Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
namespace.c
Go to the documentation of this file.
1 /*
2  * linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  * Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/namei.h>
16 #include <linux/security.h>
17 #include <linux/idr.h>
18 #include <linux/acct.h> /* acct_auto_close_mnt */
19 #include <linux/ramfs.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include "pnode.h"
24 #include "internal.h"
25 
26 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
27 #define HASH_SIZE (1UL << HASH_SHIFT)
28 
29 static int event;
30 static DEFINE_IDA(mnt_id_ida);
31 static DEFINE_IDA(mnt_group_ida);
32 static DEFINE_SPINLOCK(mnt_id_lock);
33 static int mnt_id_start = 0;
34 static int mnt_group_start = 1;
35 
36 static struct list_head *mount_hashtable __read_mostly;
37 static struct kmem_cache *mnt_cache __read_mostly;
38 static struct rw_semaphore namespace_sem;
39 
40 /* /sys/fs */
41 struct kobject *fs_kobj;
42 EXPORT_SYMBOL_GPL(fs_kobj);
43 
44 /*
45  * vfsmount lock may be taken for read to prevent changes to the
46  * vfsmount hash, ie. during mountpoint lookups or walking back
47  * up the tree.
48  *
49  * It should be taken for write in all cases where the vfsmount
50  * tree or hash is modified or when a vfsmount structure is modified.
51  */
52 DEFINE_BRLOCK(vfsmount_lock);
53 
54 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
55 {
56  unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
57  tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
58  tmp = tmp + (tmp >> HASH_SHIFT);
59  return tmp & (HASH_SIZE - 1);
60 }
61 
62 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
63 
64 /*
65  * allocation is serialized by namespace_sem, but we need the spinlock to
66  * serialize with freeing.
67  */
68 static int mnt_alloc_id(struct mount *mnt)
69 {
70  int res;
71 
72 retry:
73  ida_pre_get(&mnt_id_ida, GFP_KERNEL);
74  spin_lock(&mnt_id_lock);
75  res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
76  if (!res)
77  mnt_id_start = mnt->mnt_id + 1;
78  spin_unlock(&mnt_id_lock);
79  if (res == -EAGAIN)
80  goto retry;
81 
82  return res;
83 }
84 
85 static void mnt_free_id(struct mount *mnt)
86 {
87  int id = mnt->mnt_id;
88  spin_lock(&mnt_id_lock);
89  ida_remove(&mnt_id_ida, id);
90  if (mnt_id_start > id)
91  mnt_id_start = id;
92  spin_unlock(&mnt_id_lock);
93 }
94 
95 /*
96  * Allocate a new peer group ID
97  *
98  * mnt_group_ida is protected by namespace_sem
99  */
100 static int mnt_alloc_group_id(struct mount *mnt)
101 {
102  int res;
103 
104  if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
105  return -ENOMEM;
106 
107  res = ida_get_new_above(&mnt_group_ida,
108  mnt_group_start,
109  &mnt->mnt_group_id);
110  if (!res)
111  mnt_group_start = mnt->mnt_group_id + 1;
112 
113  return res;
114 }
115 
116 /*
117  * Release a peer group ID
118  */
119 void mnt_release_group_id(struct mount *mnt)
120 {
121  int id = mnt->mnt_group_id;
122  ida_remove(&mnt_group_ida, id);
123  if (mnt_group_start > id)
124  mnt_group_start = id;
125  mnt->mnt_group_id = 0;
126 }
127 
128 /*
129  * vfsmount lock must be held for read
130  */
131 static inline void mnt_add_count(struct mount *mnt, int n)
132 {
133 #ifdef CONFIG_SMP
134  this_cpu_add(mnt->mnt_pcp->mnt_count, n);
135 #else
136  preempt_disable();
137  mnt->mnt_count += n;
138  preempt_enable();
139 #endif
140 }
141 
142 /*
143  * vfsmount lock must be held for write
144  */
145 unsigned int mnt_get_count(struct mount *mnt)
146 {
147 #ifdef CONFIG_SMP
148  unsigned int count = 0;
149  int cpu;
150 
151  for_each_possible_cpu(cpu) {
152  count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
153  }
154 
155  return count;
156 #else
157  return mnt->mnt_count;
158 #endif
159 }
160 
161 static struct mount *alloc_vfsmnt(const char *name)
162 {
163  struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
164  if (mnt) {
165  int err;
166 
167  err = mnt_alloc_id(mnt);
168  if (err)
169  goto out_free_cache;
170 
171  if (name) {
172  mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
173  if (!mnt->mnt_devname)
174  goto out_free_id;
175  }
176 
177 #ifdef CONFIG_SMP
178  mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
179  if (!mnt->mnt_pcp)
180  goto out_free_devname;
181 
182  this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
183 #else
184  mnt->mnt_count = 1;
185  mnt->mnt_writers = 0;
186 #endif
187 
188  INIT_LIST_HEAD(&mnt->mnt_hash);
189  INIT_LIST_HEAD(&mnt->mnt_child);
190  INIT_LIST_HEAD(&mnt->mnt_mounts);
191  INIT_LIST_HEAD(&mnt->mnt_list);
192  INIT_LIST_HEAD(&mnt->mnt_expire);
193  INIT_LIST_HEAD(&mnt->mnt_share);
194  INIT_LIST_HEAD(&mnt->mnt_slave_list);
195  INIT_LIST_HEAD(&mnt->mnt_slave);
196 #ifdef CONFIG_FSNOTIFY
197  INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
198 #endif
199  }
200  return mnt;
201 
202 #ifdef CONFIG_SMP
203 out_free_devname:
204  kfree(mnt->mnt_devname);
205 #endif
206 out_free_id:
207  mnt_free_id(mnt);
208 out_free_cache:
209  kmem_cache_free(mnt_cache, mnt);
210  return NULL;
211 }
212 
213 /*
214  * Most r/o checks on a fs are for operations that take
215  * discrete amounts of time, like a write() or unlink().
