the documentation of this file.
1 /*
2  * linux/fs/ext4/super.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card ([email protected])
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  * from
10  *
11  * linux/fs/minix/inode.c
12  *
13  * Copyright (C) 1991, 1992 Linus Torvalds
14  *
15  * Big-endian to little-endian byte-swapping/bitmaps by
16  * David S. Miller ([email protected]), 1995
17  */
18 
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43 
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46 
47 #include "ext4.h"
48 #include "ext4_extents.h"
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56 
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62 
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64  unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68  struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70  struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static const char *ext4_decode_error(struct super_block *sb, int errno,
73  char nbuf[16]);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static int ext4_freeze(struct super_block *sb);
78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
79  const char *dev_name, void *data);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86 
87 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
88 static struct file_system_type ext2_fs_type = {
89  .owner = THIS_MODULE,
90  .name = "ext2",
91  .mount = ext4_mount,
92  .kill_sb = kill_block_super,
93  .fs_flags = FS_REQUIRES_DEV,
94 };
95 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
96 #else
97 #define IS_EXT2_SB(sb) (0)
98 #endif
99 
100 
101 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
102 static struct file_system_type ext3_fs_type = {
103  .owner = THIS_MODULE,
104  .name = "ext3",
105  .mount = ext4_mount,
106  .kill_sb = kill_block_super,
107  .fs_flags = FS_REQUIRES_DEV,
108 };
109 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
110 #else
111 #define IS_EXT3_SB(sb) (0)
112 #endif
113 
114 static int ext4_verify_csum_type(struct super_block *sb,
115  struct ext4_super_block *es)
116 {
119  return 1;
120 
121  return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
122 }
123 
124 static __le32 ext4_superblock_csum(struct super_block *sb,
125  struct ext4_super_block *es)
126 {
127  struct ext4_sb_info *sbi = EXT4_SB(sb);
128  int offset = offsetof(struct ext4_super_block, s_checksum);
129  __u32 csum;
130 
131  csum = ext4_chksum(sbi, ~0, (char *)es, offset);
132 
133  return cpu_to_le32(csum);
134 }
135 
137  struct ext4_super_block *es)
138 {
141  return 1;
142 
143  return es->s_checksum == ext4_superblock_csum(sb, es);
144 }
145 
147 {
148  struct ext4_super_block *es = EXT4_SB(sb)->s_es;
149 
152  return;
153 
154  es->s_checksum = ext4_superblock_csum(sb, es);
155 }
156 
158 {
159  void *ret;
160 
161  ret = kmalloc(size, flags);
162  if (!ret)
163  ret = __vmalloc(size, flags, PAGE_KERNEL);
164  return ret;
165 }
166 
168 {
169  void *ret;
170 
171  ret = kzalloc(size, flags);
172  if (!ret)
173  ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
174  return ret;
175 }
176 
177 void ext4_kvfree(void *ptr)
178 {
179  if (is_vmalloc_addr(ptr))
180  vfree(ptr);
181  else
182  kfree(ptr);
183 
184 }
185 
187  struct ext4_group_desc *bg)
188 {
189  return le32_to_cpu(bg->bg_block_bitmap_lo) |
192 }
193 
195  struct ext4_group_desc *bg)
196 {
197  return le32_to_cpu(bg->bg_inode_bitmap_lo) |
200 }
201 
203  struct ext4_group_desc *bg)
204 {
205  return le32_to_cpu(bg->bg_inode_table_lo) |
207  (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
208 }
209 
211  struct ext4_group_desc *bg)
212 {
215  (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
216 }
217 
219  struct ext4_group_desc *bg)
220 {
223  (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
224 }
225 
227  struct ext4_group_desc *bg)
228 {
229  return le16_to_cpu(bg->bg_used_dirs_count_lo) |
231  (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
232 }
233 
235  struct ext4_group_desc *bg)
236 {
237  return le16_to_cpu(bg->bg_itable_unused_lo) |
239  (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
240 }
241 
244 {
245  bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
247  bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
248 }
249 
252 {
253  bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
255  bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
256 }
257 
260 {
261  bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
263  bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
264 }
265 
267  struct ext4_group_desc *bg, __u32 count)
268 {
271  bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
272 }
273 
275  struct ext4_group_desc *bg, __u32 count)
276 {
279  bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
280 }
281 
283  struct ext4_group_desc *bg, __u32 count)
284 {
287  bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
288 }
289 
291  struct ext4_group_desc *bg, __u32 count)
292 {
293  bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
295  bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
296 }
297 
298 
299 /* Just increment the non-pointer handle value */
300 static handle_t *ext4_get_nojournal(void)
301 {
302  handle_t *handle = current->journal_info;
303  unsigned long ref_cnt = (unsigned long)handle;
304 
306 
307  ref_cnt++;
308  handle = (handle_t *)ref_cnt;
309 
310  current->journal_info = handle;
311  return handle;
312 }
313 
314 
315 /* Decrement the non-pointer handle value */
316 static void ext4_put_nojournal(handle_t *handle)
317 {
318  unsigned long ref_cnt = (unsigned long)handle;
319 
320  BUG_ON(ref_cnt == 0);
321 
322  ref_cnt--;
323  handle = (handle_t *)ref_cnt;
324 
325  current->journal_info = handle;
326 }
327 
328 /*
329  * Wrappers for jbd2_journal_start/end.
330  */
331 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
332 {
333  journal_t *journal;
334 
335  trace_ext4_journal_start(sb, nblocks, _RET_IP_);
336  if (sb->s_flags & MS_RDONLY)
337  return ERR_PTR(-EROFS);
338 
339  WARN_ON(sb->s_writers.frozen == SB_FREEZE_COMPLETE);
340  journal = EXT4_SB(sb)->s_journal;
341  if (!journal)
342  return ext4_get_nojournal();
343  /*
344  * Special case here: if the journal has aborted behind our
345  * backs (eg. EIO in the commit thread), then we still need to
346  * take the FS itself readonly cleanly.
347  */
348  if (is_journal_aborted(journal)) {
349  ext4_abort(sb, "Detected aborted journal");
350  return ERR_PTR(-EROFS);
351  }
352  return jbd2_journal_start(journal, nblocks);
353 }
354 
355 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
356 {
357  struct super_block *sb;
358  int err;
359  int rc;
360 
361  if (!ext4_handle_valid(handle)) {
362  ext4_put_nojournal(handle);
363  return 0;
364  }
365  sb = handle->h_transaction->t_journal->j_private;
366  err = handle->h_err;
367  rc = jbd2_journal_stop(handle);
368 
369  if (!err)
370  err = rc;
371  if (err)
372  __ext4_std_error(sb, where, line, err);
373  return err;
374 }
375 
376 void ext4_journal_abort_handle(const char *caller, unsigned int line,
377  const char *err_fn, struct buffer_head *bh,
378  handle_t *handle, int err)
379 {
380  char nbuf[16];
381  const char *errstr = ext4_decode_error(NULL, err, nbuf);
382 
383  BUG_ON(!ext4_handle_valid(handle));
384 
385  if (bh)
386  BUFFER_TRACE(bh, "abort");
387 
388  if (!handle->h_err)
389  handle->h_err = err;
390 
391  if (is_handle_aborted(handle))
392  return;
393 
394  printk(KERN_ERR "EXT4-fs: %s:%d: aborting transaction: %s in %s\n",
395  caller, line, errstr, err_fn);
396 
397  jbd2_journal_abort_handle(handle);
398 }
399 
400 static void __save_error_info(struct super_block *sb, const char *func,
401  unsigned int line)
402 {
403  struct ext4_super_block *es = EXT4_SB(sb)->s_es;
404 
405  EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
408  strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
409  es->s_last_error_line = cpu_to_le32(line);
410  if (!es->s_first_error_time) {
412  strncpy(es->s_first_error_func, func,
413  sizeof(es->s_first_error_func));
414  es->s_first_error_line = cpu_to_le32(line);
417  }
418  /*
419  * Start the daily error reporting function if it hasn't been
420  * started already
421  */
422  if (!es->s_error_count)
423  mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
424  le32_add_cpu(&es->s_error_count, 1);
425 }
426 
427 static void save_error_info(struct super_block *sb, const char *func,
428  unsigned int line)
429 {
430  __save_error_info(sb, func, line);
431  ext4_commit_super(sb, 1);
432 }
433 
434 /*
435  * The del_gendisk() function uninitializes the disk-specific data
436  * structures, including the bdi structure, without telling anyone
437  * else. Once this happens, any attempt to call mark_buffer_dirty()
438  * (for example, by ext4_commit_super), will cause a kernel OOPS.
439  * This is a kludge to prevent these oops until we can put in a proper
440  * hook in del_gendisk() to inform the VFS and file system layers.
441  */
442 static int block_device_ejected(struct super_block *sb)
443 {
444  struct inode *bd_inode = sb->s_bdev->bd_inode;
445  struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
446 
447  return bdi->dev == NULL;
448 }
449 
450 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
451 {
452  struct super_block *sb = journal->j_private;
453  struct ext4_sb_info *sbi = EXT4_SB(sb);
454  int error = is_journal_aborted(journal);
455  struct ext4_journal_cb_entry *jce, *tmp;
456 
457  spin_lock(&sbi->s_md_lock);
458  list_for_each_entry_safe(jce, tmp, &txn->t_private_list, jce_list) {
459  list_del_init(&jce->jce_list);
460  spin_unlock(&sbi->s_md_lock);
461  jce->jce_func(sb, jce, error);
462  spin_lock(&sbi->s_md_lock);
463  }
464  spin_unlock(&sbi->s_md_lock);
465 }
466 
467 /* Deal with the reporting of failure conditions on a filesystem such as
468  * inconsistencies detected or read IO failures.
469  *
470  * On ext2, we can store the error state of the filesystem in the
471  * superblock. That is not possible on ext4, because we may have other
472  * write ordering constraints on the superblock which prevent us from
473  * writing it out straight away; and given that the journal is about to
474  * be aborted, we can't rely on the current, or future, transactions to
475  * write out the superblock safely.
476  *
477  * We'll just use the jbd2_journal_abort() error code to record an error in
478  * the journal instead. On recovery, the journal will complain about
479  * that error until we've noted it down and cleared it.
480  */
481 
482 static void ext4_handle_error(struct super_block *sb)
483 {
484  if (sb->s_flags & MS_RDONLY)
485  return;
486 
487  if (!test_opt(sb, ERRORS_CONT)) {
488  journal_t *journal = EXT4_SB(sb)->s_journal;
489 
490  EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
491  if (journal)
492  jbd2_journal_abort(journal, -EIO);
493  }
494  if (test_opt(sb, ERRORS_RO)) {
495  ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
496  sb->s_flags |= MS_RDONLY;
497  }
498  if (test_opt(sb, ERRORS_PANIC))
499  panic("EXT4-fs (device %s): panic forced after error\n",
500  sb->s_id);
501 }
502 
503 void __ext4_error(struct super_block *sb, const char *function,
504  unsigned int line, const char *fmt, ...)
505 {
506  struct va_format vaf;
507  va_list args;
508 
509  va_start(args, fmt);
510  vaf.fmt = fmt;
511  vaf.va = &args;
512  printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
513  sb->s_id, function, line, current->comm, &vaf);
514  va_end(args);
515  save_error_info(sb, function, line);
516 
517  ext4_handle_error(sb);
518 }
519 
520 void ext4_error_inode(struct inode *inode, const char *function,
521  unsigned int line, ext4_fsblk_t block,
522  const char *fmt, ...)
523 {
524  va_list args;
525  struct va_format vaf;
526  struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
527 
528  es->s_last_error_ino = cpu_to_le32(inode->i_ino);
529  es->s_last_error_block = cpu_to_le64(block);
530  save_error_info(inode->i_sb, function, line);
531  va_start(args, fmt);
532  vaf.fmt = fmt;
533  vaf.va = &args;
534  if (block)
535  printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
536  "inode #%lu: block %llu: comm %s: %pV\n",
537  inode->i_sb->s_id, function, line, inode->i_ino,
538  block, current->comm, &vaf);
539  else
540  printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
541  "inode #%lu: comm %s: %pV\n",
542  inode->i_sb->s_id, function, line, inode->i_ino,
543  current->comm, &vaf);
544  va_end(args);
545 
546  ext4_handle_error(inode->i_sb);
547 }
548 
549 void ext4_error_file(struct file *file, const char *function,
550  unsigned int line, ext4_fsblk_t block,
551  const char *fmt, ...)
552 {
553  va_list args;
554  struct va_format vaf;
555  struct ext4_super_block *es;
556  struct inode *inode = file->f_dentry->d_inode;
557  char pathname[80], *path;
558 
559  es = EXT4_SB(inode->i_sb)->s_es;
560  es->s_last_error_ino = cpu_to_le32(inode->i_ino);
561  save_error_info(inode->i_sb, function, line);
562  path = d_path(&(file->f_path), pathname, sizeof(pathname));
563  if (IS_ERR(path))
564  path = "(unknown)";
565  va_start(args, fmt);
566  vaf.fmt = fmt;
567  vaf.va = &args;
568  if (block)
570  "EXT4-fs error (device %s): %s:%d: inode #%lu: "
571  "block %llu: comm %s: path %s: %pV\n",
572  inode->i_sb->s_id, function, line, inode->i_ino,
573  block, current->comm, path, &vaf);
574  else
576  "EXT4-fs error (device %s): %s:%d: inode #%lu: "
577  "comm %s: path %s: %pV\n",
578  inode->i_sb->s_id, function, line, inode->i_ino,
579  current->comm, path, &vaf);
580  va_end(args);
581 
582  ext4_handle_error(inode->i_sb);
583 }
584 
585 static const char *ext4_decode_error(struct super_block *sb, int errno,
586  char nbuf[16])
587 {
588  char *errstr = NULL;
589 
590  switch (errno) {
591  case -EIO:
592  errstr = "IO failure";
593  break;
594  case -ENOMEM:
595  errstr = "Out of memory";
596  break;
597  case -EROFS:
598  if (!sb || (EXT4_SB(sb)->s_journal &&
599  EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
600  errstr = "Journal has aborted";
601  else
602  errstr = "Readonly filesystem";
603  break;
604  default:
605  /* If the caller passed in an extra buffer for unknown
606  * errors, textualise them now. Else we just return
607  * NULL. */
608  if (nbuf) {
609  /* Check for truncated error codes... */
610  if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
611  errstr = nbuf;
612  }
613  break;
614  }
615 
616  return errstr;
617 }
618 
619 /* __ext4_std_error decodes expected errors from journaling functions
620  * automatically and invokes the appropriate error response. */
621 
622 void __ext4_std_error(struct super_block *sb, const char *function,
623  unsigned int line, int errno)
624 {
625  char nbuf[16];
626  const char *errstr;
627 
628  /* Special case: if the error is EROFS, and we're not already
629  * inside a transaction, then there's really no point in logging
630  * an error. */
631  if (errno == -EROFS && journal_current_handle() == NULL &&
632  (sb->s_flags & MS_RDONLY))
633  return;
634 
635  errstr = ext4_decode_error(sb, errno, nbuf);
636  printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
637  sb->s_id, function, line, errstr);
638  save_error_info(sb, function, line);
639 
640  ext4_handle_error(sb);
641 }
642 
643 /*
644  * ext4_abort is a much stronger failure handler than ext4_error. The
645  * abort function may be used to deal with unrecoverable failures such
646  * as journal IO errors or ENOMEM at a critical moment in log management.
647  *
648  * We unconditionally force the filesystem into an ABORT|READONLY state,
649  * unless the error response on the fs has been set to panic in which
650  * case we take the easy way out and panic immediately.
651  */
652 
653 void __ext4_abort(struct super_block *sb, const char *function,
654  unsigned int line, const char *fmt, ...)
655 {
656  va_list args;
657 
658  save_error_info(sb, function, line);
659  va_start(args, fmt);
660  printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
661  function, line);
662  vprintk(fmt, args);
663  printk("\n");
664  va_end(args);
665 
666  if ((sb->s_flags & MS_RDONLY) == 0) {
667  ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
668  sb->s_flags |= MS_RDONLY;
669  EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
670  if (EXT4_SB(sb)->s_journal)
672  save_error_info(sb, function, line);
673  }
674  if (test_opt(sb, ERRORS_PANIC))
675  panic("EXT4-fs panic from previous error\n");
676 }
677 
678 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
679 {
680  struct va_format vaf;
681  va_list args;
682 
683  va_start(args, fmt);
684  vaf.fmt = fmt;
685  vaf.va = &args;
686  printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
687  va_end(args);
688 }
689 
690 void __ext4_warning(struct super_block *sb, const char *function,
691  unsigned int line, const char *fmt, ...)
692 {
693  struct va_format vaf;
694  va_list args;
695 
696  va_start(args, fmt);
697  vaf.fmt = fmt;
698  vaf.va = &args;
699  printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
700  sb->s_id, function, line, &vaf);
701  va_end(args);
702 }
703 
704 void __ext4_grp_locked_error(const char *function, unsigned int line,
705  struct super_block *sb, ext4_group_t grp,
706  unsigned long ino, ext4_fsblk_t block,
707  const char *fmt, ...)
708 __releases(bitlock)
709 __acquires(bitlock)
710 {
711  struct va_format vaf;
712  va_list args;
713  struct ext4_super_block *es = EXT4_SB(sb)->s_es;
714 
715  es->s_last_error_ino = cpu_to_le32(ino);
716  es->s_last_error_block = cpu_to_le64(block);
717  __save_error_info(sb, function, line);
718 
719  va_start(args, fmt);
720 
721  vaf.fmt = fmt;
722  vaf.va = &args;
723  printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
724  sb->s_id, function, line, grp);
725  if (ino)
726  printk(KERN_CONT "inode %lu: ", ino);
727  if (block)
728  printk(KERN_CONT "block %llu:", (unsigned long long) block);
729  printk(KERN_CONT "%pV\n", &vaf);
730  va_end(args);
731 
732  if (test_opt(sb, ERRORS_CONT)) {
733  ext4_commit_super(sb, 0);
734  return;
735  }
736 
737  ext4_unlock_group(sb, grp);
738  ext4_handle_error(sb);
739  /*
740  * We only get here in the ERRORS_RO case; relocking the group
741  * may be dangerous, but nothing bad will happen since the
742  * filesystem will have already been marked read/only and the
743  * journal has been aborted. We return 1 as a hint to callers
744  * who might what to use the return value from
745  * ext4_grp_locked_error() to distinguish between the
746  * ERRORS_CONT and ERRORS_RO case, and perhaps return more
747  * aggressively from the ext4 function in question, with a
748  * more appropriate error code.
749  */
750  ext4_lock_group(sb, grp);
751  return;
752 }
753 
755 {
756  struct ext4_super_block *es = EXT4_SB(sb)->s_es;
757 
759  return;
760 
761  ext4_warning(sb,
762  "updating to rev %d because of new feature flag, "
763  "running e2fsck is recommended",
765 
769  /* leave es->s_feature_*compat flags alone */
770  /* es->s_uuid will be set by e2fsck if empty */
771 
772  /*
773  * The rest of the superblock fields should be zero, and if not it
774  * means they are likely already in use, so leave them alone. We
775  * can leave it up to e2fsck to clean up any inconsistencies there.