216  * We must keep track of when those operations start
217  * (for permission checks) and when they end, so that
218  * we can determine when writes are able to occur to
219  * a filesystem.
220  */
221 /*
222  * __mnt_is_readonly: check whether a mount is read-only
223  * @mnt: the mount to check for its write status
224  *
225  * This shouldn't be used directly ouside of the VFS.
226  * It does not guarantee that the filesystem will stay
227  * r/w, just that it is right *now*. This can not and
228  * should not be used in place of IS_RDONLY(inode).
229  * mnt_want/drop_write() will _keep_ the filesystem
230  * r/w.
231  */
232 int __mnt_is_readonly(struct vfsmount *mnt)
233 {
234  if (mnt->mnt_flags & MNT_READONLY)
235  return 1;
236  if (mnt->mnt_sb->s_flags & MS_RDONLY)
237  return 1;
238  return 0;
239 }
241 
242 static inline void mnt_inc_writers(struct mount *mnt)
243 {
244 #ifdef CONFIG_SMP
245  this_cpu_inc(mnt->mnt_pcp->mnt_writers);
246 #else
247  mnt->mnt_writers++;
248 #endif
249 }
250 
251 static inline void mnt_dec_writers(struct mount *mnt)
252 {
253 #ifdef CONFIG_SMP
254  this_cpu_dec(mnt->mnt_pcp->mnt_writers);
255 #else
256  mnt->mnt_writers--;
257 #endif
258 }
259 
260 static unsigned int mnt_get_writers(struct mount *mnt)
261 {
262 #ifdef CONFIG_SMP
263  unsigned int count = 0;
264  int cpu;
265 
266  for_each_possible_cpu(cpu) {
267  count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
268  }
269 
270  return count;
271 #else
272  return mnt->mnt_writers;
273 #endif
274 }
275 
276 static int mnt_is_readonly(struct vfsmount *mnt)
277 {
278  if (mnt->mnt_sb->s_readonly_remount)
279  return 1;
280  /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
281  smp_rmb();
282  return __mnt_is_readonly(mnt);
283 }
284 
285 /*
286  * Most r/o & frozen checks on a fs are for operations that take discrete
287  * amounts of time, like a write() or unlink(). We must keep track of when
288  * those operations start (for permission checks) and when they end, so that we
289  * can determine when writes are able to occur to a filesystem.
290  */
302 {
303  struct mount *mnt = real_mount(m);
304  int ret = 0;
305 
306  preempt_disable();
307  mnt_inc_writers(mnt);
308  /*
309  * The store to mnt_inc_writers must be visible before we pass
310  * MNT_WRITE_HOLD loop below, so that the slowpath can see our
311  * incremented count after it has set MNT_WRITE_HOLD.
312  */
313  smp_mb();
314  while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
315  cpu_relax();
316  /*
317  * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
318  * be set to match its requirements. So we must not load that until
319  * MNT_WRITE_HOLD is cleared.
320  */
321  smp_rmb();
322  if (mnt_is_readonly(m)) {
323  mnt_dec_writers(mnt);
324  ret = -EROFS;
325  }
326  preempt_enable();
327 
328  return ret;
329 }
330 
341 {
342  int ret;
343 
344  sb_start_write(m->mnt_sb);
345  ret = __mnt_want_write(m);
346  if (ret)
347  sb_end_write(m->mnt_sb);
348  return ret;
349 }
351 
364 int mnt_clone_write(struct vfsmount *mnt)
365 {
366  /* superblock may be r/o */
367  if (__mnt_is_readonly(mnt))
368  return -EROFS;
369  preempt_disable();
370  mnt_inc_writers(real_mount(mnt));
371  preempt_enable();
372  return 0;
373 }
375 
384 {
385  struct inode *inode = file->f_dentry->d_inode;
386 
387  if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
388  return __mnt_want_write(file->f_path.mnt);
389  else
390  return mnt_clone_write(file->f_path.mnt);
391 }
392 
401 {
402  int ret;
403 
404  sb_start_write(file->f_path.mnt->mnt_sb);
405  ret = __mnt_want_write_file(file);
406  if (ret)
407  sb_end_write(file->f_path.mnt->mnt_sb);
408  return ret;
409 }
411 
420 void __mnt_drop_write(struct vfsmount *mnt)
421 {
422  preempt_disable();
423  mnt_dec_writers(real_mount(mnt));
424  preempt_enable();
425 }
426 
435 void mnt_drop_write(struct vfsmount *mnt)
436 {
437  __mnt_drop_write(mnt);
438  sb_end_write(mnt->mnt_sb);
439 }
441 
443 {
444  __mnt_drop_write(file->f_path.mnt);
445 }
446 
448 {
449  mnt_drop_write(file->f_path.mnt);
450 }
452 
453 static int mnt_make_readonly(struct mount *mnt)
454 {
455  int ret = 0;
456 
457  br_write_lock(&vfsmount_lock);
458  mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
459  /*
460  * After storing MNT_WRITE_HOLD, we'll read the counters. This store
461  * should be visible before we do.
462  */
463  smp_mb();
464 
465  /*
466  * With writers on hold, if this value is zero, then there are
467  * definitely no active writers (although held writers may subsequently
468  * increment the count, they'll have to wait, and decrement it after
469  * seeing MNT_READONLY).
470  *
471  * It is OK to have counter incremented on one CPU and decremented on
472  * another: the sum will add up correctly. The danger would be when we
473  * sum up each counter, if we read a counter before it is incremented,
474  * but then read another CPU's count which it has been subsequently
475  * decremented from -- we would see more decrements than we should.
476  * MNT_WRITE_HOLD protects against this scenario, because
477  * mnt_want_write first increments count, then smp_mb, then spins on
478  * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
479  * we're counting up here.
480  */
481  if (mnt_get_writers(mnt) > 0)
482  ret = -EBUSY;
483  else
484  mnt->mnt.mnt_flags |= MNT_READONLY;
485  /*
486  * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
487  * that become unheld will see MNT_READONLY.
488  */
489  smp_wmb();
490  mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
491  br_write_unlock(&vfsmount_lock);
492  return ret;
493 }
494 
495 static void __mnt_unmake_readonly(struct mount *mnt)
496 {
497  br_write_lock(&vfsmount_lock);
498  mnt->mnt.mnt_flags &= ~MNT_READONLY;
499  br_write_unlock(&vfsmount_lock);
500 }
501 
503 {
504  struct mount *mnt;
505  int err = 0;
506 
507  /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
508  if (atomic_long_read(&sb->s_remove_count))
509  return -EBUSY;
510 
513  if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
514  mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
515  smp_mb();
516  if (mnt_get_writers(mnt) > 0) {
517  err = -EBUSY;
518  break;
519  }
520  }
521  }
522  if (!err && atomic_long_read(&sb->s_remove_count))
523  err = -EBUSY;
524 
525  if (!err) {
526  sb->s_readonly_remount = 1;
527  smp_wmb();
528  }
530  if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
531  mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
532  }
534 
535  return err;
536 }
537 
538 static void free_vfsmnt(struct mount *mnt)
539 {
540  kfree(mnt->mnt_devname);
541  mnt_free_id(mnt);
542 #ifdef CONFIG_SMP
543  free_percpu(mnt->mnt_pcp);
544 #endif
545  kmem_cache_free(mnt_cache, mnt);
546 }
547 
548 /*
549  * find the first or last mount at @dentry on vfsmount @mnt depending on
550  * @dir. If @dir is set return the first mount else return the last mount.
551  * vfsmount_lock must be held for read or write.
552  */
553 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
554  int dir)
555 {
556  struct list_head *head = mount_hashtable + hash(mnt, dentry);
557  struct list_head *tmp = head;
558  struct mount *p, *found = NULL;
559 
560  for (;;) {
561  tmp = dir ? tmp->next : tmp->prev;
562  p = NULL;
563  if (tmp == head)
564  break;
565  p = list_entry(tmp, struct mount, mnt_hash);
566  if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
567  found = p;
568  break;
569  }
570  }
571  return found;
572 }
573 
574 /*
575  * lookup_mnt - Return the first child mount mounted at path
576  *
577  * "First" means first mounted chronologically. If you create the
578  * following mounts:
579  *
580  * mount /dev/sda1 /mnt
581  * mount /dev/sda2 /mnt
582  * mount /dev/sda3 /mnt
583  *
584  * Then lookup_mnt() on the base /mnt dentry in the root mount will
585  * return successively the root dentry and vfsmount of /dev/sda1, then
586  * /dev/sda2, then /dev/sda3, then NULL.
587  *
588  * lookup_mnt takes a reference to the found vfsmount.
589  */
590 struct vfsmount *lookup_mnt(struct path *path)
591 {
592  struct mount *child_mnt;
593 
595  child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
596  if (child_mnt) {
597  mnt_add_count(child_mnt, 1);
599  return &child_mnt->mnt;
600  } else {
602  return NULL;
603  }
604 }
605 
606 static inline int check_mnt(struct mount *mnt)
607 {
608  return mnt->mnt_ns == current->nsproxy->mnt_ns;
609 }
610 
611 /*
612  * vfsmount lock must be held for write
613  */
614 static void touch_mnt_namespace(struct mnt_namespace *ns)
615 {
616  if (ns) {
617  ns->event = ++event;
619  }
620 }
621 
622 /*
623  * vfsmount lock must be held for write
624  */
625 static void __touch_mnt_namespace(struct mnt_namespace *ns)
626 {
627  if (ns && ns->event != event) {
628  ns->event = event;
630  }
631 }
632 
633 /*
634  * Clear dentry's mounted state if it has no remaining mounts.
635  * vfsmount_lock must be held for write.
636  */
637 static void dentry_reset_mounted(struct dentry *dentry)
638 {
639  unsigned u;
640 
641  for (u = 0; u < HASH_SIZE; u++) {
642  struct mount *p;
643 
644  list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
645  if (p->mnt_mountpoint == dentry)
646  return;
647  }
648  }
649  spin_lock(&dentry->d_lock);
650  dentry->d_flags &= ~DCACHE_MOUNTED;
651  spin_unlock(&dentry->d_lock);
652 }
653 
654 /*
655  * vfsmount lock must be held for write
656  */
657 static void detach_mnt(struct mount *mnt, struct path *old_path)
658 {
659  old_path->dentry = mnt->mnt_mountpoint;
660  old_path->mnt = &mnt->mnt_parent->mnt;
661  mnt->mnt_parent = mnt;
662  mnt->mnt_mountpoint = mnt->mnt.mnt_root;
663  list_del_init(&mnt->mnt_child);
664  list_del_init(&mnt->mnt_hash);
665  dentry_reset_mounted(old_path->dentry);
666 }
667 
668 /*
669  * vfsmount lock must be held for write
670  */
671 void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
672  struct mount *child_mnt)
673 {
674  mnt_add_count(mnt, 1); /* essentially, that's mntget */