776  */
777 }
778 
779 /*
780  * Open the external journal device
781  */
782 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
783 {
784  struct block_device *bdev;
785  char b[BDEVNAME_SIZE];
786 
788  if (IS_ERR(bdev))
789  goto fail;
790  return bdev;
791 
792 fail:
793  ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
794  __bdevname(dev, b), PTR_ERR(bdev));
795  return NULL;
796 }
797 
798 /*
799  * Release the journal device
800  */
801 static int ext4_blkdev_put(struct block_device *bdev)
802 {
804 }
805 
806 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
807 {
808  struct block_device *bdev;
809  int ret = -ENODEV;
810 
811  bdev = sbi->journal_bdev;
812  if (bdev) {
813  ret = ext4_blkdev_put(bdev);
814  sbi->journal_bdev = NULL;
815  }
816  return ret;
817 }
818 
819 static inline struct inode *orphan_list_entry(struct list_head *l)
820 {
821  return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
822 }
823 
824 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
825 {
826  struct list_head *l;
827 
828  ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
829  le32_to_cpu(sbi->s_es->s_last_orphan));
830 
831  printk(KERN_ERR "sb_info orphan list:\n");
832  list_for_each(l, &sbi->s_orphan) {
833  struct inode *inode = orphan_list_entry(l);
834  printk(KERN_ERR " "
835  "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
836  inode->i_sb->s_id, inode->i_ino, inode,
837  inode->i_mode, inode->i_nlink,
838  NEXT_ORPHAN(inode));
839  }
840 }
841 
842 static void ext4_put_super(struct super_block *sb)
843 {
844  struct ext4_sb_info *sbi = EXT4_SB(sb);
845  struct ext4_super_block *es = sbi->s_es;
846  int i, err;
847 
848  ext4_unregister_li_request(sb);
850 
851  flush_workqueue(sbi->dio_unwritten_wq);
852  destroy_workqueue(sbi->dio_unwritten_wq);
853 
854  if (sbi->s_journal) {
855  err = jbd2_journal_destroy(sbi->s_journal);
856  sbi->s_journal = NULL;
857  if (err < 0)
858  ext4_abort(sb, "Couldn't clean up the journal");
859  }
860 
861  del_timer(&sbi->s_err_report);
863  ext4_mb_release(sb);
864  ext4_ext_release(sb);
866 
867  if (!(sb->s_flags & MS_RDONLY)) {
869  es->s_state = cpu_to_le16(sbi->s_mount_state);
870  }
871  if (!(sb->s_flags & MS_RDONLY))
872  ext4_commit_super(sb, 1);
873 
874  if (sbi->s_proc) {
875  remove_proc_entry("options", sbi->s_proc);
876  remove_proc_entry(sb->s_id, ext4_proc_root);
877  }
878  kobject_del(&sbi->s_kobj);
879 
880  for (i = 0; i < sbi->s_gdb_count; i++)
881  brelse(sbi->s_group_desc[i]);
882  ext4_kvfree(sbi->s_group_desc);
883  ext4_kvfree(sbi->s_flex_groups);
884  percpu_counter_destroy(&sbi->s_freeclusters_counter);
885  percpu_counter_destroy(&sbi->s_freeinodes_counter);
886  percpu_counter_destroy(&sbi->s_dirs_counter);
887  percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
888  brelse(sbi->s_sbh);
889 #ifdef CONFIG_QUOTA
890  for (i = 0; i < MAXQUOTAS; i++)
891  kfree(sbi->s_qf_names[i]);
892 #endif
893 
894  /* Debugging code just in case the in-memory inode orphan list
895  * isn't empty. The on-disk one can be non-empty if we've
896  * detected an error and taken the fs readonly, but the
897  * in-memory list had better be clean by this point. */
898  if (!list_empty(&sbi->s_orphan))
899  dump_orphan_list(sb, sbi);
900  J_ASSERT(list_empty(&sbi->s_orphan));
901 
902  invalidate_bdev(sb->s_bdev);
903  if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
904  /*
905  * Invalidate the journal device's buffers. We don't want them
906  * floating about in memory - the physical journal device may
907  * hotswapped, and it breaks the `ro-after' testing code.
908  */
909  sync_blockdev(sbi->journal_bdev);
910  invalidate_bdev(sbi->journal_bdev);
911  ext4_blkdev_remove(sbi);
912  }
913  if (sbi->s_mmp_tsk)
914  kthread_stop(sbi->s_mmp_tsk);
915  sb->s_fs_info = NULL;
916  /*
917  * Now that we are completely done shutting down the
918  * superblock, we need to actually destroy the kobject.
919  */
920  kobject_put(&sbi->s_kobj);
921  wait_for_completion(&sbi->s_kobj_unregister);
922  if (sbi->s_chksum_driver)
923  crypto_free_shash(sbi->s_chksum_driver);
924  kfree(sbi->s_blockgroup_lock);
925  kfree(sbi);
926 }
927 
928 static struct kmem_cache *ext4_inode_cachep;
929 
930 /*
931  * Called inside transaction, so use GFP_NOFS
932  */
933 static struct inode *ext4_alloc_inode(struct super_block *sb)
934 {
935  struct ext4_inode_info *ei;
936 
937  ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
938  if (!ei)
939  return NULL;
940 
941  ei->vfs_inode.i_version = 1;
942  ei->vfs_inode.i_data.writeback_index = 0;
943  memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
944  INIT_LIST_HEAD(&ei->i_prealloc_list);
946  ei->i_reserved_data_blocks = 0;
947  ei->i_reserved_meta_blocks = 0;
948  ei->i_allocated_meta_blocks = 0;
949  ei->i_da_metadata_calc_len = 0;
952 #ifdef CONFIG_QUOTA
953  ei->i_reserved_quota = 0;
954 #endif
955  ei->jinode = NULL;
956  INIT_LIST_HEAD(&ei->i_completed_io_list);
958  ei->i_sync_tid = 0;
959  ei->i_datasync_tid = 0;
960  atomic_set(&ei->i_ioend_count, 0);
961  atomic_set(&ei->i_unwritten, 0);
962 
963  return &ei->vfs_inode;
964 }
965 
966 static int ext4_drop_inode(struct inode *inode)
967 {
968  int drop = generic_drop_inode(inode);
969 
970  trace_ext4_drop_inode(inode, drop);
971  return drop;
972 }
973 
974 static void ext4_i_callback(struct rcu_head *head)
975 {
976  struct inode *inode = container_of(head, struct inode, i_rcu);
977  kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
978 }
979 
980 static void ext4_destroy_inode(struct inode *inode)
981 {
982  if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
983  ext4_msg(inode->i_sb, KERN_ERR,
984  "Inode %lu (%p): orphan list check failed!",
985  inode->i_ino, EXT4_I(inode));
986  print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
987  EXT4_I(inode), sizeof(struct ext4_inode_info),
988  true);
989  dump_stack();
990  }
991  call_rcu(&inode->i_rcu, ext4_i_callback);
992 }
993 
994 static void init_once(void *foo)
995 {
996  struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
997 
998  INIT_LIST_HEAD(&ei->i_orphan);
999 #ifdef CONFIG_EXT4_FS_XATTR
1000  init_rwsem(&ei->xattr_sem);
1001 #endif
1002  init_rwsem(&ei->i_data_sem);
1003  inode_init_once(&ei->vfs_inode);
1004 }
1005 
1006 static int init_inodecache(void)
1007 {
1008  ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
1009  sizeof(struct ext4_inode_info),
1011  SLAB_MEM_SPREAD),
1012  init_once);
1013  if (ext4_inode_cachep == NULL)
1014  return -ENOMEM;
1015  return 0;
1016 }
1017 
1018 static void destroy_inodecache(void)
1019 {
1020  /*
1021  * Make sure all delayed rcu free inodes are flushed before we
1022  * destroy cache.
1023  */
1024  rcu_barrier();
1025  kmem_cache_destroy(ext4_inode_cachep);
1026 }
1027 
1028 void ext4_clear_inode(struct inode *inode)
1029 {
1030  invalidate_inode_buffers(inode);
1031  clear_inode(inode);
1032  dquot_drop(inode);
1034  if (EXT4_I(inode)->jinode) {
1036  EXT4_I(inode)->jinode);
1037  jbd2_free_inode(EXT4_I(inode)->jinode);
1038  EXT4_I(inode)->jinode = NULL;
1039  }
1040 }
1041 
1042 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1043  u64 ino, u32 generation)
1044 {
1045  struct inode *inode;
1046 
1047  if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1048  return ERR_PTR(-ESTALE);
1049  if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1050  return ERR_PTR(-ESTALE);
1051 
1052  /* iget isn't really right if the inode is currently unallocated!!
1053  *
1054  * ext4_read_inode will return a bad_inode if the inode had been
1055  * deleted, so we should be safe.
1056  *
1057  * Currently we don't know the generation for parent directory, so
1058  * a generation of 0 means "accept any"
1059  */
1060  inode = ext4_iget(sb, ino);
1061  if (IS_ERR(inode))
1062  return ERR_CAST(inode);
1063  if (generation && inode->i_generation != generation) {
1064  iput(inode);
1065  return ERR_PTR(-ESTALE);
1066  }
1067 
1068  return inode;
1069 }
1070 
1071 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1072  int fh_len, int fh_type)
1073 {
1074  return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1075  ext4_nfs_get_inode);
1076 }
1077 
1078 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1079  int fh_len, int fh_type)
1080 {
1081  return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1082  ext4_nfs_get_inode);
1083 }
1084 
1085 /*
1086  * Try to release metadata pages (indirect blocks, directories) which are
1087  * mapped via the block device. Since these pages could have journal heads
1088  * which would prevent try_to_free_buffers() from freeing them, we must use
1089  * jbd2 layer's try_to_free_buffers() function to release them.
1090  */
1091 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1092  gfp_t wait)
1093 {
1094  journal_t *journal = EXT4_SB(sb)->s_journal;
1095 
1096  WARN_ON(PageChecked(page));
1097  if (!page_has_buffers(page))
1098  return 0;
1099  if (journal)
1100  return jbd2_journal_try_to_free_buffers(journal, page,
1101  wait & ~__GFP_WAIT);
1102  return try_to_free_buffers(page);
1103 }
1104 
1105 #ifdef CONFIG_QUOTA
1106 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1107 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1108 
1109 static int ext4_write_dquot(struct dquot *dquot);
1110 static int ext4_acquire_dquot(struct dquot *dquot);
1111 static int ext4_release_dquot(struct dquot *dquot);
1112 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1113 static int ext4_write_info(struct super_block *sb, int type);
1114 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1115  struct path *path);
1116 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
1117  int format_id);
1118 static int ext4_quota_off(struct super_block *sb, int type);
1119 static int ext4_quota_off_sysfile(struct super_block *sb, int type);
1120 static int ext4_quota_on_mount(struct super_block *sb, int type);
1121 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1122  size_t len, loff_t off);
1123 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1124  const char *data, size_t len, loff_t off);
1125 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1126  unsigned int flags);
1127 static int ext4_enable_quotas(struct super_block *sb);
1128 
1129 static const struct dquot_operations ext4_quota_operations = {
1130  .get_reserved_space = ext4_get_reserved_space,
1131  .write_dquot = ext4_write_dquot,
1132  .acquire_dquot = ext4_acquire_dquot,
1133  .release_dquot = ext4_release_dquot,
1134  .mark_dirty = ext4_mark_dquot_dirty,
1135  .write_info = ext4_write_info,
1136  .alloc_dquot = dquot_alloc,
1137  .destroy_dquot = dquot_destroy,
1138 };
1139 
1140 static const struct quotactl_ops ext4_qctl_operations = {
1141  .quota_on = ext4_quota_on,
1142  .quota_off = ext4_quota_off,
1143  .quota_sync = dquot_quota_sync,
1144  .get_info = dquot_get_dqinfo,
1145  .set_info = dquot_set_dqinfo,
1146  .get_dqblk = dquot_get_dqblk,
1147  .set_dqblk = dquot_set_dqblk
1148 };
1149 
1150 static const struct quotactl_ops ext4_qctl_sysfile_operations = {
1151  .quota_on_meta = ext4_quota_on_sysfile,
1152  .quota_off = ext4_quota_off_sysfile,
1153  .quota_sync = dquot_quota_sync,
1154  .get_info = dquot_get_dqinfo,
1155  .set_info = dquot_set_dqinfo,
1156  .get_dqblk = dquot_get_dqblk,
1157  .set_dqblk = dquot_set_dqblk
1158 };
1159 #endif
1160 
1161 static const struct super_operations ext4_sops = {
1162  .alloc_inode = ext4_alloc_inode,
1163  .destroy_inode = ext4_destroy_inode,
1164  .write_inode = ext4_write_inode,
1165  .dirty_inode = ext4_dirty_inode,
1166  .drop_inode = ext4_drop_inode,
1167  .evict_inode = ext4_evict_inode,
1168  .put_super = ext4_put_super,
1169  .sync_fs = ext4_sync_fs,
1170  .freeze_fs = ext4_freeze,
1171  .unfreeze_fs = ext4_unfreeze,
1172  .statfs = ext4_statfs,
1173  .remount_fs = ext4_remount,
1174  .show_options = ext4_show_options,
1175 #ifdef CONFIG_QUOTA
1176  .quota_read = ext4_quota_read,
1177  .quota_write = ext4_quota_write,
1178 #endif
1179  .bdev_try_to_free_page = bdev_try_to_free_page,
1180 };
1181 
1182 static const struct super_operations ext4_nojournal_sops = {
1183  .alloc_inode = ext4_alloc_inode,
1184  .destroy_inode = ext4_destroy_inode,
1185  .write_inode = ext4_write_inode,
1186  .dirty_inode = ext4_dirty_inode,
1187  .drop_inode = ext4_drop_inode,
1188  .evict_inode = ext4_evict_inode,
1189  .put_super = ext4_put_super,
1190  .statfs = ext4_statfs,
1191  .remount_fs = ext4_remount,
1192  .show_options = ext4_show_options,
1193 #ifdef CONFIG_QUOTA
1194  .quota_read = ext4_quota_read,
1195  .quota_write = ext4_quota_write,
1196 #endif
1197  .bdev_try_to_free_page = bdev_try_to_free_page,
1198 };
1199 
1200 static const struct export_operations ext4_export_ops = {
1201  .fh_to_dentry = ext4_fh_to_dentry,
1202  .fh_to_parent = ext4_fh_to_parent,
1203  .get_parent = ext4_get_parent,
1204 };
1205 
1206 enum {
1226 };
1227 
1228 static const match_table_t tokens = {
1229  {Opt_bsd_df, "bsddf"},
1230  {Opt_minix_df, "minixdf"},
1231  {Opt_grpid, "grpid"},
1232  {Opt_grpid, "bsdgroups"},
1233  {Opt_nogrpid, "nogrpid"},
1234  {Opt_nogrpid, "sysvgroups"},
1235  {Opt_resgid, "resgid=%u"},
1236  {Opt_resuid, "resuid=%u"},
1237  {Opt_sb, "sb=%u"},
1238  {Opt_err_cont, "errors=continue"},
1239  {Opt_err_panic, "errors=panic"},
1240  {Opt_err_ro, "errors=remount-ro"},
1241  {Opt_nouid32, "nouid32"},
1242  {Opt_debug, "debug"},
1243  {Opt_removed, "oldalloc"},
1244  {Opt_removed, "orlov"},
1245  {Opt_user_xattr, "user_xattr"},
1246  {Opt_nouser_xattr, "nouser_xattr"},
1247  {Opt_acl, "acl"},
1248  {Opt_noacl, "noacl"},
1249  {Opt_noload, "norecovery"},
1250  {Opt_noload, "noload"},
1251  {Opt_removed, "nobh"},
1252  {Opt_removed, "bh"},
1253  {Opt_commit, "commit=%u"},
1254  {Opt_min_batch_time, "min_batch_time=%u"},
1255  {Opt_max_batch_time, "max_batch_time=%u"},
1256  {Opt_journal_dev, "journal_dev=%u"},
1257  {Opt_journal_checksum, "journal_checksum"},
1258  {Opt_journal_async_commit, "journal_async_commit"},
1259  {Opt_abort, "abort"},
1260  {Opt_data_journal, "data=journal"},
1261  {Opt_data_ordered, "data=ordered"},
1262  {Opt_data_writeback, "data=writeback"},
1263  {Opt_data_err_abort, "data_err=abort"},
1264  {Opt_data_err_ignore, "data_err=ignore"},
1265  {Opt_offusrjquota, "usrjquota="},
1266  {Opt_usrjquota, "usrjquota=%s"},
1267  {Opt_offgrpjquota, "grpjquota="},
1268  {Opt_grpjquota, "grpjquota=%s"},
1269  {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1270  {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1271  {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1272  {Opt_grpquota, "grpquota"},
1273  {Opt_noquota, "noquota"},
1274  {Opt_quota, "quota"},
1275  {Opt_usrquota, "usrquota"},
1276  {Opt_barrier, "barrier=%u"},
1277  {Opt_barrier, "barrier"},
1278  {Opt_nobarrier, "nobarrier"},
1279  {Opt_i_version, "i_version"},
1280  {Opt_stripe, "stripe=%u"},
1281  {Opt_delalloc, "delalloc"},
1282  {Opt_nodelalloc, "nodelalloc"},
1283  {Opt_mblk_io_submit, "mblk_io_submit"},
1284  {Opt_nomblk_io_submit, "nomblk_io_submit"},
1285  {Opt_block_validity, "block_validity"},
1286  {Opt_noblock_validity, "noblock_validity"},
1287  {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1288  {Opt_journal_ioprio, "journal_ioprio=%u"},
1289  {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1290  {Opt_auto_da_alloc, "auto_da_alloc"},
1291  {Opt_noauto_da_alloc, "noauto_da_alloc"},
1292  {Opt_dioread_nolock, "dioread_nolock"},
1293  {Opt_dioread_lock, "dioread_lock"},
1294  {Opt_discard, "discard"},
1295  {Opt_nodiscard, "nodiscard"},
1296  {Opt_init_itable, "init_itable=%u"},
1297  {Opt_init_itable, "init_itable"},
1298  {Opt_noinit_itable, "noinit_itable"},
1299  {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1300  {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1301  {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1302  {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1303  {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1304  {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1305  {Opt_err, NULL},
1306 };
1307 
1308 static ext4_fsblk_t get_sb_block(void **data)
1309 {
1310  ext4_fsblk_t sb_block;
1311  char *options = (char *) *data;
1312 
1313  if (!options || strncmp(options, "sb=", 3) != 0)
1314  return 1; /* Default location */
1315 
1316  options += 3;
1317  /* TODO: use simple_strtoll with >32bit ext4 */
1318  sb_block = simple_strtoul(options, &options, 0);
1319  if (*options && *options != ',') {
1320  printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1321  (char *) *data);
1322  return 1;
1323  }
1324  if (*options == ',')
1325  options++;
1326  *data = (void *) options;
1327 
1328  return sb_block;
1329 }
1330 
1331 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1332 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1333  "Contact [email protected] if you think we should keep it.\n";
1334 
1335 #ifdef CONFIG_QUOTA
1336 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1337 {
1338  struct ext4_sb_info *sbi = EXT4_SB(sb);
1339  char *qname;
1340 
1341  if (sb_any_quota_loaded(sb) &&
1342  !sbi->s_qf_names[qtype]) {
1343  ext4_msg(sb, KERN_ERR,
1344  "Cannot change journaled "
1345  "quota options when quota turned on");
1346  return -1;
1347  }
1348  qname = match_strdup(args);
1349  if (!qname) {
1350  ext4_msg(sb, KERN_ERR,
1351  "Not enough memory for storing quotafile name");
1352  return -1;
1353  }
1354  if (sbi->s_qf_names[qtype] &&
1355  strcmp(sbi->s_qf_names[qtype], qname)) {
1356  ext4_msg(sb, KERN_ERR,
1357  "%s quota file already specified", QTYPE2NAME(qtype));
1358  kfree(qname);
1359  return -1;
1360  }
1361  sbi->s_qf_names[qtype] = qname;
1362  if (strchr(sbi->s_qf_names[qtype], '/')) {
1363  ext4_msg(sb, KERN_ERR,
1364  "quotafile must be on filesystem root");
1365  kfree(sbi->s_qf_names[qtype]);
1366  sbi->s_qf_names[qtype] = NULL;
1367  return -1;
1368  }
1369  set_opt(sb, QUOTA);
1370  return 1;
1371 }
1372 
1373 static int clear_qf_name(struct super_block *sb, int qtype)
1374 {
1375 
1376  struct ext4_sb_info *sbi = EXT4_SB(sb);
1377 
1378  if (sb_any_quota_loaded(sb) &&
1379  sbi->s_qf_names[qtype]) {
1380  ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1381  " when quota turned on");
1382  return -1;
1383  }
1384  /*
1385  * The space will be released later when all options are confirmed
1386  * to be correct
1387  */
1388  sbi->s_qf_names[qtype] = NULL;
1389  return 1;
1390 }
1391 #endif
1392 
1393 #define MOPT_SET 0x0001
1394 #define MOPT_CLEAR 0x0002
1395 #define MOPT_NOSUPPORT 0x0004
1396 #define MOPT_EXPLICIT 0x0008
1397 #define MOPT_CLEAR_ERR 0x0010
1398 #define MOPT_GTE0 0x0020
1399 #ifdef CONFIG_QUOTA
1400 #define MOPT_Q 0
1401 #define MOPT_QFMT 0x0040
1402 #else
1403 #define MOPT_Q MOPT_NOSUPPORT
1404 #define MOPT_QFMT MOPT_NOSUPPORT
1405 #endif
1406 #define MOPT_DATAJ 0x0080
1407 
1408 static const struct mount_opts {
1409  int token;
1410  int mount_opt;
1411  int flags;
1412 } ext4_mount_opts[] = {
1441  {Opt_commit, 0, MOPT_GTE0},
1445  {Opt_init_itable, 0, MOPT_GTE0},
1446  {Opt_stripe, 0, MOPT_GTE0},
1450 #ifdef CONFIG_EXT4_FS_XATTR
1453 #else
1456 #endif
1457 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1460 #else
1461  {Opt_acl, 0, MOPT_NOSUPPORT},
1462  {Opt_noacl, 0, MOPT_NOSUPPORT},
1463 #endif
1468  MOPT_SET | MOPT_Q},
1470  MOPT_SET | MOPT_Q},
1473  {Opt_usrjquota, 0, MOPT_Q},
1474  {Opt_grpjquota, 0, MOPT_Q},
1475  {Opt_offusrjquota, 0, MOPT_Q},
1476  {Opt_offgrpjquota, 0, MOPT_Q},
1481  {Opt_err, 0, 0}
1482 };
1483 
1484 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1485  substring_t *args, unsigned long *journal_devnum,
1486  unsigned int *journal_ioprio, int is_remount)
1487 {
1488  struct ext4_sb_info *sbi = EXT4_SB(sb);
1489  const struct mount_opts *m;