675  child_mnt->mnt_mountpoint = dget(dentry);
676  child_mnt->mnt_parent = mnt;
677  spin_lock(&dentry->d_lock);
678  dentry->d_flags |= DCACHE_MOUNTED;
679  spin_unlock(&dentry->d_lock);
680 }
681 
682 /*
683  * vfsmount lock must be held for write
684  */
685 static void attach_mnt(struct mount *mnt, struct path *path)
686 {
687  mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
688  list_add_tail(&mnt->mnt_hash, mount_hashtable +
689  hash(path->mnt, path->dentry));
690  list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
691 }
692 
693 /*
694  * vfsmount lock must be held for write
695  */
696 static void commit_tree(struct mount *mnt)
697 {
698  struct mount *parent = mnt->mnt_parent;
699  struct mount *m;
700  LIST_HEAD(head);
701  struct mnt_namespace *n = parent->mnt_ns;
702 
703  BUG_ON(parent == mnt);
704 
705  list_add_tail(&head, &mnt->mnt_list);
706  list_for_each_entry(m, &head, mnt_list)
707  m->mnt_ns = n;
708 
709  list_splice(&head, n->list.prev);
710 
711  list_add_tail(&mnt->mnt_hash, mount_hashtable +
712  hash(&parent->mnt, mnt->mnt_mountpoint));
713  list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
714  touch_mnt_namespace(n);
715 }
716 
717 static struct mount *next_mnt(struct mount *p, struct mount *root)
718 {
719  struct list_head *next = p->mnt_mounts.next;
720  if (next == &p->mnt_mounts) {
721  while (1) {
722  if (p == root)
723  return NULL;
724  next = p->mnt_child.next;
725  if (next != &p->mnt_parent->mnt_mounts)
726  break;
727  p = p->mnt_parent;
728  }
729  }
730  return list_entry(next, struct mount, mnt_child);
731 }
732 
733 static struct mount *skip_mnt_tree(struct mount *p)
734 {
735  struct list_head *prev = p->mnt_mounts.prev;
736  while (prev != &p->mnt_mounts) {
737  p = list_entry(prev, struct mount, mnt_child);
738  prev = p->mnt_mounts.prev;
739  }
740  return p;
741 }
742 
743 struct vfsmount *
744 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
745 {
746  struct mount *mnt;
747  struct dentry *root;
748 
749  if (!type)
750  return ERR_PTR(-ENODEV);
751 
752  mnt = alloc_vfsmnt(name);
753  if (!mnt)
754  return ERR_PTR(-ENOMEM);
755 
756  if (flags & MS_KERNMOUNT)
757  mnt->mnt.mnt_flags = MNT_INTERNAL;
758 
759  root = mount_fs(type, flags, name, data);
760  if (IS_ERR(root)) {
761  free_vfsmnt(mnt);
762  return ERR_CAST(root);
763  }
764 
765  mnt->mnt.mnt_root = root;
766  mnt->mnt.mnt_sb = root->d_sb;
767  mnt->mnt_mountpoint = mnt->mnt.mnt_root;
768  mnt->mnt_parent = mnt;
770  list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
772  return &mnt->mnt;
773 }
775 
776 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
777  int flag)
778 {
779  struct super_block *sb = old->mnt.mnt_sb;
780  struct mount *mnt;
781  int err;
782 
783  mnt = alloc_vfsmnt(old->mnt_devname);
784  if (!mnt)
785  return ERR_PTR(-ENOMEM);
786 
787  if (flag & (CL_SLAVE | CL_PRIVATE))
788  mnt->mnt_group_id = 0; /* not a peer of original */
789  else
790  mnt->mnt_group_id = old->mnt_group_id;
791 
792  if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
793  err = mnt_alloc_group_id(mnt);
794  if (err)
795  goto out_free;
796  }
797 
798  mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
799  atomic_inc(&sb->s_active);
800  mnt->mnt.mnt_sb = sb;
801  mnt->mnt.mnt_root = dget(root);
802  mnt->mnt_mountpoint = mnt->mnt.mnt_root;
803  mnt->mnt_parent = mnt;
804  br_write_lock(&vfsmount_lock);
805  list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
806  br_write_unlock(&vfsmount_lock);
807 
808  if (flag & CL_SLAVE) {
809  list_add(&mnt->mnt_slave, &old->mnt_slave_list);
810  mnt->mnt_master = old;
811  CLEAR_MNT_SHARED(mnt);
812  } else if (!(flag & CL_PRIVATE)) {
813  if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
814  list_add(&mnt->mnt_share, &old->mnt_share);
815  if (IS_MNT_SLAVE(old))
816  list_add(&mnt->mnt_slave, &old->mnt_slave);
817  mnt->mnt_master = old->mnt_master;
818  }
819  if (flag & CL_MAKE_SHARED)
820  set_mnt_shared(mnt);
821 
822  /* stick the duplicate mount on the same expiry list
823  * as the original if that was on one */
824  if (flag & CL_EXPIRE) {
825  if (!list_empty(&old->mnt_expire))
826  list_add(&mnt->mnt_expire, &old->mnt_expire);
827  }
828 
829  return mnt;
830 
831  out_free:
832  free_vfsmnt(mnt);
833  return ERR_PTR(err);
834 }
835 
836 static inline void mntfree(struct mount *mnt)
837 {
838  struct vfsmount *m = &mnt->mnt;
839  struct super_block *sb = m->mnt_sb;
840 
841  /*
842  * This probably indicates that somebody messed
843  * up a mnt_want/drop_write() pair. If this
844  * happens, the filesystem was probably unable
845  * to make r/w->r/o transitions.
846  */
847  /*
848  * The locking used to deal with mnt_count decrement provides barriers,
849  * so mnt_get_writers() below is safe.