1490  kuid_t uid;
1491  kgid_t gid;
1492  int arg = 0;
1493 
1494 #ifdef CONFIG_QUOTA
1495  if (token == Opt_usrjquota)
1496  return set_qf_name(sb, USRQUOTA, &args[0]);
1497  else if (token == Opt_grpjquota)
1498  return set_qf_name(sb, GRPQUOTA, &args[0]);
1499  else if (token == Opt_offusrjquota)
1500  return clear_qf_name(sb, USRQUOTA);
1501  else if (token == Opt_offgrpjquota)
1502  return clear_qf_name(sb, GRPQUOTA);
1503 #endif
1504  if (args->from && match_int(args, &arg))
1505  return -1;
1506  switch (token) {
1507  case Opt_noacl:
1508  case Opt_nouser_xattr:
1509  ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1510  break;
1511  case Opt_sb:
1512  return 1; /* handled by get_sb_block() */
1513  case Opt_removed:
1514  ext4_msg(sb, KERN_WARNING,
1515  "Ignoring removed %s option", opt);
1516  return 1;
1517  case Opt_resuid:
1518  uid = make_kuid(current_user_ns(), arg);
1519  if (!uid_valid(uid)) {
1520  ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1521  return -1;
1522  }
1523  sbi->s_resuid = uid;
1524  return 1;
1525  case Opt_resgid:
1526  gid = make_kgid(current_user_ns(), arg);
1527  if (!gid_valid(gid)) {
1528  ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1529  return -1;
1530  }
1531  sbi->s_resgid = gid;
1532  return 1;
1533  case Opt_abort:
1534  sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1535  return 1;
1536  case Opt_i_version:
1537  sb->s_flags |= MS_I_VERSION;
1538  return 1;
1539  case Opt_journal_dev:
1540  if (is_remount) {
1541  ext4_msg(sb, KERN_ERR,
1542  "Cannot specify journal on remount");
1543  return -1;
1544  }
1545  *journal_devnum = arg;
1546  return 1;
1547  case Opt_journal_ioprio:
1548  if (arg < 0 || arg > 7)
1549  return -1;
1550  *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1551  return 1;
1552  }
1553 
1554  for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1555  if (token != m->token)
1556  continue;
1557  if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1558  return -1;
1559  if (m->flags & MOPT_EXPLICIT)
1560  set_opt2(sb, EXPLICIT_DELALLOC);
1561  if (m->flags & MOPT_CLEAR_ERR)
1562  clear_opt(sb, ERRORS_MASK);
1563  if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1564  ext4_msg(sb, KERN_ERR, "Cannot change quota "
1565  "options when quota turned on");
1566  return -1;
1567  }
1568 
1569  if (m->flags & MOPT_NOSUPPORT) {
1570  ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1571  } else if (token == Opt_commit) {
1572  if (arg == 0)
1574  sbi->s_commit_interval = HZ * arg;
1575  } else if (token == Opt_max_batch_time) {
1576  if (arg == 0)
1578  sbi->s_max_batch_time = arg;
1579  } else if (token == Opt_min_batch_time) {
1580  sbi->s_min_batch_time = arg;
1581  } else if (token == Opt_inode_readahead_blks) {
1582  if (arg > (1 << 30))
1583  return -1;
1584  if (arg && !is_power_of_2(arg)) {
1585  ext4_msg(sb, KERN_ERR,
1586  "EXT4-fs: inode_readahead_blks"
1587  " must be a power of 2");
1588  return -1;
1589  }
1590  sbi->s_inode_readahead_blks = arg;
1591  } else if (token == Opt_init_itable) {
1592  set_opt(sb, INIT_INODE_TABLE);
1593  if (!args->from)
1594  arg = EXT4_DEF_LI_WAIT_MULT;
1595  sbi->s_li_wait_mult = arg;
1596  } else if (token == Opt_max_dir_size_kb) {
1597  sbi->s_max_dir_size_kb = arg;
1598  } else if (token == Opt_stripe) {
1599  sbi->s_stripe = arg;
1600  } else if (m->flags & MOPT_DATAJ) {
1601  if (is_remount) {
1602  if (!sbi->s_journal)
1603  ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1604  else if (test_opt(sb, DATA_FLAGS) !=
1605  m->mount_opt) {
1606  ext4_msg(sb, KERN_ERR,
1607  "Cannot change data mode on remount");
1608  return -1;
1609  }
1610  } else {
1611  clear_opt(sb, DATA_FLAGS);
1612  sbi->s_mount_opt |= m->mount_opt;
1613  }
1614 #ifdef CONFIG_QUOTA
1615  } else if (m->flags & MOPT_QFMT) {
1616  if (sb_any_quota_loaded(sb) &&
1617  sbi->s_jquota_fmt != m->mount_opt) {
1618  ext4_msg(sb, KERN_ERR, "Cannot "
1619  "change journaled quota options "
1620  "when quota turned on");
1621  return -1;
1622  }
1623  sbi->s_jquota_fmt = m->mount_opt;
1624 #endif
1625  } else {
1626  if (!args->from)
1627  arg = 1;
1628  if (m->flags & MOPT_CLEAR)
1629  arg = !arg;
1630  else if (unlikely(!(m->flags & MOPT_SET))) {
1631  ext4_msg(sb, KERN_WARNING,
1632  "buggy handling of option %s", opt);
1633  WARN_ON(1);
1634  return -1;
1635  }
1636  if (arg != 0)
1637  sbi->s_mount_opt |= m->mount_opt;
1638  else
1639  sbi->s_mount_opt &= ~m->mount_opt;
1640  }
1641  return 1;
1642  }
1643  ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1644  "or missing value", opt);
1645  return -1;
1646 }
1647 
1648 static int parse_options(char *options, struct super_block *sb,
1649  unsigned long *journal_devnum,
1650  unsigned int *journal_ioprio,
1651  int is_remount)
1652 {
1653 #ifdef CONFIG_QUOTA
1654  struct ext4_sb_info *sbi = EXT4_SB(sb);
1655 #endif
1656  char *p;
1657  substring_t args[MAX_OPT_ARGS];
1658  int token;
1659 
1660  if (!options)
1661  return 1;
1662 
1663  while ((p = strsep(&options, ",")) != NULL) {
1664  if (!*p)
1665  continue;
1666  /*
1667  * Initialize args struct so we know whether arg was
1668  * found; some options take optional arguments.
1669  */
1670  args[0].to = args[0].from = NULL;
1671  token = match_token(p, tokens, args);
1672  if (handle_mount_opt(sb, p, token, args, journal_devnum,
1673  journal_ioprio, is_remount) < 0)
1674  return 0;
1675  }
1676 #ifdef CONFIG_QUOTA
1677  if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1678  if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1679  clear_opt(sb, USRQUOTA);
1680 
1681  if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1682  clear_opt(sb, GRPQUOTA);
1683 
1684  if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1685  ext4_msg(sb, KERN_ERR, "old and new quota "
1686  "format mixing");
1687  return 0;
1688  }
1689 
1690  if (!sbi->s_jquota_fmt) {
1691  ext4_msg(sb, KERN_ERR, "journaled quota format "
1692  "not specified");
1693  return 0;
1694  }
1695  } else {
1696  if (sbi->s_jquota_fmt) {
1697  ext4_msg(sb, KERN_ERR, "journaled quota format "
1698  "specified with no journaling "
1699  "enabled");
1700  return 0;
1701  }
1702  }
1703 #endif
1704  return 1;
1705 }
1706 
1707 static inline void ext4_show_quota_options(struct seq_file *seq,
1708  struct super_block *sb)
1709 {
1710 #if defined(CONFIG_QUOTA)
1711  struct ext4_sb_info *sbi = EXT4_SB(sb);
1712 
1713  if (sbi->s_jquota_fmt) {
1714  char *fmtname = "";
1715 
1716  switch (sbi->s_jquota_fmt) {
1717  case QFMT_VFS_OLD:
1718  fmtname = "vfsold";
1719  break;
1720  case QFMT_VFS_V0:
1721  fmtname = "vfsv0";
1722  break;
1723  case QFMT_VFS_V1:
1724  fmtname = "vfsv1";
1725  break;
1726  }
1727  seq_printf(seq, ",jqfmt=%s", fmtname);
1728  }
1729 
1730  if (sbi->s_qf_names[USRQUOTA])
1731  seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1732 
1733  if (sbi->s_qf_names[GRPQUOTA])
1734  seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1735 
1736  if (test_opt(sb, USRQUOTA))
1737  seq_puts(seq, ",usrquota");
1738 
1739  if (test_opt(sb, GRPQUOTA))
1740  seq_puts(seq, ",grpquota");
1741 #endif
1742 }
1743 
1744 static const char *token2str(int token)
1745 {
1746  const struct match_token *t;
1747 
1748  for (t = tokens; t->token != Opt_err; t++)
1749  if (t->token == token && !strchr(t->pattern, '='))
1750  break;
1751  return t->pattern;
1752 }
1753 
1754 /*
1755  * Show an option if
1756  * - it's set to a non-default value OR
1757  * - if the per-sb default is different from the global default
1758  */
1759 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1760  int nodefs)
1761 {
1762  struct ext4_sb_info *sbi = EXT4_SB(sb);
1763  struct ext4_super_block *es = sbi->s_es;
1764  int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1765  const struct mount_opts *m;
1766  char sep = nodefs ? '\n' : ',';
1767 
1768 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1769 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1770 
1771  if (sbi->s_sb_block != 1)
1772  SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1773 
1774  for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1775  int want_set = m->flags & MOPT_SET;
1776  if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1777  (m->flags & MOPT_CLEAR_ERR))
1778  continue;
1779  if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1780  continue; /* skip if same as the default */
1781  if ((want_set &&
1782  (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1783  (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1784  continue; /* select Opt_noFoo vs Opt_Foo */
1785  SEQ_OPTS_PRINT("%s", token2str(m->token));
1786  }
1787 
1788  if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1790  SEQ_OPTS_PRINT("resuid=%u",
1791  from_kuid_munged(&init_user_ns, sbi->s_resuid));
1792  if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1794  SEQ_OPTS_PRINT("resgid=%u",
1795  from_kgid_munged(&init_user_ns, sbi->s_resgid));
1796  def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1797  if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1798  SEQ_OPTS_PUTS("errors=remount-ro");
1799  if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1800  SEQ_OPTS_PUTS("errors=continue");
1801  if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1802  SEQ_OPTS_PUTS("errors=panic");
1803  if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1804  SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1805  if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1806  SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1807  if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1808  SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1809  if (sb->s_flags & MS_I_VERSION)
1810  SEQ_OPTS_PUTS("i_version");
1811  if (nodefs || sbi->s_stripe)
1812  SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1813  if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1814  if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1815  SEQ_OPTS_PUTS("data=journal");
1816  else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1817  SEQ_OPTS_PUTS("data=ordered");
1818  else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1819  SEQ_OPTS_PUTS("data=writeback");
1820  }
1821  if (nodefs ||
1822  sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1823  SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1824  sbi->s_inode_readahead_blks);
1825 
1826  if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1827  (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1828  SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1829  if (nodefs || sbi->s_max_dir_size_kb)
1830  SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1831 
1832  ext4_show_quota_options(seq, sb);
1833  return 0;
1834 }
1835 
1836 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1837 {
1838  return _ext4_show_options(seq, root->d_sb, 0);
1839 }
1840 
1841 static int options_seq_show(struct seq_file *seq, void *offset)
1842 {
1843  struct super_block *sb = seq->private;
1844  int rc;
1845 
1846  seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1847  rc = _ext4_show_options(seq, sb, 1);
1848  seq_puts(seq, "\n");
1849  return rc;
1850 }
1851 
1852 static int options_open_fs(struct inode *inode, struct file *file)
1853 {
1854  return single_open(file, options_seq_show, PDE(inode)->data);
1855 }
1856 
1857 static const struct file_operations ext4_seq_options_fops = {
1858  .owner = THIS_MODULE,
1859  .open = options_open_fs,
1860  .read = seq_read,
1861  .llseek = seq_lseek,
1862  .release = single_release,
1863 };
1864 
1865 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1866  int read_only)
1867 {
1868  struct ext4_sb_info *sbi = EXT4_SB(sb);
1869  int res = 0;
1870 
1872  ext4_msg(sb, KERN_ERR, "revision level too high, "
1873  "forcing read-only mode");
1874  res = MS_RDONLY;
1875  }
1876  if (read_only)
1877  goto done;
1878  if (!(sbi->s_mount_state & EXT4_VALID_FS))
1879  ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1880  "running e2fsck is recommended");
1881  else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1882  ext4_msg(sb, KERN_WARNING,
1883  "warning: mounting fs with errors, "
1884  "running e2fsck is recommended");
1885  else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1886  le16_to_cpu(es->s_mnt_count) >=
1887  (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1888  ext4_msg(sb, KERN_WARNING,
1889  "warning: maximal mount count reached, "
1890  "running e2fsck is recommended");
1891  else if (le32_to_cpu(es->s_checkinterval) &&
1892  (le32_to_cpu(es->s_lastcheck) +
1894  ext4_msg(sb, KERN_WARNING,
1895  "warning: checktime reached, "
1896  "running e2fsck is recommended");
1897  if (!sbi->s_journal)
1899  if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1901  le16_add_cpu(&es->s_mnt_count, 1);
1902  es->s_mtime = cpu_to_le32(get_seconds());
1904  if (sbi->s_journal)
1906 
1907  ext4_commit_super(sb, 1);
1908 done:
1909  if (test_opt(sb, DEBUG))
1910  printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1911  "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1912  sb->s_blocksize,
1913  sbi->s_groups_count,
1916  sbi->s_mount_opt, sbi->s_mount_opt2);
1917 
1918  cleancache_init_fs(sb);
1919  return res;
1920 }
1921 
1923 {
1924  struct ext4_sb_info *sbi = EXT4_SB(sb);
1925  struct flex_groups *new_groups;
1926  int size;
1927 
1928  if (!sbi->s_log_groups_per_flex)
1929  return 0;
1930 
1931  size = ext4_flex_group(sbi, ngroup - 1) + 1;
1932  if (size <= sbi->s_flex_groups_allocated)
1933  return 0;
1934 
1935  size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1936  new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1937  if (!new_groups) {
1938  ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1939  size / (int) sizeof(struct flex_groups));
1940  return -ENOMEM;
1941  }
1942 
1943  if (sbi->s_flex_groups) {
1944  memcpy(new_groups, sbi->s_flex_groups,
1945  (sbi->s_flex_groups_allocated *
1946  sizeof(struct flex_groups)));
1947  ext4_kvfree(sbi->s_flex_groups);
1948  }
1949  sbi->s_flex_groups = new_groups;
1950  sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1951  return 0;
1952 }
1953 
1954 static int ext4_fill_flex_info(struct super_block *sb)
1955 {
1956  struct ext4_sb_info *sbi = EXT4_SB(sb);
1957  struct ext4_group_desc *gdp = NULL;
1958  ext4_group_t flex_group;
1959  unsigned int groups_per_flex = 0;
1960  int i, err;
1961 
1962  sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1963  if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1964  sbi->s_log_groups_per_flex = 0;
1965  return 1;
1966  }
1967  groups_per_flex = 1U << sbi->s_log_groups_per_flex;
1968 
1969  err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1970  if (err)
1971  goto failed;
1972 
1973  for (i = 0; i < sbi->s_groups_count; i++) {
1974  gdp = ext4_get_group_desc(sb, i, NULL);
1975 
1976  flex_group = ext4_flex_group(sbi, i);
1978  &sbi->s_flex_groups[flex_group].free_inodes);
1980  &sbi->s_flex_groups[flex_group].free_clusters);
1982  &sbi->s_flex_groups[flex_group].used_dirs);
1983  }
1984 
1985  return 1;
1986 failed:
1987  return 0;
1988 }
1989 
1990 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1991  struct ext4_group_desc *gdp)
1992 {
1993  int offset;
1994  __u16 crc = 0;
1995  __le32 le_group = cpu_to_le32(block_group);
1996 
1997  if ((sbi->s_es->s_feature_ro_compat &
1999  /* Use new metadata_csum algorithm */
2000  __u16 old_csum;
2001  __u32 csum32;
2002 
2003  old_csum = gdp->bg_checksum;
2004  gdp->bg_checksum = 0;
2005  csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2006  sizeof(le_group));
2007  csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2008  sbi->s_desc_size);
2009  gdp->bg_checksum = old_csum;
2010 
2011  crc = csum32 & 0xFFFF;
2012  goto out;
2013  }
2014 
2015  /* old crc16 code */
2016  offset = offsetof(struct ext4_group_desc, bg_checksum);
2017 
2018  crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2019  crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2020  crc = crc16(crc, (__u8 *)gdp, offset);
2021  offset += sizeof(gdp->bg_checksum); /* skip checksum */
2022  /* for checksum of struct ext4_group_desc do the rest...*/
2023  if ((sbi->s_es->s_feature_incompat &
2025  offset < le16_to_cpu(sbi->s_es->s_desc_size))
2026  crc = crc16(crc, (__u8 *)gdp + offset,
2027  le16_to_cpu(sbi->s_es->s_desc_size) -
2028  offset);
2029 
2030 out:
2031  return cpu_to_le16(crc);
2032 }
2033 
2034 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2035  struct ext4_group_desc *gdp)
2036 {
2037  if (ext4_has_group_desc_csum(sb) &&
2038  (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
2039  block_group, gdp)))
2040  return 0;
2041 
2042  return 1;
2043 }
2044 
2045 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2046  struct ext4_group_desc *gdp)
2047 {
2048  if (!ext4_has_group_desc_csum(sb))
2049  return;
2050  gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2051 }
2052 
2053 /* Called at mount-time, super-block is locked */
2054 static int ext4_check_descriptors(struct super_block *sb,
2055  ext4_group_t *first_not_zeroed)
2056 {
2057  struct ext4_sb_info *sbi = EXT4_SB(sb);
2058  ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2059  ext4_fsblk_t last_block;
2060  ext4_fsblk_t block_bitmap;
2061  ext4_fsblk_t inode_bitmap;
2062  ext4_fsblk_t inode_table;
2063  int flexbg_flag = 0;
2064  ext4_group_t i, grp = sbi->s_groups_count;
2065 
2067  flexbg_flag = 1;
2068 
2069  ext4_debug("Checking group descriptors");
2070 
2071  for (i = 0; i < sbi->s_groups_count; i++) {
2072  struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2073 
2074  if (i == sbi->s_groups_count - 1 || flexbg_flag)
2075  last_block = ext4_blocks_count(sbi->s_es) - 1;
2076  else
2077  last_block = first_block +
2078  (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2079 
2080  if ((grp == sbi->s_groups_count) &&
2082  grp = i;
2083 
2084  block_bitmap = ext4_block_bitmap(sb, gdp);
2085  if (block_bitmap < first_block || block_bitmap > last_block) {
2086  ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2087  "Block bitmap for group %u not in group "
2088  "(block %llu)!", i, block_bitmap);
2089  return 0;
2090  }
2091  inode_bitmap = ext4_inode_bitmap(sb, gdp);
2092  if (inode_bitmap < first_block || inode_bitmap > last_block) {
2093  ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2094  "Inode bitmap for group %u not in group "
2095  "(block %llu)!", i, inode_bitmap);
2096  return 0;
2097  }
2098  inode_table = ext4_inode_table(sb, gdp);
2099  if (inode_table < first_block ||
2100  inode_table + sbi->s_itb_per_group - 1 > last_block) {
2101  ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2102  "Inode table for group %u not in group "
2103  "(block %llu)!", i, inode_table);
2104  return 0;
2105  }
2106  ext4_lock_group(sb, i);
2107  if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2108  ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2109  "Checksum for group %u failed (%u!=%u)",
2110  i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2111  gdp)), le16_to_cpu(gdp->bg_checksum));
2112  if (!(sb->s_flags & MS_RDONLY)) {
2113  ext4_unlock_group(sb, i);
2114  return 0;
2115  }
2116  }
2117  ext4_unlock_group(sb, i);
2118  if (!flexbg_flag)
2119  first_block += EXT4_BLOCKS_PER_GROUP(sb);
2120  }
2121  if (NULL != first_not_zeroed)
2122  *first_not_zeroed = grp;
2123 
2124  ext4_free_blocks_count_set(sbi->s_es,
2126  sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2127  return 1;
2128 }
2129 
2130 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2131  * the superblock) which were deleted from all directories, but held open by
2132  * a process at the time of a crash. We walk the list and try to delete these
2133  * inodes at recovery time (only with a read-write filesystem).