850  */
851  WARN_ON(mnt_get_writers(mnt));
852  fsnotify_vfsmount_delete(m);
853  dput(m->mnt_root);
854  free_vfsmnt(mnt);
855  deactivate_super(sb);
856 }
857 
858 static void mntput_no_expire(struct mount *mnt)
859 {
860 put_again:
861 #ifdef CONFIG_SMP
862  br_read_lock(&vfsmount_lock);
863  if (likely(mnt->mnt_ns)) {
864  /* shouldn't be the last one */
865  mnt_add_count(mnt, -1);
866  br_read_unlock(&vfsmount_lock);
867  return;
868  }
869  br_read_unlock(&vfsmount_lock);
870 
871  br_write_lock(&vfsmount_lock);
872  mnt_add_count(mnt, -1);
873  if (mnt_get_count(mnt)) {
874  br_write_unlock(&vfsmount_lock);
875  return;
876  }
877 #else
878  mnt_add_count(mnt, -1);
879  if (likely(mnt_get_count(mnt)))
880  return;
881  br_write_lock(&vfsmount_lock);
882 #endif
883  if (unlikely(mnt->mnt_pinned)) {
884  mnt_add_count(mnt, mnt->mnt_pinned + 1);
885  mnt->mnt_pinned = 0;
886  br_write_unlock(&vfsmount_lock);
887  acct_auto_close_mnt(&mnt->mnt);
888  goto put_again;
889  }
890 
891  list_del(&mnt->mnt_instance);
892  br_write_unlock(&vfsmount_lock);
893  mntfree(mnt);
894 }
895 
896 void mntput(struct vfsmount *mnt)
897 {
898  if (mnt) {
899  struct mount *m = real_mount(mnt);
900  /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
901  if (unlikely(m->mnt_expiry_mark))
902  m->mnt_expiry_mark = 0;
903  mntput_no_expire(m);
904  }
905 }
907 
908 struct vfsmount *mntget(struct vfsmount *mnt)
909 {
910  if (mnt)
911  mnt_add_count(real_mount(mnt), 1);
912  return mnt;
913 }
915 
916 void mnt_pin(struct vfsmount *mnt)
917 {
919  real_mount(mnt)->mnt_pinned++;
921 }
923 
924 void mnt_unpin(struct vfsmount *m)
925 {
926  struct mount *mnt = real_mount(m);
928  if (mnt->mnt_pinned) {
929  mnt_add_count(mnt, 1);
930  mnt->mnt_pinned--;
931  }
933 }
935 
936 static inline void mangle(struct seq_file *m, const char *s)
937 {
938  seq_escape(m, s, " \t\n\\");
939 }
940 
941 /*
942  * Simple .show_options callback for filesystems which don't want to
943  * implement more complex mount option showing.
944  *
945  * See also save_mount_options().
946  */
947 int generic_show_options(struct seq_file *m, struct dentry *root)
948 {
949  const char *options;
950 
951  rcu_read_lock();
952  options = rcu_dereference(root->d_sb->s_options);
953 
954  if (options != NULL && options[0]) {
955  seq_putc(m, ',');
956  mangle(m, options);
957  }
958  rcu_read_unlock();
959 
960  return 0;
961 }
963 
964 /*
965  * If filesystem uses generic_show_options(), this function should be
966  * called from the fill_super() callback.
967  *
968  * The .remount_fs callback usually needs to be handled in a special
969  * way, to make sure, that previous options are not overwritten if the
970  * remount fails.
971  *
972  * Also note, that if the filesystem's .remount_fs function doesn't
973  * reset all options to their default value, but changes only newly
974  * given options, then the displayed options will not reflect reality
975  * any more.
976  */
977 void save_mount_options(struct super_block *sb, char *options)
978 {
979  BUG_ON(sb->s_options);
981 }
983 
985 {
986  char *old = sb->s_options;
987  rcu_assign_pointer(sb->s_options, options);
988  if (old) {
989  synchronize_rcu();
990  kfree(old);
991  }
992 }
994 
995 #ifdef CONFIG_PROC_FS
996 /* iterator; we want it to have access to namespace_sem, thus here... */
997 static void *m_start(struct seq_file *m, loff_t *pos)
998 {
999  struct proc_mounts *p = proc_mounts(m);
1000 
1001  down_read(&namespace_sem);
1002  return seq_list_start(&p->ns->list, *pos);
1003 }
1004 
1005 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1006 {
1007  struct proc_mounts *p = proc_mounts(m);
1008 
1009  return seq_list_next(v, &p->ns->list, pos);
1010 }
1011 
1012 static void m_stop(struct seq_file *m, void *v)
1013 {
1014  up_read(&namespace_sem);
1015 }
1016 
1017 static int m_show(struct seq_file *m, void *v)
1018 {
1019  struct proc_mounts *p = proc_mounts(m);
1020  struct mount *r = list_entry(v, struct mount, mnt_list);
1021  return p->show(m, &r->mnt);
1022 }
1023 
1024 const struct seq_operations mounts_op = {
1025  .start = m_start,
1026  .next = m_next,
1027  .stop = m_stop,
1028  .show = m_show,
1029 };
1030 #endif /* CONFIG_PROC_FS */
1031 
1041 {
1042  struct mount *mnt = real_mount(m);
1043  int actual_refs = 0;
1044  int minimum_refs = 0;
1045  struct mount *p;
1046  BUG_ON(!m);
1047 
1048  /* write lock needed for mnt_get_count */
1050  for (p = mnt; p; p = next_mnt(p, mnt)) {
1051  actual_refs += mnt_get_count(p);
1052  minimum_refs += 2;
1053  }
1055 
1056  if (actual_refs > minimum_refs)
1057  return 0;
1058 
1059  return 1;
1060 }
1061 
1063 
1077 int may_umount(struct vfsmount *mnt)
1078 {
1079  int ret = 1;
1080  down_read(&namespace_sem);
1082  if (propagate_mount_busy(real_mount(mnt), 2))
1083  ret = 0;
1085  up_read(&namespace_sem);
1086  return ret;
1087 }
1088 
1090 
1091 void release_mounts(struct list_head *head)
1092 {
1093  struct mount *mnt;
1094  while (!list_empty(head)) {
1095  mnt = list_first_entry(head, struct mount, mnt_hash);
1096  list_del_init(&mnt->mnt_hash);
1097  if (mnt_has_parent(mnt)) {
1098  struct dentry *dentry;
1099  struct mount *m;
1100 
1102  dentry = mnt->mnt_mountpoint;
1103  m = mnt->mnt_parent;
1104  mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1105  mnt->mnt_parent = mnt;