2134  *
2135  * In order to keep the orphan inode chain consistent during traversal (in
2136  * case of crash during recovery), we link each inode into the superblock
2137  * orphan list_head and handle it the same way as an inode deletion during
2138  * normal operation (which journals the operations for us).
2139  *
2140  * We only do an iget() and an iput() on each inode, which is very safe if we
2141  * accidentally point at an in-use or already deleted inode. The worst that
2142  * can happen in this case is that we get a "bit already cleared" message from
2143  * ext4_free_inode(). The only reason we would point at a wrong inode is if
2144  * e2fsck was run on this filesystem, and it must have already done the orphan
2145  * inode cleanup for us, so we can safely abort without any further action.
2146  */
2147 static void ext4_orphan_cleanup(struct super_block *sb,
2148  struct ext4_super_block *es)
2149 {
2150  unsigned int s_flags = sb->s_flags;
2151  int nr_orphans = 0, nr_truncates = 0;
2152 #ifdef CONFIG_QUOTA
2153  int i;
2154 #endif
2155  if (!es->s_last_orphan) {
2156  jbd_debug(4, "no orphan inodes to clean up\n");
2157  return;
2158  }
2159 
2160  if (bdev_read_only(sb->s_bdev)) {
2161  ext4_msg(sb, KERN_ERR, "write access "
2162  "unavailable, skipping orphan cleanup");
2163  return;
2164  }
2165 
2166  /* Check if feature set would not allow a r/w mount */
2167  if (!ext4_feature_set_ok(sb, 0)) {
2168  ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2169  "unknown ROCOMPAT features");
2170  return;
2171  }
2172 
2173  if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2174  /* don't clear list on RO mount w/ errors */
2175  if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2176  jbd_debug(1, "Errors on filesystem, "
2177  "clearing orphan list.\n");
2178  es->s_last_orphan = 0;
2179  }
2180  jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2181  return;
2182  }
2183 
2184  if (s_flags & MS_RDONLY) {
2185  ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2186  sb->s_flags &= ~MS_RDONLY;
2187  }
2188 #ifdef CONFIG_QUOTA
2189  /* Needed for iput() to work correctly and not trash data */
2190  sb->s_flags |= MS_ACTIVE;
2191  /* Turn on quotas so that they are updated correctly */
2192  for (i = 0; i < MAXQUOTAS; i++) {
2193  if (EXT4_SB(sb)->s_qf_names[i]) {
2194  int ret = ext4_quota_on_mount(sb, i);
2195  if (ret < 0)
2196  ext4_msg(sb, KERN_ERR,
2197  "Cannot turn on journaled "
2198  "quota: error %d", ret);
2199  }
2200  }
2201 #endif
2202 
2203  while (es->s_last_orphan) {
2204  struct inode *inode;
2205 
2206  inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2207  if (IS_ERR(inode)) {
2208  es->s_last_orphan = 0;
2209  break;
2210  }
2211 
2212  list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2213  dquot_initialize(inode);
2214  if (inode->i_nlink) {
2215  ext4_msg(sb, KERN_DEBUG,
2216  "%s: truncating inode %lu to %lld bytes",
2217  __func__, inode->i_ino, inode->i_size);
2218  jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2219  inode->i_ino, inode->i_size);
2220  ext4_truncate(inode);
2221  nr_truncates++;
2222  } else {
2223  ext4_msg(sb, KERN_DEBUG,
2224  "%s: deleting unreferenced inode %lu",
2225  __func__, inode->i_ino);
2226  jbd_debug(2, "deleting unreferenced inode %lu\n",
2227  inode->i_ino);
2228  nr_orphans++;
2229  }
2230  iput(inode); /* The delete magic happens here! */
2231  }
2232 
2233 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2234 
2235  if (nr_orphans)
2236  ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2237  PLURAL(nr_orphans));
2238  if (nr_truncates)
2239  ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2240  PLURAL(nr_truncates));
2241 #ifdef CONFIG_QUOTA
2242  /* Turn quotas off */
2243  for (i = 0; i < MAXQUOTAS; i++) {
2244  if (sb_dqopt(sb)->files[i])
2245  dquot_quota_off(sb, i);
2246  }
2247 #endif
2248  sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2249 }
2250 
2251 /*
2252  * Maximal extent format file size.
2253  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2254  * extent format containers, within a sector_t, and within i_blocks
2255  * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2256  * so that won't be a limiting factor.
2257  *
2258  * However there is other limiting factor. We do store extents in the form
2259  * of starting block and length, hence the resulting length of the extent
2260  * covering maximum file size must fit into on-disk format containers as
2261  * well. Given that length is always by 1 unit bigger than max unit (because
2262  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2263  *
2264  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2265  */
2266 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2267 {
2268  loff_t res;
2269  loff_t upper_limit = MAX_LFS_FILESIZE;
2270 
2271  /* small i_blocks in vfs inode? */
2272  if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2273  /*
2274  * CONFIG_LBDAF is not enabled implies the inode
2275  * i_block represent total blocks in 512 bytes
2276  * 32 == size of vfs inode i_blocks * 8
2277  */
2278  upper_limit = (1LL << 32) - 1;
2279 
2280  /* total blocks in file system block size */
2281  upper_limit >>= (blkbits - 9);
2282  upper_limit <<= blkbits;
2283  }
2284 
2285  /*
2286  * 32-bit extent-start container, ee_block. We lower the maxbytes
2287  * by one fs block, so ee_len can cover the extent of maximum file
2288  * size
2289  */
2290  res = (1LL << 32) - 1;
2291  res <<= blkbits;
2292 
2293  /* Sanity check against vm- & vfs- imposed limits */
2294  if (res > upper_limit)
2295  res = upper_limit;
2296 
2297  return res;
2298 }
2299 
2300 /*
2301  * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2302  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2303  * We need to be 1 filesystem block less than the 2^48 sector limit.
2304  */
2305 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2306 {
2307  loff_t res = EXT4_NDIR_BLOCKS;
2308  int meta_blocks;
2309  loff_t upper_limit;
2310  /* This is calculated to be the largest file size for a dense, block
2311  * mapped file such that the file's total number of 512-byte sectors,
2312  * including data and all indirect blocks, does not exceed (2^48 - 1).
2313  *
2314  * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2315  * number of 512-byte sectors of the file.
2316  */
2317 
2318  if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2319  /*
2320  * !has_huge_files or CONFIG_LBDAF not enabled implies that
2321  * the inode i_block field represents total file blocks in
2322  * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2323  */
2324  upper_limit = (1LL << 32) - 1;
2325 
2326  /* total blocks in file system block size */
2327  upper_limit >>= (bits - 9);
2328 
2329  } else {
2330  /*
2331  * We use 48 bit ext4_inode i_blocks
2332  * With EXT4_HUGE_FILE_FL set the i_blocks
2333  * represent total number of blocks in
2334  * file system block size
2335  */
2336  upper_limit = (1LL << 48) - 1;
2337 
2338  }
2339 
2340  /* indirect blocks */
2341  meta_blocks = 1;
2342  /* double indirect blocks */
2343  meta_blocks += 1 + (1LL << (bits-2));
2344  /* tripple indirect blocks */
2345  meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2346 
2347  upper_limit -= meta_blocks;
2348  upper_limit <<= bits;
2349 
2350  res += 1LL << (bits-2);
2351  res += 1LL << (2*(bits-2));
2352  res += 1LL << (3*(bits-2));
2353  res <<= bits;
2354  if (res > upper_limit)
2355  res = upper_limit;
2356 
2357  if (res > MAX_LFS_FILESIZE)
2358  res = MAX_LFS_FILESIZE;
2359 
2360  return res;
2361 }
2362 
2363 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2364  ext4_fsblk_t logical_sb_block, int nr)
2365 {
2366  struct ext4_sb_info *sbi = EXT4_SB(sb);
2367  ext4_group_t bg, first_meta_bg;
2368  int has_super = 0;
2369 
2370  first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2371 
2373  nr < first_meta_bg)
2374  return logical_sb_block + nr + 1;
2375  bg = sbi->s_desc_per_block * nr;
2376  if (ext4_bg_has_super(sb, bg))
2377  has_super = 1;
2378 
2379  return (has_super + ext4_group_first_block_no(sb, bg));
2380 }
2381 
2393 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2394 {
2395  unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2396  unsigned long stripe_width =
2397  le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2398  int ret;
2399 
2400  if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2401  ret = sbi->s_stripe;
2402  else if (stripe_width <= sbi->s_blocks_per_group)
2403  ret = stripe_width;
2404  else if (stride <= sbi->s_blocks_per_group)
2405  ret = stride;
2406  else
2407  ret = 0;
2408 
2409  /*
2410  * If the stripe width is 1, this makes no sense and
2411  * we set it to 0 to turn off stripe handling code.
2412  */
2413  if (ret <= 1)
2414  ret = 0;
2415 
2416  return ret;
2417 }
2418 
2419 /* sysfs supprt */
2420 
2421 struct ext4_attr {
2422  struct attribute attr;
2423  ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2424  ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2425  const char *, size_t);
2426  int offset;
2427 };
2428 
2429 static int parse_strtoul(const char *buf,
2430  unsigned long max, unsigned long *value)
2431 {
2432  char *endp;
2433 
2434  *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2435  endp = skip_spaces(endp);
2436  if (*endp || *value > max)
2437  return -EINVAL;
2438 
2439  return 0;
2440 }
2441 
2442 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2443  struct ext4_sb_info *sbi,
2444  char *buf)
2445 {
2446  return snprintf(buf, PAGE_SIZE, "%llu\n",
2447  (s64) EXT4_C2B(sbi,
2448  percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2449 }
2450 
2451 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2452  struct ext4_sb_info *sbi, char *buf)
2453 {
2454  struct super_block *sb = sbi->s_buddy_cache->i_sb;
2455 
2456  if (!sb->s_bdev->bd_part)
2457  return snprintf(buf, PAGE_SIZE, "0\n");
2458  return snprintf(buf, PAGE_SIZE, "%lu\n",
2459  (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2460  sbi->s_sectors_written_start) >> 1);
2461 }
2462 
2463 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2464  struct ext4_sb_info *sbi, char *buf)
2465 {
2466  struct super_block *sb = sbi->s_buddy_cache->i_sb;
2467 
2468  if (!sb->s_bdev->bd_part)
2469  return snprintf(buf, PAGE_SIZE, "0\n");
2470  return snprintf(buf, PAGE_SIZE, "%llu\n",
2471  (unsigned long long)(sbi->s_kbytes_written +
2472  ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2473  EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2474 }
2475 
2476 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2477  struct ext4_sb_info *sbi,
2478  const char *buf, size_t count)
2479 {
2480  unsigned long t;
2481 
2482  if (parse_strtoul(buf, 0x40000000, &t))
2483  return -EINVAL;
2484 
2485  if (t && !is_power_of_2(t))
2486  return -EINVAL;
2487 
2488  sbi->s_inode_readahead_blks = t;
2489  return count;
2490 }
2491 
2492 static ssize_t sbi_ui_show(struct ext4_attr *a,
2493  struct ext4_sb_info *sbi, char *buf)
2494 {
2495  unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2496 
2497  return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2498 }
2499 
2500 static ssize_t sbi_ui_store(struct ext4_attr *a,
2501  struct ext4_sb_info *sbi,
2502  const char *buf, size_t count)
2503 {
2504  unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2505  unsigned long t;
2506 
2507  if (parse_strtoul(buf, 0xffffffff, &t))
2508  return -EINVAL;
2509  *ui = t;
2510  return count;
2511 }
2512 
2513 static ssize_t trigger_test_error(struct ext4_attr *a,
2514  struct ext4_sb_info *sbi,
2515  const char *buf, size_t count)
2516 {
2517  int len = count;
2518 
2519  if (!capable(CAP_SYS_ADMIN))
2520  return -EPERM;
2521 
2522  if (len && buf[len-1] == '\n')
2523  len--;
2524 
2525  if (len)
2526  ext4_error(sbi->s_sb, "%.*s", len, buf);
2527  return count;
2528 }
2529 
2530 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2531 static struct ext4_attr ext4_attr_##_name = { \
2532  .attr = {.name = __stringify(_name), .mode = _mode }, \
2533  .show = _show, \
2534  .store = _store, \
2535  .offset = offsetof(struct ext4_sb_info, _elname), \
2536 }
2537 #define EXT4_ATTR(name, mode, show, store) \
2538 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2539 
2540 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2541 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2542 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2543 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2544  EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2545 #define ATTR_LIST(name) &ext4_attr_##name.attr
2546 
2547 EXT4_RO_ATTR(delayed_allocation_blocks);
2548 EXT4_RO_ATTR(session_write_kbytes);
2549 EXT4_RO_ATTR(lifetime_write_kbytes);
2550 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2551  inode_readahead_blks_store, s_inode_readahead_blks);
2552 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2553 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2554 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2555 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2556 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2557 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2558 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2559 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2560 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2561 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2562 
2563 static struct attribute *ext4_attrs[] = {
2564  ATTR_LIST(delayed_allocation_blocks),
2565  ATTR_LIST(session_write_kbytes),
2566  ATTR_LIST(lifetime_write_kbytes),
2567  ATTR_LIST(inode_readahead_blks),
2568  ATTR_LIST(inode_goal),
2569  ATTR_LIST(mb_stats),
2570  ATTR_LIST(mb_max_to_scan),
2571  ATTR_LIST(mb_min_to_scan),
2572  ATTR_LIST(mb_order2_req),
2573  ATTR_LIST(mb_stream_req),
2574  ATTR_LIST(mb_group_prealloc),
2575  ATTR_LIST(max_writeback_mb_bump),
2576  ATTR_LIST(extent_max_zeroout_kb),
2577  ATTR_LIST(trigger_fs_error),
2578  NULL,
2579 };
2580 
2581 /* Features this copy of ext4 supports */
2582 EXT4_INFO_ATTR(lazy_itable_init);
2583 EXT4_INFO_ATTR(batched_discard);
2584 EXT4_INFO_ATTR(meta_bg_resize);
2585 
2586 static struct attribute *ext4_feat_attrs[] = {
2587  ATTR_LIST(lazy_itable_init),
2588  ATTR_LIST(batched_discard),
2589  ATTR_LIST(meta_bg_resize),
2590  NULL,
2591 };
2592 
2593 static ssize_t ext4_attr_show(struct kobject *kobj,
2594  struct attribute *attr, char *buf)
2595 {
2596  struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2597  s_kobj);
2598  struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2599 
2600  return a->show ? a->show(a, sbi, buf) : 0;
2601 }
2602 
2603 static ssize_t ext4_attr_store(struct kobject *kobj,
2604  struct attribute *attr,
2605  const char *buf, size_t len)
2606 {
2607  struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2608  s_kobj);
2609  struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2610 
2611  return a->store ? a->store(a, sbi, buf, len) : 0;
2612 }
2613 
2614 static void ext4_sb_release(struct kobject *kobj)
2615 {
2616  struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2617  s_kobj);
2618  complete(&sbi->s_kobj_unregister);
2619 }
2620 
2621 static const struct sysfs_ops ext4_attr_ops = {
2622  .show = ext4_attr_show,
2623  .store = ext4_attr_store,
2624 };
2625 
2626 static struct kobj_type ext4_ktype = {
2627  .default_attrs = ext4_attrs,
2628  .sysfs_ops = &ext4_attr_ops,
2629  .release = ext4_sb_release,
2630 };
2631 
2632 static void ext4_feat_release(struct kobject *kobj)
2633 {
2634  complete(&ext4_feat->f_kobj_unregister);
2635 }
2636 
2637 static struct kobj_type ext4_feat_ktype = {
2638  .default_attrs = ext4_feat_attrs,
2639  .sysfs_ops = &ext4_attr_ops,
2640  .release = ext4_feat_release,
2641 };
2642 
2643 /*
2644  * Check whether this filesystem can be mounted based on
2645  * the features present and the RDONLY/RDWR mount requested.
2646  * Returns 1 if this filesystem can be mounted as requested,
2647  * 0 if it cannot be.