1106  m->mnt_ghosts--;
1108  dput(dentry);
1109  mntput(&m->mnt);
1110  }
1111  mntput(&mnt->mnt);
1112  }
1113 }
1114 
1115 /*
1116  * vfsmount lock must be held for write
1117  * namespace_sem must be held for write
1118  */
1119 void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1120 {
1121  LIST_HEAD(tmp_list);
1122  struct mount *p;
1123 
1124  for (p = mnt; p; p = next_mnt(p, mnt))
1125  list_move(&p->mnt_hash, &tmp_list);
1126 
1127  if (propagate)
1128  propagate_umount(&tmp_list);
1129 
1130  list_for_each_entry(p, &tmp_list, mnt_hash) {
1131  list_del_init(&p->mnt_expire);
1132  list_del_init(&p->mnt_list);
1133  __touch_mnt_namespace(p->mnt_ns);
1134  p->mnt_ns = NULL;
1135  list_del_init(&p->mnt_child);
1136  if (mnt_has_parent(p)) {
1137  p->mnt_parent->mnt_ghosts++;
1138  dentry_reset_mounted(p->mnt_mountpoint);
1139  }
1141  }
1142  list_splice(&tmp_list, kill);
1143 }
1144 
1145 static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
1146 
1147 static int do_umount(struct mount *mnt, int flags)
1148 {
1149  struct super_block *sb = mnt->mnt.mnt_sb;
1150  int retval;
1151  LIST_HEAD(umount_list);
1152 
1153  retval = security_sb_umount(&mnt->mnt, flags);
1154  if (retval)
1155  return retval;
1156 
1157  /*
1158  * Allow userspace to request a mountpoint be expired rather than
1159  * unmounting unconditionally. Unmount only happens if:
1160  * (1) the mark is already set (the mark is cleared by mntput())
1161  * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1162  */
1163  if (flags & MNT_EXPIRE) {
1164  if (&mnt->mnt == current->fs->root.mnt ||
1165  flags & (MNT_FORCE | MNT_DETACH))
1166  return -EINVAL;
1167 
1168  /*
1169  * probably don't strictly need the lock here if we examined
1170  * all race cases, but it's a slowpath.
1171  */
1172  br_write_lock(&vfsmount_lock);
1173  if (mnt_get_count(mnt) != 2) {
1174  br_write_unlock(&vfsmount_lock);
1175  return -EBUSY;
1176  }
1177  br_write_unlock(&vfsmount_lock);
1178 
1179  if (!xchg(&mnt->mnt_expiry_mark, 1))
1180  return -EAGAIN;
1181  }
1182 
1183  /*
1184  * If we may have to abort operations to get out of this
1185  * mount, and they will themselves hold resources we must
1186  * allow the fs to do things. In the Unix tradition of
1187  * 'Gee thats tricky lets do it in userspace' the umount_begin
1188  * might fail to complete on the first run through as other tasks
1189  * must return, and the like. Thats for the mount program to worry
1190  * about for the moment.
1191  */
1192 
1193  if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1194  sb->s_op->umount_begin(sb);
1195  }
1196 
1197  /*
1198  * No sense to grab the lock for this test, but test itself looks
1199  * somewhat bogus. Suggestions for better replacement?
1200  * Ho-hum... In principle, we might treat that as umount + switch
1201  * to rootfs. GC would eventually take care of the old vfsmount.
1202  * Actually it makes sense, especially if rootfs would contain a
1203  * /reboot - static binary that would close all descriptors and
1204  * call reboot(9). Then init(8) could umount root and exec /reboot.
1205  */
1206  if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1207  /*
1208  * Special case for "unmounting" root ...
1209  * we just try to remount it readonly.
1210  */
1211  down_write(&sb->s_umount);
1212  if (!(sb->s_flags & MS_RDONLY))
1213  retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1214  up_write(&sb->s_umount);
1215  return retval;
1216  }
1217 
1218  down_write(&namespace_sem);
1219  br_write_lock(&vfsmount_lock);
1220  event++;
1221 
1222  if (!(flags & MNT_DETACH))
1223  shrink_submounts(mnt, &umount_list);
1224 
1225  retval = -EBUSY;
1226  if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1227  if (!list_empty(&mnt->mnt_list))
1228  umount_tree(mnt, 1, &umount_list);
1229  retval = 0;
1230  }
1231  br_write_unlock(&vfsmount_lock);
1232  up_write(&namespace_sem);
1233  release_mounts(&umount_list);
1234  return retval;
1235 }
1236 
1237 /*
1238  * Now umount can handle mount points as well as block devices.
1239  * This is important for filesystems which use unnamed block devices.
1240  *
1241  * We now support a flag for forced unmount like the other 'big iron'
1242  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1243  */
1244 
1245 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1246 {
1247  struct path path;
1248  struct mount *mnt;
1249  int retval;
1250  int lookup_flags = 0;
1251 
1252  if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1253  return -EINVAL;
1254 
1255  if (!(flags & UMOUNT_NOFOLLOW))
1256  lookup_flags |= LOOKUP_FOLLOW;
1257 
1258  retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1259  if (retval)
1260  goto out;
1261  mnt = real_mount(path.mnt);
1262  retval = -EINVAL;
1263  if (path.dentry != path.mnt->mnt_root)
1264  goto dput_and_out;
1265  if (!check_mnt(mnt))
1266  goto dput_and_out;
1267 
1268  retval = -EPERM;
1269  if (!capable(CAP_SYS_ADMIN))
1270  goto dput_and_out;
1271 
1272  retval = do_umount(mnt, flags);
1273 dput_and_out:
1274  /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1275  dput(path.dentry);
1276  mntput_no_expire(mnt);
1277 out:
1278  return retval;
1279 }
1280 
1281 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1282 
1283 /*
1284  * The 2.0 compatible umount. No flags.