2648  */
2649 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2650 {
2652  ext4_msg(sb, KERN_ERR,
2653  "Couldn't mount because of "
2654  "unsupported optional features (%x)",
2655  (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2657  return 0;
2658  }
2659 
2660  if (readonly)
2661  return 1;
2662 
2663  /* Check that feature set is OK for a read-write mount */
2665  ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2666  "unsupported optional features (%x)",
2667  (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2669  return 0;
2670  }
2671  /*
2672  * Large file size enabled file system can only be mounted
2673  * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2674  */
2676  if (sizeof(blkcnt_t) < sizeof(u64)) {
2677  ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2678  "cannot be mounted RDWR without "
2679  "CONFIG_LBDAF");
2680  return 0;
2681  }
2682  }
2685  ext4_msg(sb, KERN_ERR,
2686  "Can't support bigalloc feature without "
2687  "extents feature\n");
2688  return 0;
2689  }
2690 
2691 #ifndef CONFIG_QUOTA
2693  !readonly) {
2694  ext4_msg(sb, KERN_ERR,
2695  "Filesystem with quota feature cannot be mounted RDWR "
2696  "without CONFIG_QUOTA");
2697  return 0;
2698  }
2699 #endif /* CONFIG_QUOTA */
2700  return 1;
2701 }
2702 
2703 /*
2704  * This function is called once a day if we have errors logged
2705  * on the file system
2706  */
2707 static void print_daily_error_info(unsigned long arg)
2708 {
2709  struct super_block *sb = (struct super_block *) arg;
2710  struct ext4_sb_info *sbi;
2711  struct ext4_super_block *es;
2712 
2713  sbi = EXT4_SB(sb);
2714  es = sbi->s_es;
2715 
2716  if (es->s_error_count)
2717  ext4_msg(sb, KERN_NOTICE, "error count: %u",
2718  le32_to_cpu(es->s_error_count));
2719  if (es->s_first_error_time) {
2720  printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2722  (int) sizeof(es->s_first_error_func),
2723  es->s_first_error_func,
2725  if (es->s_first_error_ino)
2726  printk(": inode %u",
2728  if (es->s_first_error_block)
2729  printk(": block %llu", (unsigned long long)
2731  printk("\n");
2732  }
2733  if (es->s_last_error_time) {
2734  printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2736  (int) sizeof(es->s_last_error_func),
2737  es->s_last_error_func,
2739  if (es->s_last_error_ino)
2740  printk(": inode %u",
2742  if (es->s_last_error_block)
2743  printk(": block %llu", (unsigned long long)
2745  printk("\n");
2746  }
2747  mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2748 }
2749 
2750 /* Find next suitable group and run ext4_init_inode_table */
2751 static int ext4_run_li_request(struct ext4_li_request *elr)
2752 {
2753  struct ext4_group_desc *gdp = NULL;
2754  ext4_group_t group, ngroups;
2755  struct super_block *sb;
2756  unsigned long timeout = 0;
2757  int ret = 0;
2758 
2759  sb = elr->lr_super;
2760  ngroups = EXT4_SB(sb)->s_groups_count;
2761 
2762  sb_start_write(sb);
2763  for (group = elr->lr_next_group; group < ngroups; group++) {
2764  gdp = ext4_get_group_desc(sb, group, NULL);
2765  if (!gdp) {
2766  ret = 1;
2767  break;
2768  }
2769 
2770  if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2771  break;
2772  }
2773 
2774  if (group == ngroups)
2775  ret = 1;
2776 
2777  if (!ret) {
2778  timeout = jiffies;
2779  ret = ext4_init_inode_table(sb, group,
2780  elr->lr_timeout ? 0 : 1);
2781  if (elr->lr_timeout == 0) {
2782  timeout = (jiffies - timeout) *
2783  elr->lr_sbi->s_li_wait_mult;
2784  elr->lr_timeout = timeout;
2785  }
2786  elr->lr_next_sched = jiffies + elr->lr_timeout;
2787  elr->lr_next_group = group + 1;
2788  }
2789  sb_end_write(sb);
2790 
2791  return ret;
2792 }
2793 
2794 /*
2795  * Remove lr_request from the list_request and free the
2796  * request structure. Should be called with li_list_mtx held
2797  */
2798 static void ext4_remove_li_request(struct ext4_li_request *elr)
2799 {
2800  struct ext4_sb_info *sbi;
2801 
2802  if (!elr)
2803  return;
2804 
2805  sbi = elr->lr_sbi;
2806 
2807  list_del(&elr->lr_request);
2808  sbi->s_li_request = NULL;
2809  kfree(elr);
2810 }
2811 
2812 static void ext4_unregister_li_request(struct super_block *sb)
2813 {
2814  mutex_lock(&ext4_li_mtx);
2815  if (!ext4_li_info) {
2816  mutex_unlock(&ext4_li_mtx);
2817  return;
2818  }
2819 
2820  mutex_lock(&ext4_li_info->li_list_mtx);
2821  ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2822  mutex_unlock(&ext4_li_info->li_list_mtx);
2823  mutex_unlock(&ext4_li_mtx);
2824 }
2825 
2826 static struct task_struct *ext4_lazyinit_task;
2827 
2828 /*
2829  * This is the function where ext4lazyinit thread lives. It walks
2830  * through the request list searching for next scheduled filesystem.
2831  * When such a fs is found, run the lazy initialization request
2832  * (ext4_rn_li_request) and keep track of the time spend in this
2833  * function. Based on that time we compute next schedule time of
2834  * the request. When walking through the list is complete, compute
2835  * next waking time and put itself into sleep.
2836  */
2837 static int ext4_lazyinit_thread(void *arg)
2838 {
2839  struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2840  struct list_head *pos, *n;
2841  struct ext4_li_request *elr;
2842  unsigned long next_wakeup, cur;
2843 
2844  BUG_ON(NULL == eli);
2845 
2846 cont_thread:
2847  while (true) {
2848  next_wakeup = MAX_JIFFY_OFFSET;
2849 
2850  mutex_lock(&eli->li_list_mtx);
2851  if (list_empty(&eli->li_request_list)) {
2852  mutex_unlock(&eli->li_list_mtx);
2853  goto exit_thread;
2854  }
2855 
2856  list_for_each_safe(pos, n, &eli->li_request_list) {
2857  elr = list_entry(pos, struct ext4_li_request,
2858  lr_request);
2859 
2860  if (time_after_eq(jiffies, elr->lr_next_sched)) {
2861  if (ext4_run_li_request(elr) != 0) {
2862  /* error, remove the lazy_init job */
2863  ext4_remove_li_request(elr);
2864  continue;
2865  }
2866  }
2867 
2868  if (time_before(elr->lr_next_sched, next_wakeup))
2869  next_wakeup = elr->lr_next_sched;
2870  }
2871  mutex_unlock(&eli->li_list_mtx);
2872 
2873  try_to_freeze();
2874 
2875  cur = jiffies;
2876  if ((time_after_eq(cur, next_wakeup)) ||
2877  (MAX_JIFFY_OFFSET == next_wakeup)) {
2878  cond_resched();
2879  continue;
2880  }
2881 
2882  schedule_timeout_interruptible(next_wakeup - cur);
2883 
2884  if (kthread_should_stop()) {
2885  ext4_clear_request_list();
2886  goto exit_thread;
2887  }
2888  }
2889 
2890 exit_thread:
2891  /*
2892  * It looks like the request list is empty, but we need
2893  * to check it under the li_list_mtx lock, to prevent any
2894  * additions into it, and of course we should lock ext4_li_mtx
2895  * to atomically free the list and ext4_li_info, because at
2896  * this point another ext4 filesystem could be registering
2897  * new one.
2898  */
2899  mutex_lock(&ext4_li_mtx);
2900  mutex_lock(&eli->li_list_mtx);
2901  if (!list_empty(&eli->li_request_list)) {
2902  mutex_unlock(&eli->li_list_mtx);
2903  mutex_unlock(&ext4_li_mtx);
2904  goto cont_thread;
2905  }
2906  mutex_unlock(&eli->li_list_mtx);
2907  kfree(ext4_li_info);
2908  ext4_li_info = NULL;
2909  mutex_unlock(&ext4_li_mtx);
2910 
2911  return 0;
2912 }
2913 
2914 static void ext4_clear_request_list(void)
2915 {
2916  struct list_head *pos, *n;
2917  struct ext4_li_request *elr;
2918 
2919  mutex_lock(&ext4_li_info->li_list_mtx);
2920  list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2921  elr = list_entry(pos, struct ext4_li_request,
2922  lr_request);
2923  ext4_remove_li_request(elr);
2924  }
2925  mutex_unlock(&ext4_li_info->li_list_mtx);
2926 }
2927 
2928 static int ext4_run_lazyinit_thread(void)
2929 {
2930  ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2931  ext4_li_info, "ext4lazyinit");
2932  if (IS_ERR(ext4_lazyinit_task)) {
2933  int err = PTR_ERR(ext4_lazyinit_task);
2934  ext4_clear_request_list();
2935  kfree(ext4_li_info);
2936  ext4_li_info = NULL;
2937  printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2938  "initialization thread\n",
2939  err);
2940  return err;
2941  }
2942  ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2943  return 0;
2944 }
2945 
2946 /*
2947  * Check whether it make sense to run itable init. thread or not.
2948  * If there is at least one uninitialized inode table, return
2949  * corresponding group number, else the loop goes through all
2950  * groups and return total number of groups.
2951  */
2952 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2953 {
2954  ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2955  struct ext4_group_desc *gdp = NULL;
2956 
2957  for (group = 0; group < ngroups; group++) {
2958  gdp = ext4_get_group_desc(sb, group, NULL);
2959  if (!gdp)
2960  continue;
2961 
2962  if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2963  break;
2964  }
2965 
2966  return group;
2967 }
2968 
2969 static int ext4_li_info_new(void)
2970 {
2971  struct ext4_lazy_init *eli = NULL;
2972 
2973  eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2974  if (!eli)
2975  return -ENOMEM;
2976 
2977  INIT_LIST_HEAD(&eli->li_request_list);
2978  mutex_init(&eli->li_list_mtx);
2979 
2980  eli->li_state |= EXT4_LAZYINIT_QUIT;
2981 
2982  ext4_li_info = eli;
2983 
2984  return 0;
2985 }
2986 
2987 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2989 {
2990  struct ext4_sb_info *sbi = EXT4_SB(sb);
2991  struct ext4_li_request *elr;
2992  unsigned long rnd;
2993 
2994  elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2995  if (!elr)
2996  return NULL;
2997 
2998  elr->lr_super = sb;
2999  elr->lr_sbi = sbi;
3000  elr->lr_next_group = start;
3001 
3002  /*
3003  * Randomize first schedule time of the request to
3004  * spread the inode table initialization requests
3005  * better.
3006  */
3007  get_random_bytes(&rnd, sizeof(rnd));
3008  elr->lr_next_sched = jiffies + (unsigned long)rnd %
3009  (EXT4_DEF_LI_MAX_START_DELAY * HZ);
3010 
3011  return elr;
3012 }
3013 
3014 static int ext4_register_li_request(struct super_block *sb,
3015  ext4_group_t first_not_zeroed)
3016 {
3017  struct ext4_sb_info *sbi = EXT4_SB(sb);
3018  struct ext4_li_request *elr;
3019  ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3020  int ret = 0;
3021 
3022  if (sbi->s_li_request != NULL) {
3023  /*
3024  * Reset timeout so it can be computed again, because
3025  * s_li_wait_mult might have changed.
3026  */
3027  sbi->s_li_request->lr_timeout = 0;
3028  return 0;
3029  }
3030 
3031  if (first_not_zeroed == ngroups ||
3032  (sb->s_flags & MS_RDONLY) ||
3033  !test_opt(sb, INIT_INODE_TABLE))
3034  return 0;
3035 
3036  elr = ext4_li_request_new(sb, first_not_zeroed);
3037  if (!elr)
3038  return -ENOMEM;
3039 
3040  mutex_lock(&ext4_li_mtx);
3041 
3042  if (NULL == ext4_li_info) {
3043  ret = ext4_li_info_new();
3044  if (ret)
3045  goto out;
3046  }
3047 
3048  mutex_lock(&ext4_li_info->li_list_mtx);
3049  list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3050  mutex_unlock(&ext4_li_info->li_list_mtx);
3051 
3052  sbi->s_li_request = elr;
3053  /*
3054  * set elr to NULL here since it has been inserted to
3055  * the request_list and the removal and free of it is
3056  * handled by ext4_clear_request_list from now on.
3057  */
3058  elr = NULL;
3059 
3060  if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3061  ret = ext4_run_lazyinit_thread();
3062  if (ret)
3063  goto out;
3064  }
3065 out:
3066  mutex_unlock(&ext4_li_mtx);
3067  if (ret)
3068  kfree(elr);
3069  return ret;
3070 }
3071 
3072 /*
3073  * We do not need to lock anything since this is called on
3074  * module unload.
3075  */
3076 static void ext4_destroy_lazyinit_thread(void)
3077 {
3078  /*
3079  * If thread exited earlier
3080  * there's nothing to be done.
3081  */
3082  if (!ext4_li_info || !ext4_lazyinit_task)
3083  return;
3084 
3085  kthread_stop(ext4_lazyinit_task);
3086 }
3087 
3088 static int set_journal_csum_feature_set(struct super_block *sb)
3089 {
3090  int ret = 1;
3091  int compat, incompat;
3092  struct ext4_sb_info *sbi = EXT4_SB(sb);
3093 
3096  /* journal checksum v2 */
3097  compat = 0;
3098  incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2;
3099  } else {
3100  /* journal checksum v1 */
3102  incompat = 0;
3103  }
3104 
3105  if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3106  ret = jbd2_journal_set_features(sbi->s_journal,
3107  compat, 0,
3109  incompat);
3110  } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3111  ret = jbd2_journal_set_features(sbi->s_journal,
3112  compat, 0,
3113  incompat);
3114  jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3116  } else {
3117  jbd2_journal_clear_features(sbi->s_journal,
3121  }
3122 
3123  return ret;
3124 }
3125 
3126 /*
3127  * Note: calculating the overhead so we can be compatible with
3128  * historical BSD practice is quite difficult in the face of
3129  * clusters/bigalloc. This is because multiple metadata blocks from
3130  * different block group can end up in the same allocation cluster.
3131  * Calculating the exact overhead in the face of clustered allocation
3132  * requires either O(all block bitmaps) in memory or O(number of block
3133  * groups**2) in time. We will still calculate the superblock for
3134  * older file systems --- and if we come across with a bigalloc file
3135  * system with zero in s_overhead_clusters the estimate will be close to
3136  * correct especially for very large cluster sizes --- but for newer
3137  * file systems, it's better to calculate this figure once at mkfs
3138  * time, and store it in the superblock. If the superblock value is
3139  * present (even for non-bigalloc file systems), we will use it.
3140  */
3141 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3142  char *buf)
3143 {
3144  struct ext4_sb_info *sbi = EXT4_SB(sb);
3145  struct ext4_group_desc *gdp;
3146  ext4_fsblk_t first_block, last_block, b;
3147  ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3148  int s, j, count = 0;
3149 
3151  return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3152  sbi->s_itb_per_group + 2);
3153 
3154  first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3155  (grp * EXT4_BLOCKS_PER_GROUP(sb));
3156  last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3157  for (i = 0; i < ngroups; i++) {
3158  gdp = ext4_get_group_desc(sb, i, NULL);
3159  b = ext4_block_bitmap(sb, gdp);
3160  if (b >= first_block && b <= last_block) {
3161  ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3162  count++;
3163  }
3164  b = ext4_inode_bitmap(sb, gdp);
3165  if (b >= first_block && b <= last_block) {
3166  ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3167  count++;
3168  }
3169  b = ext4_inode_table(sb, gdp);
3170  if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3171  for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3172  int c = EXT4_B2C(sbi, b - first_block);
3173  ext4_set_bit(c, buf);
3174  count++;
3175  }
3176  if (i != grp)
3177  continue;
3178  s = 0;
3179  if (ext4_bg_has_super(sb, grp)) {
3180  ext4_set_bit(s++, buf);
3181  count++;
3182  }
3183  for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3184  ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3185  count++;
3186  }
3187  }
3188  if (!count)
3189  return 0;
3190  return EXT4_CLUSTERS_PER_GROUP(sb) -
3191  ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3192 }
3193 
3194 /*
3195  * Compute the overhead and stash it in sbi->s_overhead
3196  */
3198 {
3199  struct ext4_sb_info *sbi = EXT4_SB(sb);
3200  struct ext4_super_block *es = sbi->s_es;
3201  ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3202  ext4_fsblk_t overhead = 0;
3203  char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3204 
3205  memset(buf, 0, PAGE_SIZE);
3206  if (!buf)
3207  return -ENOMEM;
3208 
3209  /*
3210  * Compute the overhead (FS structures). This is constant
3211  * for a given filesystem unless the number of block groups
3212  * changes so we cache the previous value until it does.
3213  */
3214 
3215  /*
3216  * All of the blocks before first_data_block are overhead
3217  */
3218  overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3219 
3220  /*
3221  * Add the overhead found in each block group
3222  */
3223  for (i = 0; i < ngroups; i++) {
3224  int blks;
3225 
3226  blks = count_overhead(sb, i, buf);
3227  overhead += blks;
3228  if (blks)
3229  memset(buf, 0, PAGE_SIZE);
3230  cond_resched();
3231  }
3232  sbi->s_overhead = overhead;
3233  smp_wmb();
3234  free_page((unsigned long) buf);
3235  return 0;
3236 }
3237 
3238 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3239 {
3240  char *orig_data = kstrdup(data, GFP_KERNEL);
3241  struct buffer_head *bh;
3242  struct ext4_super_block *es = NULL;
3243  struct ext4_sb_info *sbi;
3245  ext4_fsblk_t sb_block = get_sb_block(&data);
3246  ext4_fsblk_t logical_sb_block;
3247  unsigned long offset = 0;
3248  unsigned long journal_devnum = 0;
3249  unsigned long def_mount_opts;
3250  struct inode *root;
3251  char *cp;
3252  const char *descr;
3253  int ret = -ENOMEM;
3254  int blocksize, clustersize;
3255  unsigned int db_count;
3256  unsigned int i;
3257  int needs_recovery, has_huge_files, has_bigalloc;
3258  __u64 blocks_count;
3259  int err;
3260  unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3261  ext4_group_t first_not_zeroed;
3262 
3263  sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3264  if (!sbi)
3265  goto out_free_orig;
3266 
3267  sbi->s_blockgroup_lock =
3268  kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3269  if (!sbi->s_blockgroup_lock) {
3270  kfree(sbi);
3271  goto out_free_orig;
3272  }
3273  sb->s_fs_info = sbi;
3274  sbi->s_sb = sb;
3275  sbi->s_mount_opt = 0;
3276  sbi->s_resuid = make_kuid(&init_user_ns, EXT4_DEF_RESUID);
3277  sbi->s_resgid = make_kgid(&init_user_ns, EXT4_DEF_RESGID);
3278  sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3279  sbi->s_sb_block = sb_block;
3280  if (sb->s_bdev->bd_part)
3281  sbi->s_sectors_written_start =
3282  part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3283 
3284  /* Cleanup superblock name */
3285  for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3286  *cp = '!';
3287 
3288  ret = -EINVAL;
3289  blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3290  if (!blocksize) {
3291  ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3292  goto out_fail;
3293  }
3294 
3295  /*
3296  * The ext4 superblock will not be buffer aligned for other than 1kB
3297  * block sizes. We need to calculate the offset from buffer start.
3298  */
3299  if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3300  logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3301  offset = do_div(logical_sb_block, blocksize);
3302  } else {
3303  logical_sb_block = sb_block;
3304  }
3305 
3306  if (!(bh = sb_bread(sb, logical_sb_block))) {
3307  ext4_msg(sb, KERN_ERR, "unable to read superblock");
3308  goto out_fail;
3309  }
3310  /*
3311  * Note: s_es must be initialized as soon as possible because
3312  * some ext4 macro-instructions depend on its value
3313  */
3314  es = (struct ext4_super_block *) (bh->b_data + offset);
3315  sbi->s_es = es;
3316  sb->s_magic = le16_to_cpu(es->s_magic);
3317  if (sb->s_magic != EXT4_SUPER_MAGIC)
3318  goto cantfind_ext4;
3319  sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3320 
3321  /* Warn if metadata_csum and gdt_csum are both set. */
3325  ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3326  "redundant flags; please run fsck.");
3327 
3328  /* Check for a known checksum algorithm */
3329  if (!ext4_verify_csum_type(sb, es)) {
3330  ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3331  "unknown checksum algorithm.");
3332  silent = 1;
3333  goto cantfind_ext4;
3334  }
3335 
3336  /* Load the checksum driver */
3339  sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3340  if (IS_ERR(sbi->s_chksum_driver)) {
3341  ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3342  ret = PTR_ERR(sbi->s_chksum_driver);
3343  sbi->s_chksum_driver = NULL;
3344  goto failed_mount;
3345  }
3346  }
3347 
3348  /* Check superblock checksum */
3349  if (!ext4_superblock_csum_verify(sb, es)) {
3350  ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3351  "invalid superblock checksum. Run e2fsck?");
3352  silent = 1;
3353  goto cantfind_ext4;
3354  }
3355 
3356  /* Precompute checksum seed for all metadata */
3359  sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3360  sizeof(es->s_uuid));
3361 
3362  /* Set defaults before we parse the mount options */
3363  def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3364  set_opt(sb, INIT_INODE_TABLE);
3365  if (def_mount_opts & EXT4_DEFM_DEBUG)
3366  set_opt(sb, DEBUG);
3367  if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3368  set_opt(sb, GRPID);
3369  if (def_mount_opts & EXT4_DEFM_UID16)
3370  set_opt(sb, NO_UID32);
3371  /* xattr user namespace & acls are now defaulted on */
3372 #ifdef CONFIG_EXT4_FS_XATTR
3373  set_opt(sb, XATTR_USER);
3374 #endif
3375 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3376  set_opt(sb, POSIX_ACL);
3377 #endif
3378  set_opt(sb, MBLK_IO_SUBMIT);
3379  if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3380  set_opt(sb, JOURNAL_DATA);
3381  else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3382  set_opt(sb, ORDERED_DATA);
3383  else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3384  set_opt(sb, WRITEBACK_DATA);
3385 
3386  if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3387  set_opt(sb, ERRORS_PANIC);
3388  else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3389  set_opt(sb, ERRORS_CONT);
3390  else
3391  set_opt(sb, ERRORS_RO);
3392  if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3393  set_opt(sb, BLOCK_VALIDITY);
3394  if (def_mount_opts & EXT4_DEFM_DISCARD)
3395  set_opt(sb, DISCARD);
3396 
3397  sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3398  sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3399  sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3400  sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3401  sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3402 
3403  if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3404  set_opt(sb, BARRIER);
3405 
3406  /*
3407  * enable delayed allocation by default
3408  * Use -o nodelalloc to turn it off
3409  */
3410  if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3411  ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3412  set_opt(sb, DELALLOC);
3413 
3414  /*
3415  * set default s_li_wait_mult for lazyinit, for the case there is
3416  * no mount option specified.