1285  */
1286 SYSCALL_DEFINE1(oldumount, char __user *, name)
1287 {
1288  return sys_umount(name, 0);
1289 }
1290 
1291 #endif
1292 
1293 static int mount_is_safe(struct path *path)
1294 {
1295  if (capable(CAP_SYS_ADMIN))
1296  return 0;
1297  return -EPERM;
1298 #ifdef notyet
1299  if (S_ISLNK(path->dentry->d_inode->i_mode))
1300  return -EPERM;
1301  if (path->dentry->d_inode->i_mode & S_ISVTX) {
1302  if (current_uid() != path->dentry->d_inode->i_uid)
1303  return -EPERM;
1304  }
1305  if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1306  return -EPERM;
1307  return 0;
1308 #endif
1309 }
1310 
1311 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1312  int flag)
1313 {
1314  struct mount *res, *p, *q, *r;
1315  struct path path;
1316 
1317  if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1318  return ERR_PTR(-EINVAL);
1319 
1320  res = q = clone_mnt(mnt, dentry, flag);
1321  if (IS_ERR(q))
1322  return q;
1323 
1324  q->mnt_mountpoint = mnt->mnt_mountpoint;
1325 
1326  p = mnt;
1327  list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1328  struct mount *s;
1329  if (!is_subdir(r->mnt_mountpoint, dentry))
1330  continue;
1331 
1332  for (s = r; s; s = next_mnt(s, r)) {
1333  if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1334  s = skip_mnt_tree(s);
1335  continue;
1336  }
1337  while (p != s->mnt_parent) {
1338  p = p->mnt_parent;
1339  q = q->mnt_parent;
1340  }
1341  p = s;
1342  path.mnt = &q->mnt;
1343  path.dentry = p->mnt_mountpoint;
1344  q = clone_mnt(p, p->mnt.mnt_root, flag);
1345  if (IS_ERR(q))
1346  goto out;
1348  list_add_tail(&q->mnt_list, &res->mnt_list);
1349  attach_mnt(q, &path);
1351  }
1352  }
1353  return res;
1354 out:
1355  if (res) {
1356  LIST_HEAD(umount_list);
1358  umount_tree(res, 0, &umount_list);
1360  release_mounts(&umount_list);
1361  }
1362  return q;
1363 }
1364 
1365 /* Caller should check returned pointer for errors */
1366 
1367 struct vfsmount *collect_mounts(struct path *path)
1368 {
1369  struct mount *tree;
1370  down_write(&namespace_sem);
1371  tree = copy_tree(real_mount(path->mnt), path->dentry,
1372  CL_COPY_ALL | CL_PRIVATE);
1373  up_write(&namespace_sem);
1374  if (IS_ERR(tree))
1375  return NULL;
1376  return &tree->mnt;
1377 }
1378 
1380 {
1381  LIST_HEAD(umount_list);
1382  down_write(&namespace_sem);
1384  umount_tree(real_mount(mnt), 0, &umount_list);
1386  up_write(&namespace_sem);
1387  release_mounts(&umount_list);
1388 }
1389 
1390 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1391  struct vfsmount *root)
1392 {
1393  struct mount *mnt;
1394  int res = f(root, arg);
1395  if (res)
1396  return res;
1397  list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1398  res = f(&mnt->mnt, arg);
1399  if (res)
1400  return res;
1401  }
1402  return 0;
1403 }
1404 
1405 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1406 {
1407  struct mount *p;
1408 
1409  for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1410  if (p->mnt_group_id && !IS_MNT_SHARED(p))
1412  }
1413 }
1414 
1415 static int invent_group_ids(struct mount *mnt, bool recurse)
1416 {
1417  struct mount *p;
1418 
1419  for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1420  if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1421  int err = mnt_alloc_group_id(p);
1422  if (err) {
1423  cleanup_group_ids(mnt, p);
1424  return err;
1425  }
1426  }
1427  }
1428 
1429  return 0;
1430 }
1431 
1432 /*
1433  * @source_mnt : mount tree to be attached
1434  * @nd : place the mount tree @source_mnt is attached
1435  * @parent_nd : if non-null, detach the source_mnt from its parent and
1436  * store the parent mount and mountpoint dentry.
1437  * (done when source_mnt is moved)
1438  *
1439  * NOTE: in the table below explains the semantics when a source mount
1440  * of a given type is attached to a destination mount of a given type.
1441  * ---------------------------------------------------------------------------
1442  * | BIND MOUNT OPERATION |
1443  * |**************************************************************************
1444  * | source-->| shared | private | slave | unbindable |
1445  * | dest | | | | |
1446  * | | | | | | |
1447  * | v | | | | |
1448  * |**************************************************************************
1449  * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1450  * | | | | | |
1451  * |non-shared| shared (+) | private | slave (*) | invalid |
1452  * ***************************************************************************
1453  * A bind operation clones the source mount and mounts the clone on the
1454  * destination mount.
1455  *
1456  * (++) the cloned mount is propagated to all the mounts in the propagation
1457  * tree of the destination mount and the cloned mount is added to
1458  * the peer group of the source mount.
1459  * (+) the cloned mount is created under the destination mount and is marked
1460  * as shared. The cloned mount is added to the peer group of the source
1461  * mount.
1462  * (+++) the mount is propagated to all the mounts in the propagation tree
1463  * of the destination mount and the cloned mount is made slave
1464  * of the same master as that of the source mount. The cloned mount
1465  * is marked as 'shared and slave'.
1466  * (*) the cloned mount is made a slave of the same master as that of the
1467  * source mount.
1468  *
1469  * ---------------------------------------------------------------------------
1470  * | MOVE MOUNT OPERATION |
1471  * |**************************************************************************
1472  * | source-->| shared | private | slave | unbindable |
1473  * | dest | | | | |
1474  * | | | | | | |
1475  * | v | | | | |
1476  * |**************************************************************************
1477  * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1478  * | | | | | |
1479  * |non-shared| shared (+*) | private | slave (*) | unbindable |
1480  * ***************************************************************************
1481  *
1482  * (+) the mount is moved to the destination. And is then propagated to
1483  * all the mounts in the propagation tree of the destination mount.