3417  */
3418  sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3419 
3420  if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3421  &journal_devnum, &journal_ioprio, 0)) {
3422  ext4_msg(sb, KERN_WARNING,
3423  "failed to parse options in superblock: %s",
3424  sbi->s_es->s_mount_opts);
3425  }
3426  sbi->s_def_mount_opt = sbi->s_mount_opt;
3427  if (!parse_options((char *) data, sb, &journal_devnum,
3428  &journal_ioprio, 0))
3429  goto failed_mount;
3430 
3431  if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3432  printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3433  "with data=journal disables delayed "
3434  "allocation and O_DIRECT support!\n");
3435  if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3436  ext4_msg(sb, KERN_ERR, "can't mount with "
3437  "both data=journal and delalloc");
3438  goto failed_mount;
3439  }
3440  if (test_opt(sb, DIOREAD_NOLOCK)) {
3441  ext4_msg(sb, KERN_ERR, "can't mount with "
3442  "both data=journal and delalloc");
3443  goto failed_mount;
3444  }
3445  if (test_opt(sb, DELALLOC))
3446  clear_opt(sb, DELALLOC);
3447  }
3448 
3449  blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3450  if (test_opt(sb, DIOREAD_NOLOCK)) {
3451  if (blocksize < PAGE_SIZE) {
3452  ext4_msg(sb, KERN_ERR, "can't mount with "
3453  "dioread_nolock if block size != PAGE_SIZE");
3454  goto failed_mount;
3455  }
3456  }
3457 
3458  sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3459  (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3460 
3462  (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3463  EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3464  EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3465  ext4_msg(sb, KERN_WARNING,
3466  "feature flags set on rev 0 fs, "
3467  "running e2fsck is recommended");
3468 
3469  if (IS_EXT2_SB(sb)) {
3470  if (ext2_feature_set_ok(sb))
3471  ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3472  "using the ext4 subsystem");
3473  else {
3474  ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3475  "to feature incompatibilities");
3476  goto failed_mount;
3477  }
3478  }
3479 
3480  if (IS_EXT3_SB(sb)) {
3481  if (ext3_feature_set_ok(sb))
3482  ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3483  "using the ext4 subsystem");
3484  else {
3485  ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3486  "to feature incompatibilities");
3487  goto failed_mount;
3488  }
3489  }
3490 
3491  /*
3492  * Check feature flags regardless of the revision level, since we
3493  * previously didn't change the revision level when setting the flags,
3494  * so there is a chance incompat flags are set on a rev 0 filesystem.
3495  */
3496  if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3497  goto failed_mount;
3498 
3499  if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3500  blocksize > EXT4_MAX_BLOCK_SIZE) {
3501  ext4_msg(sb, KERN_ERR,
3502  "Unsupported filesystem blocksize %d", blocksize);
3503  goto failed_mount;
3504  }
3505 
3506  if (sb->s_blocksize != blocksize) {
3507  /* Validate the filesystem blocksize */
3508  if (!sb_set_blocksize(sb, blocksize)) {
3509  ext4_msg(sb, KERN_ERR, "bad block size %d",
3510  blocksize);
3511  goto failed_mount;
3512  }
3513 
3514  brelse(bh);
3515  logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3516  offset = do_div(logical_sb_block, blocksize);
3517  bh = sb_bread(sb, logical_sb_block);
3518  if (!bh) {
3519  ext4_msg(sb, KERN_ERR,
3520  "Can't read superblock on 2nd try");
3521  goto failed_mount;
3522  }
3523  es = (struct ext4_super_block *)(bh->b_data + offset);
3524  sbi->s_es = es;
3525  if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3526  ext4_msg(sb, KERN_ERR,
3527  "Magic mismatch, very weird!");
3528  goto failed_mount;
3529  }
3530  }
3531 
3532  has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3534  sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3535  has_huge_files);
3536  sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3537 
3539  sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3540  sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3541  } else {
3542  sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3543  sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3544  if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3545  (!is_power_of_2(sbi->s_inode_size)) ||
3546  (sbi->s_inode_size > blocksize)) {
3547  ext4_msg(sb, KERN_ERR,
3548  "unsupported inode size: %d",
3549  sbi->s_inode_size);
3550  goto failed_mount;
3551  }
3552  if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3553  sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3554  }
3555 
3556  sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3558  if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3559  sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3560  !is_power_of_2(sbi->s_desc_size)) {
3561  ext4_msg(sb, KERN_ERR,
3562  "unsupported descriptor size %lu",
3563  sbi->s_desc_size);
3564  goto failed_mount;
3565  }
3566  } else
3567  sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3568 
3569  sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3570  sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3571  if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3572  goto cantfind_ext4;
3573 
3574  sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3575  if (sbi->s_inodes_per_block == 0)
3576  goto cantfind_ext4;
3577  sbi->s_itb_per_group = sbi->s_inodes_per_group /
3578  sbi->s_inodes_per_block;
3579  sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3580  sbi->s_sbh = bh;
3581  sbi->s_mount_state = le16_to_cpu(es->s_state);
3582  sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3583  sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3584 
3585  for (i = 0; i < 4; i++)
3586  sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3587  sbi->s_def_hash_version = es->s_def_hash_version;
3588  i = le32_to_cpu(es->s_flags);
3589  if (i & EXT2_FLAGS_UNSIGNED_HASH)
3590  sbi->s_hash_unsigned = 3;
3591  else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3592 #ifdef __CHAR_UNSIGNED__
3593  es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3594  sbi->s_hash_unsigned = 3;
3595 #else
3596  es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3597 #endif
3598  }
3599 
3600  /* Handle clustersize */
3601  clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3602  has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3604  if (has_bigalloc) {
3605  if (clustersize < blocksize) {
3606  ext4_msg(sb, KERN_ERR,
3607  "cluster size (%d) smaller than "
3608  "block size (%d)", clustersize, blocksize);
3609  goto failed_mount;
3610  }
3611  sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3613  sbi->s_clusters_per_group =
3615  if (sbi->s_clusters_per_group > blocksize * 8) {
3616  ext4_msg(sb, KERN_ERR,
3617  "#clusters per group too big: %lu",
3618  sbi->s_clusters_per_group);
3619  goto failed_mount;
3620  }
3621  if (sbi->s_blocks_per_group !=
3622  (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3623  ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3624  "clusters per group (%lu) inconsistent",
3625  sbi->s_blocks_per_group,
3626  sbi->s_clusters_per_group);
3627  goto failed_mount;
3628  }
3629  } else {
3630  if (clustersize != blocksize) {
3631  ext4_warning(sb, "fragment/cluster size (%d) != "
3632  "block size (%d)", clustersize,
3633  blocksize);
3634  clustersize = blocksize;
3635  }
3636  if (sbi->s_blocks_per_group > blocksize * 8) {
3637  ext4_msg(sb, KERN_ERR,
3638  "#blocks per group too big: %lu",
3639  sbi->s_blocks_per_group);
3640  goto failed_mount;
3641  }
3642  sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3643  sbi->s_cluster_bits = 0;
3644  }
3645  sbi->s_cluster_ratio = clustersize / blocksize;
3646 
3647  if (sbi->s_inodes_per_group > blocksize * 8) {
3648  ext4_msg(sb, KERN_ERR,
3649  "#inodes per group too big: %lu",
3650  sbi->s_inodes_per_group);
3651  goto failed_mount;
3652  }
3653 
3654  /*
3655  * Test whether we have more sectors than will fit in sector_t,
3656  * and whether the max offset is addressable by the page cache.
3657  */
3659  ext4_blocks_count(es));
3660  if (err) {
3661  ext4_msg(sb, KERN_ERR, "filesystem"
3662  " too large to mount safely on this system");
3663  if (sizeof(sector_t) < 8)
3664  ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3665  ret = err;
3666  goto failed_mount;
3667  }
3668 
3669  if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3670  goto cantfind_ext4;
3671 
3672  /* check blocks count against device size */
3673  blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3674  if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3675  ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3676  "exceeds size of device (%llu blocks)",
3677  ext4_blocks_count(es), blocks_count);
3678  goto failed_mount;
3679  }
3680 
3681  /*
3682  * It makes no sense for the first data block to be beyond the end
3683  * of the filesystem.
3684  */
3685  if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3686  ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3687  "block %u is beyond end of filesystem (%llu)",
3689  ext4_blocks_count(es));
3690  goto failed_mount;
3691  }
3692  blocks_count = (ext4_blocks_count(es) -
3694  EXT4_BLOCKS_PER_GROUP(sb) - 1);
3695  do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3696  if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3697  ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3698  "(block count %llu, first data block %u, "
3699  "blocks per group %lu)", sbi->s_groups_count,
3700  ext4_blocks_count(es),
3702  EXT4_BLOCKS_PER_GROUP(sb));
3703  goto failed_mount;
3704  }
3705  sbi->s_groups_count = blocks_count;
3706  sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3708  db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3709  EXT4_DESC_PER_BLOCK(sb);
3710  sbi->s_group_desc = ext4_kvmalloc(db_count *
3711  sizeof(struct buffer_head *),
3712  GFP_KERNEL);
3713  if (sbi->s_group_desc == NULL) {
3714  ext4_msg(sb, KERN_ERR, "not enough memory");
3715  ret = -ENOMEM;
3716  goto failed_mount;
3717  }
3718 
3719  if (ext4_proc_root)
3720  sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3721 
3722  if (sbi->s_proc)
3723  proc_create_data("options", S_IRUGO, sbi->s_proc,
3724  &ext4_seq_options_fops, sb);
3725 
3726  bgl_lock_init(sbi->s_blockgroup_lock);
3727 
3728  for (i = 0; i < db_count; i++) {
3729  block = descriptor_loc(sb, logical_sb_block, i);
3730  sbi->s_group_desc[i] = sb_bread(sb, block);
3731  if (!sbi->s_group_desc[i]) {
3732  ext4_msg(sb, KERN_ERR,
3733  "can't read group descriptor %d", i);
3734  db_count = i;
3735  goto failed_mount2;
3736  }
3737  }
3738  if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3739  ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3740  goto failed_mount2;
3741  }
3743  if (!ext4_fill_flex_info(sb)) {
3744  ext4_msg(sb, KERN_ERR,
3745  "unable to initialize "
3746  "flex_bg meta info!");
3747  goto failed_mount2;
3748  }
3749 
3750  sbi->s_gdb_count = db_count;
3751  get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3752  spin_lock_init(&sbi->s_next_gen_lock);
3753 
3754  init_timer(&sbi->s_err_report);
3755  sbi->s_err_report.function = print_daily_error_info;
3756  sbi->s_err_report.data = (unsigned long) sb;
3757 
3758  err = percpu_counter_init(&sbi->s_freeclusters_counter,
3760  if (!err) {
3761  err = percpu_counter_init(&sbi->s_freeinodes_counter,
3763  }
3764  if (!err) {
3765  err = percpu_counter_init(&sbi->s_dirs_counter,
3766  ext4_count_dirs(sb));
3767  }
3768  if (!err) {
3769  err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3770  }
3771  if (err) {
3772  ext4_msg(sb, KERN_ERR, "insufficient memory");
3773  ret = err;
3774  goto failed_mount3;
3775  }
3776 
3777  sbi->s_stripe = ext4_get_stripe_size(sbi);
3778  sbi->s_max_writeback_mb_bump = 128;
3779  sbi->s_extent_max_zeroout_kb = 32;
3780 
3781  /*
3782  * set up enough so that it can read an inode
3783  */
3784  if (!test_opt(sb, NOLOAD) &&
3786  sb->s_op = &ext4_sops;
3787  else
3788  sb->s_op = &ext4_nojournal_sops;
3789  sb->s_export_op = &ext4_export_ops;
3791 #ifdef CONFIG_QUOTA
3792  sb->s_qcop = &ext4_qctl_operations;
3793  sb->dq_op = &ext4_quota_operations;
3794 
3796  /* Use qctl operations for hidden quota files. */
3797  sb->s_qcop = &ext4_qctl_sysfile_operations;
3798  }
3799 #endif
3800  memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3801 
3802  INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3803  mutex_init(&sbi->s_orphan_lock);
3804  sbi->s_resize_flags = 0;
3805 
3806  sb->s_root = NULL;
3807 
3808  needs_recovery = (es->s_last_orphan != 0 ||
3811 
3813  !(sb->s_flags & MS_RDONLY))
3815  goto failed_mount3;
3816 
3817  /*
3818  * The first inode we look at is the journal inode. Don't try
3819  * root first: it may be modified in the journal!
3820  */
3821  if (!test_opt(sb, NOLOAD) &&
3823  if (ext4_load_journal(sb, es, journal_devnum))
3824  goto failed_mount3;
3825  } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3827  ext4_msg(sb, KERN_ERR, "required journal recovery "
3828  "suppressed and not mounted read-only");
3829  goto failed_mount_wq;
3830  } else {
3831  clear_opt(sb, DATA_FLAGS);
3832  sbi->s_journal = NULL;
3833  needs_recovery = 0;
3834  goto no_journal;
3835  }
3836 
3840  ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3841  goto failed_mount_wq;
3842  }
3843 
3844  if (!set_journal_csum_feature_set(sb)) {
3845  ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3846  "feature set");
3847  goto failed_mount_wq;
3848  }
3849 
3850  /* We have now updated the journal if required, so we can
3851  * validate the data journaling mode. */
3852  switch (test_opt(sb, DATA_FLAGS)) {
3853  case 0:
3854  /* No mode set, assume a default based on the journal
3855  * capabilities: ORDERED_DATA if the journal can
3856  * cope, else JOURNAL_DATA
3857  */
3859  (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3860  set_opt(sb, ORDERED_DATA);
3861  else
3862  set_opt(sb, JOURNAL_DATA);
3863  break;
3864 
3868  (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3869  ext4_msg(sb, KERN_ERR, "Journal does not support "
3870  "requested data journaling mode");
3871  goto failed_mount_wq;
3872  }
3873  default:
3874  break;
3875  }
3876  set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3877 
3878  sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3879 
3880  /*
3881  * The journal may have updated the bg summary counts, so we
3882  * need to update the global counters.
3883  */
3884  percpu_counter_set(&sbi->s_freeclusters_counter,
3886  percpu_counter_set(&sbi->s_freeinodes_counter,
3888  percpu_counter_set(&sbi->s_dirs_counter,
3889  ext4_count_dirs(sb));
3890  percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3891 
3892 no_journal:
3893  /*
3894  * Get the # of file system overhead blocks from the
3895  * superblock if present.
3896  */
3897  if (es->s_overhead_clusters)
3898  sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3899  else {
3900  ret = ext4_calculate_overhead(sb);
3901  if (ret)
3902  goto failed_mount_wq;
3903  }
3904 
3905  /*
3906  * The maximum number of concurrent works can be high and
3907  * concurrency isn't really necessary. Limit it to 1.
3908  */
3909  EXT4_SB(sb)->dio_unwritten_wq =
3910  alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3911  if (!EXT4_SB(sb)->dio_unwritten_wq) {
3912  printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3913  goto failed_mount_wq;
3914  }
3915 
3916  /*
3917  * The jbd2_journal_load will have done any necessary log recovery,
3918  * so we can safely mount the rest of the filesystem now.
3919  */
3920 
3921  root = ext4_iget(sb, EXT4_ROOT_INO);
3922  if (IS_ERR(root)) {
3923  ext4_msg(sb, KERN_ERR, "get root inode failed");
3924  ret = PTR_ERR(root);
3925  root = NULL;
3926  goto failed_mount4;
3927  }
3928  if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3929  ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3930  iput(root);
3931  goto failed_mount4;
3932  }
3933  sb->s_root = d_make_root(root);
3934  if (!sb->s_root) {
3935  ext4_msg(sb, KERN_ERR, "get root dentry failed");
3936  ret = -ENOMEM;
3937  goto failed_mount4;
3938  }
3939 
3940  if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3941  sb->s_flags |= MS_RDONLY;
3942 
3943  /* determine the minimum size of new large inodes, if present */
3944  if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3945  sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3949  if (sbi->s_want_extra_isize <
3951  sbi->s_want_extra_isize =
3953  if (sbi->s_want_extra_isize <
3955  sbi->s_want_extra_isize =
3957  }
3958  }
3959  /* Check if enough inode space is available */
3960  if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3961  sbi->s_inode_size) {
3962  sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3964  ext4_msg(sb, KERN_INFO, "required extra inode space not"
3965  "available");
3966  }
3967 
3968  err = ext4_setup_system_zone(sb);
3969  if (err) {
3970  ext4_msg(sb, KERN_ERR, "failed to initialize system "
3971  "zone (%d)", err);
3972  goto failed_mount4a;
3973  }
3974 
3975  ext4_ext_init(sb);
3976  err = ext4_mb_init(sb);
3977  if (err) {
3978  ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3979  err);
3980  goto failed_mount5;
3981  }
3982 
3983  err = ext4_register_li_request(sb, first_not_zeroed);
3984  if (err)
3985  goto failed_mount6;
3986 
3987  sbi->s_kobj.kset = ext4_kset;
3988  init_completion(&sbi->s_kobj_unregister);
3989  err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3990  "%s", sb->s_id);
3991  if (err)
3992  goto failed_mount7;
3993 
3994  EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3995  ext4_orphan_cleanup(sb, es);
3996  EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3997  if (needs_recovery) {
3998  ext4_msg(sb, KERN_INFO, "recovery complete");
3999  ext4_mark_recovery_complete(sb, es);
4000  }
4001  if (EXT4_SB(sb)->s_journal) {
4002  if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4003  descr = " journalled data mode";
4004  else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4005  descr = " ordered data mode";
4006  else
4007  descr = " writeback data mode";
4008  } else
4009  descr = "out journal";
4010 
4011 #ifdef CONFIG_QUOTA
4012  /* Enable quota usage during mount. */
4014  !(sb->s_flags & MS_RDONLY)) {
4015  ret = ext4_enable_quotas(sb);
4016  if (ret)
4017  goto failed_mount7;
4018  }
4019 #endif /* CONFIG_QUOTA */
4020 
4021  ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4022  "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4023  *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4024 
4025  if (es->s_error_count)
4026  mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4027 
4028  kfree(orig_data);
4029  return 0;
4030 
4031 cantfind_ext4:
4032  if (!silent)
4033  ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4034  goto failed_mount;
4035 
4036 failed_mount7:
4037  ext4_unregister_li_request(sb);
4038 failed_mount6:
4039  ext4_mb_release(sb);
4040 failed_mount5:
4041  ext4_ext_release(sb);
4043 failed_mount4a:
4044  dput(sb->s_root);
4045  sb->s_root = NULL;
4046 failed_mount4:
4047  ext4_msg(sb, KERN_ERR, "mount failed");
4048  destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
4049 failed_mount_wq:
4050  if (sbi->s_journal) {
4051  jbd2_journal_destroy(sbi->s_journal);
4052  sbi->s_journal = NULL;
4053  }
4054 failed_mount3:
4055  del_timer(&sbi->s_err_report);
4056  if (sbi->s_flex_groups)
4057  ext4_kvfree(sbi->s_flex_groups);
4058  percpu_counter_destroy(&sbi->s_freeclusters_counter);
4059  percpu_counter_destroy(&sbi->s_freeinodes_counter);
4060  percpu_counter_destroy(&sbi->s_dirs_counter);
4061  percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4062  if (sbi->s_mmp_tsk)
4063  kthread_stop(sbi->s_mmp_tsk);
4064 failed_mount2:
4065  for (i = 0; i < db_count; i++)
4066  brelse(sbi->s_group_desc[i]);
4067  ext4_kvfree(sbi->s_group_desc);
4068 failed_mount:
4069  if (sbi->s_chksum_driver)
4070  crypto_free_shash(sbi->s_chksum_driver);
4071  if (sbi->s_proc) {
4072  remove_proc_entry("options", sbi->s_proc);
4073  remove_proc_entry(sb->s_id, ext4_proc_root);
4074  }
4075 #ifdef CONFIG_QUOTA
4076  for (i = 0; i < MAXQUOTAS; i++)
4077  kfree(sbi->s_qf_names[i]);
4078 #endif
4079  ext4_blkdev_remove(sbi);
4080  brelse(bh);
4081 out_fail:
4082  sb->s_fs_info = NULL;
4083  kfree(sbi->s_blockgroup_lock);
4084  kfree(sbi);
4085 out_free_orig:
4086  kfree(orig_data);
4087  return ret;
4088 }
4089 
4090 /*
4091  * Setup any per-fs journal parameters now. We'll do this both on
4092  * initial mount, once the journal has been initialised but before we've
4093  * done any recovery; and again on any subsequent remount.
4094  */
4095 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4096 {
4097  struct ext4_sb_info *sbi = EXT4_SB(sb);
4098 
4099  journal->j_commit_interval = sbi->s_commit_interval;
4100  journal->j_min_batch_time = sbi->s_min_batch_time;
4101  journal->j_max_batch_time = sbi->s_max_batch_time;
4102 
4103  write_lock(&journal->j_state_lock);
4104  if (test_opt(sb, BARRIER))
4105  journal->j_flags |= JBD2_BARRIER;
4106  else
4107  journal->j_flags &= ~JBD2_BARRIER;
4108  if (test_opt(sb, DATA_ERR_ABORT))
4109  journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4110  else
4111  journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4112  write_unlock(&journal->j_state_lock);
4113 }
4114 
4115 static journal_t *ext4_get_journal(struct super_block *sb,
4116  unsigned int journal_inum)
4117 {
4118  struct inode *journal_inode;
4119  journal_t *journal;
4120 
4122 
4123  /* First, test for the existence of a valid inode on disk. Bad
4124  * things happen if we iget() an unused inode, as the subsequent
4125  * iput() will try to delete it. */
4126 
4127  journal_inode = ext4_iget(sb, journal_inum);
4128  if (IS_ERR(journal_inode)) {
4129  ext4_msg(sb, KERN_ERR, "no journal found");
4130  return NULL;
4131  }
4132  if (!journal_inode->i_nlink) {
4133  make_bad_inode(journal_inode);
4134  iput(journal_inode);
4135  ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4136  return NULL;
4137  }
4138 
4139  jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4140  journal_inode, journal_inode->i_size);
4141  if (!S_ISREG(journal_inode->i_mode)) {
4142  ext4_msg(sb, KERN_ERR, "invalid journal inode");
4143  iput(journal_inode);
4144  return NULL;
4145  }
4146 
4147  journal = jbd2_journal_init_inode(journal_inode);
4148  if (!journal) {
4149  ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4150  iput(journal_inode);
4151  return NULL;
4152  }
4153  journal->j_private = sb;
4154  ext4_init_journal_params(sb, journal);
4155  return journal;
4156 }
4157 
4158 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4159  dev_t j_dev)
4160 {
4161  struct buffer_head *bh;
4162  journal_t *journal;
4164  ext4_fsblk_t len;
4165  int hblock, blocksize;
4166  ext4_fsblk_t sb_block;
4167  unsigned long offset;
4168  struct ext4_super_block *es;
4169  struct block_device *bdev;
4170 
4172 
4173  bdev = ext4_blkdev_get(j_dev, sb);
4174  if (bdev == NULL)
4175  return NULL;
4176 
4177  blocksize = sb->s_blocksize;
4178  hblock = bdev_logical_block_size(bdev);
4179  if (blocksize < hblock) {
4180  ext4_msg(sb, KERN_ERR,
4181  "blocksize too small for journal device");
4182  goto out_bdev;
4183  }
4184 
4185  sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4186  offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4187  set_blocksize(bdev, blocksize);
4188  if (!(bh = __bread(bdev, sb_block, blocksize))) {
4189  ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4190  "external journal");
4191  goto out_bdev;
4192  }
4193 
4194  es = (struct ext4_super_block *) (bh->b_data + offset);
4195  if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4198  ext4_msg(sb, KERN_ERR, "external journal has "
4199  "bad superblock");
4200  brelse(bh);
4201  goto out_bdev;
4202  }
4203 
4204  if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4205  ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4206  brelse(bh);
4207  goto out_bdev;
4208  }
4209 
4210  len = ext4_blocks_count(es);
4211  start = sb_block + 1;
4212  brelse(bh); /* we're done with the superblock */
4213 
4214  journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4215  start, len, blocksize);
4216  if (!journal) {
4217  ext4_msg(sb, KERN_ERR, "failed to create device journal");
4218  goto out_bdev;
4219  }
4220  journal->j_private = sb;
4221  ll_rw_block(READ, 1, &journal->j_sb_buffer);
4222  wait_on_buffer(journal->j_sb_buffer);
4223  if (!buffer_uptodate(journal->j_sb_buffer)) {
4224  ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4225  goto out_journal;
4226  }
4227  if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4228  ext4_msg(sb, KERN_ERR, "External journal has more than one "
4229  "user (unsupported) - %d",
4230  be32_to_cpu(journal->j_superblock->s_nr_users));
4231  goto out_journal;
4232  }
4233  EXT4_SB(sb)->journal_bdev = bdev;
4234  ext4_init_journal_params(sb, journal);
4235  return journal;
4236 
4237 out_journal:
4238  jbd2_journal_destroy(journal);
4239 out_bdev:
4240  ext4_blkdev_put(bdev);
4241  return NULL;
4242 }
4243 
4244 static int ext4_load_journal(struct super_block *sb,
4245  struct ext4_super_block *es,
4246  unsigned long journal_devnum)
4247 {
4248  journal_t *journal;
4249  unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4250  dev_t journal_dev;
4251  int err = 0;
4252  int really_read_only;
4253 
4255 
4256  if (journal_devnum &&
4257  journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4258  ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4259  "numbers have changed");
4260  journal_dev = new_decode_dev(journal_devnum);
4261  } else
4262  journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4263 
4264  really_read_only = bdev_read_only(sb->s_bdev);
4265 
4266  /*
4267  * Are we loading a blank journal or performing recovery after a
4268  * crash? For recovery, we need to check in advance whether we
4269  * can get read-write access to the device.
4270  */
4272  if (sb->s_flags & MS_RDONLY) {
4273  ext4_msg(sb, KERN_INFO, "INFO: recovery "
4274  "required on readonly filesystem");
4275  if (really_read_only) {
4276  ext4_msg(sb, KERN_ERR, "write access "
4277  "unavailable, cannot proceed");
4278  return -EROFS;
4279  }
4280  ext4_msg(sb, KERN_INFO, "write access will "
4281  "be enabled during recovery");
4282  }
4283  }
4284 
4285  if (journal_inum && journal_dev) {
4286  ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4287  "and inode journals!");
4288  return -EINVAL;
4289  }
4290 
4291  if (journal_inum) {
4292  if (!(journal = ext4_get_journal(sb, journal_inum)))
4293  return -EINVAL;
4294  } else {
4295  if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4296  return -EINVAL;
4297  }
4298 
4299  if (!(journal->j_flags & JBD2_BARRIER))
4300  ext4_msg(sb, KERN_INFO, "barriers disabled");
4301 
4303  err = jbd2_journal_wipe(journal, !really_read_only);
4304  if (!err) {
4305  char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4306  if (save)
4307  memcpy(save, ((char *) es) +
4309  err = jbd2_journal_load(journal);
4310  if (save)
4311  memcpy(((char *) es) + EXT4_S_ERR_START,
4312  save, EXT4_S_ERR_LEN);
4313  kfree(save);
4314  }
4315 
4316  if (err) {
4317  ext4_msg(sb, KERN_ERR, "error loading journal");
4318  jbd2_journal_destroy(journal);
4319  return err;
4320  }
4321 
4322  EXT4_SB(sb)->s_journal = journal;
4323  ext4_clear_journal_err(sb, es);
4324 
4325  if (!really_read_only && journal_devnum &&
4326  journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4327  es->s_journal_dev = cpu_to_le32(journal_devnum);
4328 
4329  /* Make sure we flush the recovery flag to disk. */
4330  ext4_commit_super(sb, 1);
4331  }
4332 
4333  return 0;
4334 }
4335 
4336 static int ext4_commit_super(struct super_block *sb, int sync)
4337 {
4338  struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4339  struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4340  int error = 0;
4341 
4342  if (!sbh || block_device_ejected(sb))
4343  return error;
4344  if (buffer_write_io_error(sbh)) {
4345  /*
4346  * Oh, dear. A previous attempt to write the
4347  * superblock failed. This could happen because the
4348  * USB device was yanked out. Or it could happen to
4349  * be a transient write error and maybe the block will
4350  * be remapped. Nothing we can do but to retry the
4351  * write and hope for the best.
4352  */
4353  ext4_msg(sb, KERN_ERR, "previous I/O error to "
4354  "superblock detected");
4355  clear_buffer_write_io_error(sbh);
4356  set_buffer_uptodate(sbh);
4357  }
4358  /*
4359  * If the file system is mounted read-only, don't update the
4360  * superblock write time. This avoids updating the superblock
4361  * write time when we are mounting the root file system
4362  * read/only but we need to replay the journal; at that point,
4363  * for people who are east of GMT and who make their clock
4364  * tick in localtime for Windows bug-for-bug compatibility,
4365  * the clock is set in the future, and this will cause e2fsck
4366  * to complain and force a full file system check.
4367  */
4368  if (!(sb->s_flags & MS_RDONLY))
4369  es->s_wtime = cpu_to_le32(get_seconds());
4370  if (sb->s_bdev->bd_part)
4371  es->s_kbytes_written =
4372  cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4373  ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4374  EXT4_SB(sb)->s_sectors_written_start) >> 1));
4375  else
4376  es->s_kbytes_written =
4377  cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4378  ext4_free_blocks_count_set(es,
4379  EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4380  &EXT4_SB(sb)->s_freeclusters_counter)));
4381  es->s_free_inodes_count =
4382  cpu_to_le32(percpu_counter_sum_positive(
4383  &EXT4_SB(sb)->s_freeinodes_counter));
4384  BUFFER_TRACE(sbh, "marking dirty");
4386  mark_buffer_dirty(sbh);
4387  if (sync) {
4388  error = sync_dirty_buffer(sbh);
4389  if (error)
4390  return error;
4391 
4392  error = buffer_write_io_error(sbh);
4393  if (error) {
4394  ext4_msg(sb, KERN_ERR, "I/O error while writing "
4395  "superblock");
4396  clear_buffer_write_io_error(sbh);
4397  set_buffer_uptodate(sbh);
4398  }
4399  }
4400  return error;
4401 }
4402 
4403 /*
4404  * Have we just finished recovery? If so, and if we are mounting (or
4405  * remounting) the filesystem readonly, then we will end up with a
4406  * consistent fs on disk. Record that fact.
4407  */
4408 static void ext4_mark_recovery_complete(struct super_block *sb,
4409  struct ext4_super_block *es)
4410 {
4411  journal_t *journal = EXT4_SB(sb)->s_journal;
4412 
4414  BUG_ON(journal != NULL);
4415  return;
4416  }
4417  jbd2_journal_lock_updates(journal);
4418  if (jbd2_journal_flush(journal) < 0)
4419  goto out;
4420 
4422  sb->s_flags & MS_RDONLY) {
4424  ext4_commit_super(sb, 1);
4425  }
4426 
4427 out:
4428  jbd2_journal_unlock_updates(journal);
4429 }
4430 
4431 /*
4432  * If we are mounting (or read-write remounting) a filesystem whose journal
4433  * has recorded an error from a previous lifetime, move that error to the
4434  * main filesystem now.
4435  */
4436 static void ext4_clear_journal_err(struct super_block *sb,
4437  struct ext4_super_block *es)
4438 {
4439  journal_t *journal;
4440  int j_errno;
4441  const char *errstr;
4442 
4444 
4445  journal = EXT4_SB(sb)->s_journal;
4446 
4447  /*
4448  * Now check for any error status which may have been recorded in the
4449  * journal by a prior ext4_error() or ext4_abort()
4450  */
4451 
4452  j_errno = jbd2_journal_errno(journal);
4453  if (j_errno) {
4454  char nbuf[16];
4455 
4456  errstr = ext4_decode_error(sb, j_errno, nbuf);
4457  ext4_warning(sb, "Filesystem error recorded "
4458  "from previous mount: %s", errstr);
4459  ext4_warning(sb, "Marking fs in need of filesystem check.");
4460 
4461  EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4462  es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4463  ext4_commit_super(sb, 1);
4464 
4465  jbd2_journal_clear_err(journal);
4467  }
4468 }
4469 
4470 /*
4471  * Force the running and committing transactions to commit,
4472  * and wait on the commit.
4473  */
4475 {
4476  journal_t *journal;
4477  int ret = 0;
4478 
4479  if (sb->s_flags & MS_RDONLY)
4480  return 0;
4481 
4482  journal = EXT4_SB(sb)->s_journal;
4483  if (journal)
4484  ret = ext4_journal_force_commit(journal);
4485 
4486  return ret;
4487 }
4488 
4489 static int ext4_sync_fs(struct super_block *sb, int wait)
4490 {
4491  int ret = 0;
4492  tid_t target;
4493  struct ext4_sb_info *sbi = EXT4_SB(sb);
4494 
4495  trace_ext4_sync_fs(sb, wait);
4496  flush_workqueue(sbi->dio_unwritten_wq);
4497  /*
4498  * Writeback quota in non-journalled quota case - journalled quota has
4499  * no dirty dquots
4500  */
4501  dquot_writeback_dquots(sb, -1);
4502  if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4503  if (wait)
4504  jbd2_log_wait_commit(sbi->s_journal, target);
4505  }
4506  return ret;
4507 }
4508 
4509 /*
4510  * LVM calls this function before a (read-only) snapshot is created. This
4511  * gives us a chance to flush the journal completely and mark the fs clean.
4512  *
4513  * Note that only this function cannot bring a filesystem to be in a clean
4514  * state independently. It relies on upper layer to stop all data & metadata
4515  * modifications.
4516  */
4517 static int ext4_freeze(struct super_block *sb)
4518 {
4519  int error = 0;
4520  journal_t *journal;
4521 
4522  if (sb->s_flags & MS_RDONLY)
4523  return 0;
4524 
4525  journal = EXT4_SB(sb)->s_journal;
4526 
4527  /* Now we set up the journal barrier. */
4528  jbd2_journal_lock_updates(journal);
4529 
4530  /*
4531  * Don't clear the needs_recovery flag if we failed to flush
4532  * the journal.
4533  */
4534  error = jbd2_journal_flush(journal);
4535  if (error < 0)
4536  goto out;
4537 
4538  /* Journal blocked and flushed, clear needs_recovery flag. */
4540  error = ext4_commit_super(sb, 1);
4541 out:
4542  /* we rely on upper layer to stop further updates */
4544  return error;
4545 }
4546 
4547 /*
4548  * Called by LVM after the snapshot is done. We need to reset the RECOVER
4549  * flag here, even though the filesystem is not technically dirty yet.
4550  */
4551 static int ext4_unfreeze(struct super_block *sb)
4552 {
4553  if (sb->s_flags & MS_RDONLY)
4554  return 0;
4555 
4556  /* Reset the needs_recovery flag before the fs is unlocked. */
4558  ext4_commit_super(sb, 1);
4559  return 0;
4560 }
4561 
4562 /*
4563  * Structure to save mount options for ext4_remount's benefit
4564  */
4566  unsigned long s_mount_opt;
4567  unsigned long s_mount_opt2;
4570  unsigned long s_commit_interval;
4572 #ifdef CONFIG_QUOTA
4573  int s_jquota_fmt;
4574  char *s_qf_names[MAXQUOTAS];
4575 #endif
4576 };
4577 
4578 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4579 {
4580  struct ext4_super_block *es;
4581  struct ext4_sb_info *sbi = EXT4_SB(sb);
4582  unsigned long old_sb_flags;
4583  struct ext4_mount_options old_opts;
4584  int enable_quota = 0;
4585  ext4_group_t g;
4586  unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4587  int err = 0;
4588 #ifdef CONFIG_QUOTA
4589  int i;
4590 #endif
4591  char *orig_data = kstrdup(data, GFP_KERNEL);
4592 
4593  /* Store the original options */
4594  old_sb_flags = sb->s_flags;
4595  old_opts.s_mount_opt = sbi->s_mount_opt;
4596  old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4597  old_opts.s_resuid = sbi->s_resuid;
4598  old_opts.s_resgid = sbi->s_resgid;
4599  old_opts.s_commit_interval = sbi->s_commit_interval;
4600  old_opts.s_min_batch_time = sbi->s_min_batch_time;
4601  old_opts.s_max_batch_time = sbi->s_max_batch_time;
4602 #ifdef CONFIG_QUOTA
4603  old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4604  for (i = 0; i < MAXQUOTAS; i++)
4605  old_opts.s_qf_names[i] = sbi->s_qf_names[i];
4606 #endif
4607  if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4608  journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4609 
4610  /*
4611  * Allow the "check" option to be passed as a remount option.
4612  */
4613  if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4614  err = -EINVAL;
4615  goto restore_opts;
4616  }
4617 
4618  if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4619  ext4_abort(sb, "Abort forced by user");
4620 
4621  sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4622  (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4623 
4624  es = sbi->s_es;
4625 
4626  if (sbi->s_journal) {
4627  ext4_init_journal_params(sb, sbi->s_journal);
4628  set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4629  }
4630 
4631  if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4632  if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4633  err = -EROFS;
4634  goto restore_opts;
4635  }
4636 
4637  if (*flags & MS_RDONLY) {
4638  err = dquot_suspend(sb, -1);
4639  if (err < 0)
4640  goto restore_opts;
4641 
4642  /*
4643  * First of all, the unconditional stuff we have to do
4644  * to disable replay of the journal when we next remount
4645  */
4646  sb->s_flags |= MS_RDONLY;
4647 
4648  /*
4649  * OK, test if we are remounting a valid rw partition
4650  * readonly, and if so set the rdonly flag and then
4651  * mark the partition as valid again.
4652  */
4653  if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4654  (sbi->s_mount_state & EXT4_VALID_FS))
4655  es->s_state = cpu_to_le16(sbi->s_mount_state);
4656 
4657  if (sbi->s_journal)
4658  ext4_mark_recovery_complete(sb, es);
4659  } else {
4660  /* Make sure we can mount this feature set readwrite */
4661  if (!ext4_feature_set_ok(sb, 0)) {
4662  err = -EROFS;
4663  goto restore_opts;
4664  }
4665  /*
4666  * Make sure the group descriptor checksums
4667  * are sane. If they aren't, refuse to remount r/w.
4668  */
4669  for (g = 0; g < sbi->s_groups_count; g++) {
4670  struct ext4_group_desc *gdp =
4671  ext4_get_group_desc(sb, g, NULL);
4672 
4673  if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4674  ext4_msg(sb, KERN_ERR,
4675  "ext4_remount: Checksum for group %u failed (%u!=%u)",
4676  g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4677  le16_to_cpu(gdp->bg_checksum));
4678  err = -EINVAL;
4679  goto restore_opts;
4680  }
4681  }
4682 
4683  /*
4684  * If we have an unprocessed orphan list hanging
4685  * around from a previously readonly bdev mount,
4686  * require a full umount/remount for now.
4687  */
4688  if (es->s_last_orphan) {
4689  ext4_msg(sb, KERN_WARNING, "Couldn't "
4690  "remount RDWR because of unprocessed "
4691  "orphan inode list. Please "
4692  "umount/remount instead");
4693  err = -EINVAL;
4694  goto restore_opts;
4695  }
4696 
4697  /*
4698  * Mounting a RDONLY partition read-write, so reread
4699  * and store the current valid flag. (It may have
4700  * been changed by e2fsck since we originally mounted
4701  * the partition.)
4702  */
4703  if (sbi->s_journal)
4704  ext4_clear_journal_err(sb, es);
4705  sbi->s_mount_state = le16_to_cpu(es->s_state);
4706  if (!ext4_setup_super(sb, es, 0))
4707  sb->s_flags &= ~MS_RDONLY;
4710  if (ext4_multi_mount_protect(sb,
4711  le64_to_cpu(es->s_mmp_block))) {
4712  err = -EROFS;
4713  goto restore_opts;
4714  }
4715  enable_quota = 1;
4716  }
4717  }
4718 
4719  /*
4720  * Reinitialize lazy itable initialization thread based on
4721  * current settings
4722  */
4723  if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4724  ext4_unregister_li_request(sb);
4725  else {
4726  ext4_group_t first_not_zeroed;
4727  first_not_zeroed = ext4_has_uninit_itable(sb);
4728  ext4_register_li_request(sb, first_not_zeroed);
4729  }
4730 
4732  if (sbi->s_journal == NULL)
4733  ext4_commit_super(sb, 1);
4734 
4735 #ifdef CONFIG_QUOTA
4736  /* Release old quota file names */
4737  for (i = 0; i < MAXQUOTAS; i++)
4738  if (old_opts.s_qf_names[i] &&
4739  old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4740  kfree(old_opts.s_qf_names[i]);
4741  if (enable_quota) {
4742  if (sb_any_quota_suspended(sb))
4743  dquot_resume(sb, -1);
4744  else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4746  err = ext4_enable_quotas(sb);
4747  if (err)
4748  goto restore_opts;
4749  }
4750  }
4751 #endif
4752 
4753  ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4754  kfree(orig_data);
4755  return 0;
4756 
4757 restore_opts:
4758  sb->s_flags = old_sb_flags;
4759  sbi->s_mount_opt = old_opts.s_mount_opt;
4760  sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4761  sbi->s_resuid = old_opts.s_resuid;
4762  sbi->s_resgid = old_opts.s_resgid;
4763  sbi->s_commit_interval = old_opts.s_commit_interval;
4764  sbi->s_min_batch_time = old_opts.s_min_batch_time;
4765  sbi->s_max_batch_time = old_opts.s_max_batch_time;
4766 #ifdef CONFIG_QUOTA
4767  sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4768  for (i = 0; i < MAXQUOTAS; i++) {
4769  if (sbi->s_qf_names[i] &&
4770  old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4771  kfree(sbi->s_qf_names[i]);
4772  sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4773  }
4774 #endif
4775  kfree(orig_data);
4776  return err;
4777 }
4778 
4779 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4780 {
4781  struct super_block *sb = dentry->d_sb;
4782  struct ext4_sb_info *sbi = EXT4_SB(sb);
4783  struct ext4_super_block *es = sbi->s_es;
4784  ext4_fsblk_t overhead = 0;
4785  u64 fsid;
4786  s64 bfree;
4787 
4788  if (!test_opt(sb, MINIX_DF))
4789  overhead = sbi->s_overhead;
4790 
4791  buf->f_type = EXT4_SUPER_MAGIC;
4792  buf->f_bsize = sb->s_blocksize;
4793  buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, sbi->s_overhead);
4794  bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4795  percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4796  /* prevent underflow in case that few free space is available */
4797  buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4798  buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4799  if (buf->f_bfree < ext4_r_blocks_count(es))
4800  buf->f_bavail = 0;
4801  buf->f_files = le32_to_cpu(es->s_inodes_count);
4802  buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4803  buf->f_namelen = EXT4_NAME_LEN;
4804  fsid = le64_to_cpup((void *)es->s_uuid) ^
4805  le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4806  buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4807  buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4808 
4809  return 0;
4810 }
4811 
4812 /* Helper function for writing quotas on sync - we need to start transaction
4813  * before quota file is locked for write. Otherwise the are possible deadlocks:
4814  * Process 1 Process 2
4815  * ext4_create() quota_sync()
4816  * jbd2_journal_start() write_dquot()
4817  * dquot_initialize() down(dqio_mutex)
4818  * down(dqio_mutex) jbd2_journal_start()
4819  *
4820  */
4821 
4822 #ifdef CONFIG_QUOTA
4823 
4824 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4825 {
4826  return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
4827 }
4828 
4829 static int ext4_write_dquot(struct dquot *dquot)
4830 {
4831  int ret, err;
4832  handle_t *handle;
4833  struct inode *inode;
4834 
4835  inode = dquot_to_inode(dquot);
4836  handle = ext4_journal_start(inode,
4837  EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4838  if (IS_ERR(handle))
4839  return PTR_ERR(handle);
4840  ret = dquot_commit(dquot);
4841  err = ext4_journal_stop(handle);
4842  if (!ret)
4843  ret = err;
4844  return ret;
4845 }
4846 
4847 static int ext4_acquire_dquot(struct dquot *dquot)
4848 {
4849  int ret, err;
4850  handle_t *handle;
4851 
4852  handle = ext4_journal_start(dquot_to_inode(dquot),
4853  EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4854  if (IS_ERR(handle))
4855  return PTR_ERR(handle);
4856  ret = dquot_acquire(dquot);
4857  err = ext4_journal_stop(handle);
4858  if (!ret)
4859  ret = err;
4860  return ret;
4861 }
4862 
4863 static int ext4_release_dquot(struct dquot *dquot)
4864 {
4865  int ret, err;
4866  handle_t *handle;
4867 
4868  handle = ext4_journal_start(dquot_to_inode(dquot),
4869  EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4870  if (IS_ERR(handle)) {
4871  /* Release dquot anyway to avoid endless cycle in dqput() */
4872  dquot_release(dquot);
4873  return PTR_ERR(handle);
4874  }
4875  ret = dquot_release(dquot);
4876  err = ext4_journal_stop(handle);
4877  if (!ret)
4878  ret = err;
4879  return ret;
4880 }
4881 
4882 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4883 {
4884  /* Are we journaling quotas? */
4885  if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4886  EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4887  dquot_mark_dquot_dirty(dquot);
4888  return ext4_write_dquot(dquot);
4889  } else {
4890  return dquot_mark_dquot_dirty(dquot);
4891  }
4892 }
4893 
4894 static int ext4_write_info(struct super_block *sb, int type)
4895 {
4896  int ret, err;
4897  handle_t *handle;
4898 
4899  /* Data block + inode block */
4900  handle = ext4_journal_start(sb->s_root->d_inode, 2);
4901  if (IS_ERR(handle))
4902  return PTR_ERR(handle);
4903  ret = dquot_commit_info(sb, type);
4904  err = ext4_journal_stop(handle);
4905  if (!ret)
4906  ret = err;
4907  return ret;
4908 }
4909 
4910 /*
4911  * Turn on quotas during mount time - we need to find
4912  * the quota file and such...
4913  */
4914 static int ext4_quota_on_mount(struct super_block *sb, int type)
4915 {
4916  return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4917  EXT4_SB(sb)->s_jquota_fmt, type);
4918 }
4919 
4920 /*
4921  * Standard function to be called on quota_on
4922  */
4923 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4924  struct path *path)
4925 {
4926  int err;
4927 
4928  if (!test_opt(sb, QUOTA))
4929  return -EINVAL;
4930 
4931  /* Quotafile not on the same filesystem? */
4932  if (path->dentry->d_sb != sb)
4933  return -EXDEV;
4934  /* Journaling quota? */
4935  if (EXT4_SB(sb)->s_qf_names[type]) {
4936  /* Quotafile not in fs root? */
4937  if (path->dentry->d_parent != sb->s_root)
4938  ext4_msg(sb, KERN_WARNING,
4939  "Quota file not on filesystem root. "
4940  "Journaled quota will not work");
4941  }
4942 
4943  /*
4944  * When we journal data on quota file, we have to flush journal to see
4945  * all updates to the file when we bypass pagecache...
4946  */
4947  if (EXT4_SB(sb)->s_journal &&
4948  ext4_should_journal_data(path->dentry->d_inode)) {
4949  /*
4950  * We don't need to lock updates but journal_flush() could
4951  * otherwise be livelocked...
4952  */
4954  err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4956  if (err)
4957  return err;
4958  }
4959 
4960  return dquot_quota_on(sb, type, format_id, path);
4961 }
4962 
4963 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
4964  unsigned int flags)
4965 {
4966  int err;
4967  struct inode *qf_inode;
4968  unsigned long qf_inums[MAXQUOTAS] = {
4969  le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
4970  le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
4971  };
4972 
4974 
4975  if (!qf_inums[type])
4976  return -EPERM;
4977 
4978  qf_inode = ext4_iget(sb, qf_inums[type]);
4979  if (IS_ERR(qf_inode)) {
4980  ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
4981  return PTR_ERR(qf_inode);
4982  }
4983 
4984  err = dquot_enable(qf_inode, type, format_id, flags);
4985  iput(qf_inode);
4986 
4987  return err;
4988 }
4989 
4990 /* Enable usage tracking for all quota types. */
4991 static int ext4_enable_quotas(struct super_block *sb)
4992 {
4993  int type, err = 0;
4994  unsigned long qf_inums[MAXQUOTAS] = {
4995  le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
4996  le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
4997  };
4998 
4999  sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5000  for (type = 0; type < MAXQUOTAS; type++) {
5001  if (qf_inums[type]) {
5002  err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5004  if (err) {
5005  ext4_warning(sb,
5006  "Failed to enable quota (type=%d) "
5007  "tracking. Please run e2fsck to fix.",
5008  type);
5009  return err;
5010  }
5011  }
5012  }
5013  return 0;
5014 }
5015 
5016 /*
5017  * quota_on function that is used when QUOTA feature is set.
5018  */
5019 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
5020  int format_id)
5021 {
5023  return -EINVAL;
5024 
5025  /*
5026  * USAGE was enabled at mount time. Only need to enable LIMITS now.
5027  */
5028  return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED);
5029 }
5030 
5031 static int ext4_quota_off(struct super_block *sb, int type)
5032 {
5033  struct inode *inode = sb_dqopt(sb)->files[type];
5034  handle_t *handle;
5035 
5036  /* Force all delayed allocation blocks to be allocated.
5037  * Caller already holds s_umount sem */
5038  if (test_opt(sb, DELALLOC))
5039  sync_filesystem(sb);
5040 
5041  if (!inode)
5042  goto out;
5043 
5044  /* Update modification times of quota files when userspace can
5045  * start looking at them */
5046  handle = ext4_journal_start(inode, 1);
5047  if (IS_ERR(handle))
5048  goto out;
5049  inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5050  ext4_mark_inode_dirty(handle, inode);
5051  ext4_journal_stop(handle);
5052 
5053 out:
5054  return dquot_quota_off(sb, type);
5055 }
5056 
5057 /*
5058  * quota_off function that is used when QUOTA feature is set.
5059  */
5060 static int ext4_quota_off_sysfile(struct super_block *sb, int type)
5061 {
5063  return -EINVAL;
5064 
5065  /* Disable only the limits. */
5066  return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
5067 }
5068 
5069 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5070  * acquiring the locks... As quota files are never truncated and quota code
5071  * itself serializes the operations (and no one else should touch the files)
5072  * we don't have to be afraid of races */
5073 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5074  size_t len, loff_t off)
5075 {
5076  struct inode *inode = sb_dqopt(sb)->files[type];
5077  ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5078  int err = 0;
5079  int offset = off & (sb->s_blocksize - 1);
5080  int tocopy;
5081  size_t toread;
5082  struct buffer_head *bh;
5083  loff_t i_size = i_size_read(inode);
5084 
5085  if (off > i_size)
5086  return 0;
5087  if (off+len > i_size)
5088  len = i_size-off;
5089  toread = len;
5090  while (toread > 0) {
5091  tocopy = sb->s_blocksize - offset < toread ?
5092  sb->s_blocksize - offset : toread;
5093  bh = ext4_bread(NULL, inode, blk, 0, &err);
5094  if (err)
5095  return err;
5096  if (!bh) /* A hole? */
5097  memset(data, 0, tocopy);
5098  else
5099  memcpy(data, bh->b_data+offset, tocopy);
5100  brelse(bh);
5101  offset = 0;
5102  toread -= tocopy;
5103  data += tocopy;
5104  blk++;
5105  }
5106  return len;
5107 }
5108 
5109 /* Write to quotafile (we know the transaction is already started and has
5110  * enough credits) */
5111 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5112  const char *data, size_t len, loff_t off)
5113 {
5114  struct inode *inode = sb_dqopt(sb)->files[type];
5115  ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5116  int err = 0;
5117  int offset = off & (sb->s_blocksize - 1);
5118  struct buffer_head *bh;
5119  handle_t *handle = journal_current_handle();
5120 
5121  if (EXT4_SB(sb)->s_journal && !handle) {
5122  ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5123  " cancelled because transaction is not started",
5124  (unsigned long long)off, (unsigned long long)len);
5125  return -EIO;
5126  }
5127  /*
5128  * Since we account only one data block in transaction credits,
5129  * then it is impossible to cross a block boundary.
5130  */
5131  if (sb->s_blocksize - offset < len) {
5132  ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5133  " cancelled because not block aligned",
5134  (unsigned long long)off, (unsigned long long)len);
5135  return -EIO;
5136  }
5137 
5138  bh = ext4_bread(handle, inode, blk, 1, &err);
5139  if (!bh)
5140  goto out;
5141  err = ext4_journal_get_write_access(handle, bh);
5142  if (err) {
5143  brelse(bh);
5144  goto out;
5145  }
5146  lock_buffer(bh);
5147  memcpy(bh->b_data+offset, data, len);
5148  flush_dcache_page(bh->b_page);
5149  unlock_buffer(bh);
5150  err = ext4_handle_dirty_metadata(handle, NULL, bh);
5151  brelse(bh);
5152 out:
5153  if (err)
5154  return err;
5155  if (inode->i_size < off + len) {
5156  i_size_write(inode, off + len);
5157  EXT4_I(inode)->i_disksize = inode->i_size;
5158  ext4_mark_inode_dirty(handle, inode);
5159  }
5160  return len;
5161 }
5162 
5163 #endif
5164 
5165 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5166  const char *dev_name, void *data)
5167 {
5168  return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5169 }
5170 
5171 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5172 static inline void register_as_ext2(void)
5173 {
5174  int err = register_filesystem(&ext2_fs_type);
5175  if (err)
5177  "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5178 }
5179 
5180 static inline void unregister_as_ext2(void)
5181 {
5182  unregister_filesystem(&ext2_fs_type);
5183 }
5184 
5185 static inline int ext2_feature_set_ok(struct super_block *sb)
5186 {
5188  return 0;
5189  if (sb->s_flags & MS_RDONLY)
5190  return 1;
5192  return 0;
5193  return 1;
5194 }
5195 MODULE_ALIAS("ext2");
5196 #else
5197 static inline void register_as_ext2(void) { }
5198 static inline void unregister_as_ext2(void) { }
5199 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5200 #endif
5201 
5202 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5203 static inline void register_as_ext3(void)
5204 {
5205  int err = register_filesystem(&ext3_fs_type);
5206  if (err)
5208  "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5209 }
5210 
5211 static inline void unregister_as_ext3(void)
5212 {
5213  unregister_filesystem(&ext3_fs_type);
5214 }
5215 
5216 static inline int ext3_feature_set_ok(struct super_block *sb)
5217 {
5219  return 0;
5221  return 0;
5222  if (sb->s_flags & MS_RDONLY)
5223  return 1;
5225  return 0;
5226  return 1;
5227 }
5228 MODULE_ALIAS("ext3");
5229 #else
5230 static inline void register_as_ext3(void) { }
5231 static inline void unregister_as_ext3(void) { }
5232 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5233 #endif
5234 
5235 static struct file_system_type ext4_fs_type = {
5236  .owner = THIS_MODULE,
5237  .name = "ext4",
5238  .mount = ext4_mount,
5239  .kill_sb = kill_block_super,
5240  .fs_flags = FS_REQUIRES_DEV,
5241 };
5242 
5243 static int __init ext4_init_feat_adverts(void)
5244 {
5245  struct ext4_features *ef;
5246  int ret = -ENOMEM;
5247 
5248  ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5249  if (!ef)
5250  goto out;
5251 
5252  ef->f_kobj.kset = ext4_kset;
5253  init_completion(&ef->f_kobj_unregister);
5254  ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5255  "features");
5256  if (ret) {
5257  kfree(ef);
5258  goto out;
5259  }
5260 
5261  ext4_feat = ef;
5262  ret = 0;
5263 out:
5264  return ret;
5265 }
5266 
5267 static void ext4_exit_feat_adverts(void)
5268 {
5269  kobject_put(&ext4_feat->f_kobj);
5270  wait_for_completion(&ext4_feat->f_kobj_unregister);
5271  kfree(ext4_feat);
5272 }
5273 
5274 /* Shared across all ext4 file systems */
5276 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5277 
5278 static int __init ext4_init_fs(void)
5279 {
5280  int i, err;
5281 
5282  ext4_li_info = NULL;
5283  mutex_init(&ext4_li_mtx);
5284 
5285  ext4_check_flag_values();
5286 
5287  for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5289  init_waitqueue_head(&ext4__ioend_wq[i]);
5290  }
5291 
5292  err = ext4_init_pageio();
5293  if (err)
5294  return err;
5295  err = ext4_init_system_zone();
5296  if (err)
5297  goto out6;
5298  ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5299  if (!ext4_kset) {
5300  err = -ENOMEM;
5301  goto out5;
5302  }
5303  ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5304 
5305  err = ext4_init_feat_adverts();
5306  if (err)
5307  goto out4;
5308 
5309  err = ext4_init_mballoc();
5310  if (err)
5311  goto out3;
5312 
5313  err = ext4_init_xattr();
5314  if (err)
5315  goto out2;
5316  err = init_inodecache();
5317  if (err)
5318  goto out1;
5319  register_as_ext3();
5320  register_as_ext2();
5321  err = register_filesystem(&ext4_fs_type);
5322  if (err)
5323  goto out;
5324 
5325  return 0;
5326 out:
5327  unregister_as_ext2();
5328  unregister_as_ext3();
5329  destroy_inodecache();
5330 out1:
5331  ext4_exit_xattr();
5332 out2:
5334 out3:
5335  ext4_exit_feat_adverts();
5336 out4:
5337  if (ext4_proc_root)
5338  remove_proc_entry("fs/ext4", NULL);
5339  kset_unregister(ext4_kset);
5340 out5:
5342 out6:
5343  ext4_exit_pageio();
5344  return err;
5345 }
5346 
5347 static void __exit ext4_exit_fs(void)
5348 {
5349  ext4_destroy_lazyinit_thread();
5350  unregister_as_ext2();
5351  unregister_as_ext3();
5352  unregister_filesystem(&ext4_fs_type);
5353  destroy_inodecache();
5354  ext4_exit_xattr();
5356  ext4_exit_feat_adverts();
5357  remove_proc_entry("fs/ext4", NULL);
5358  kset_unregister(ext4_kset);
5360  ext4_exit_pageio();
5361 }
5362 
5363 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5364 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5365 MODULE_LICENSE("GPL");
5366 module_init(ext4_init_fs)
5367 module_exit(ext4_exit_fs)