1484  * (+*) the mount is moved to the destination.
1485  * (+++) the mount is moved to the destination and is then propagated to
1486  * all the mounts belonging to the destination mount's propagation tree.
1487  * the mount is marked as 'shared and slave'.
1488  * (*) the mount continues to be a slave at the new location.
1489  *
1490  * if the source mount is a tree, the operations explained above is
1491  * applied to each mount in the tree.
1492  * Must be called without spinlocks held, since this function can sleep
1493  * in allocations.
1494  */
1495 static int attach_recursive_mnt(struct mount *source_mnt,
1496  struct path *path, struct path *parent_path)
1497 {
1498  LIST_HEAD(tree_list);
1499  struct mount *dest_mnt = real_mount(path->mnt);
1500  struct dentry *dest_dentry = path->dentry;
1501  struct mount *child, *p;
1502  int err;
1503 
1504  if (IS_MNT_SHARED(dest_mnt)) {
1505  err = invent_group_ids(source_mnt, true);
1506  if (err)
1507  goto out;
1508  }
1509  err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1510  if (err)
1511  goto out_cleanup_ids;
1512 
1513  br_write_lock(&vfsmount_lock);
1514 
1515  if (IS_MNT_SHARED(dest_mnt)) {
1516  for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1517  set_mnt_shared(p);
1518  }
1519  if (parent_path) {
1520  detach_mnt(source_mnt, parent_path);
1521  attach_mnt(source_mnt, path);
1522  touch_mnt_namespace(source_mnt->mnt_ns);
1523  } else {
1524  mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1525  commit_tree(source_mnt);
1526  }
1527 
1528  list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1529  list_del_init(&child->mnt_hash);
1530  commit_tree(child);
1531  }
1532  br_write_unlock(&vfsmount_lock);
1533 
1534  return 0;
1535 
1536  out_cleanup_ids:
1537  if (IS_MNT_SHARED(dest_mnt))
1538  cleanup_group_ids(source_mnt, NULL);
1539  out:
1540  return err;
1541 }
1542 
1543 static int lock_mount(struct path *path)
1544 {
1545  struct vfsmount *mnt;
1546 retry:
1547  mutex_lock(&path->dentry->d_inode->i_mutex);
1548  if (unlikely(cant_mount(path->dentry))) {
1549  mutex_unlock(&path->dentry->d_inode->i_mutex);
1550  return -ENOENT;
1551  }
1552  down_write(&namespace_sem);
1553  mnt = lookup_mnt(path);
1554  if (likely(!mnt))
1555  return 0;
1556  up_write(&namespace_sem);
1557  mutex_unlock(&path->dentry->d_inode->i_mutex);
1558  path_put(path);
1559  path->mnt = mnt;
1560  path->dentry = dget(mnt->mnt_root);
1561  goto retry;
1562 }
1563 
1564 static void unlock_mount(struct path *path)
1565 {
1566  up_write(&namespace_sem);
1567  mutex_unlock(&path->dentry->d_inode->i_mutex);
1568 }
1569 
1570 static int graft_tree(struct mount *mnt, struct path *path)
1571 {
1572  if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1573  return -EINVAL;
1574 
1575  if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1576  S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1577  return -ENOTDIR;
1578 
1579  if (d_unlinked(path->dentry))
1580  return -ENOENT;
1581 
1582  return attach_recursive_mnt(mnt, path, NULL);
1583 }
1584 
1585 /*
1586  * Sanity check the flags to change_mnt_propagation.
1587  */
1588 
1589 static int flags_to_propagation_type(int flags)
1590 {
1591  int type = flags & ~(MS_REC | MS_SILENT);
1592 
1593  /* Fail if any non-propagation flags are set */
1594  if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1595  return 0;
1596  /* Only one propagation flag should be set */
1597  if (!is_power_of_2(type))
1598  return 0;
1599  return type;
1600 }
1601 
1602 /*
1603  * recursively change the type of the mountpoint.
1604  */
1605 static int do_change_type(struct path *path, int flag)
1606 {
1607  struct mount *m;
1608  struct mount *mnt = real_mount(path->mnt);
1609  int recurse = flag & MS_REC;
1610  int type;
1611  int err = 0;
1612 
1613  if (!capable(CAP_SYS_ADMIN))
1614  return -EPERM;
1615 
1616  if (path->dentry != path->mnt->mnt_root)
1617  return -EINVAL;
1618 
1619  type = flags_to_propagation_type(flag);
1620  if (!type)
1621  return -EINVAL;
1622 
1623  down_write(&namespace_sem);
1624  if (type == MS_SHARED) {
1625  err = invent_group_ids(mnt, recurse);
1626  if (err)
1627  goto out_unlock;
1628  }
1629 
1630  br_write_lock(&vfsmount_lock);
1631  for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1632  change_mnt_propagation(m, type);
1633  br_write_unlock(&vfsmount_lock);
1634 
1635  out_unlock:
1636  up_write(&namespace_sem);
1637  return err;
1638 }
1639 
1640 /*
1641  * do loopback mount.
1642  */
1643 static int do_loopback(struct path *path, const char *old_name,
1644  int recurse)
1645 {
1646  LIST_HEAD(umount_list);
1647  struct path old_path;
1648  struct mount *mnt = NULL, *old;
1649  int err = mount_is_safe(path);
1650  if (err)
1651  return err;
1652  if (!old_name || !*old_name)
1653  return -EINVAL;
1654  err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1655  if (err)
1656  return err;
1657 
1658  err = lock_mount(path);
1659  if (err)
1660  goto out;
1661 
1662  old = real_mount(old_path.mnt);
1663 
1664  err = -EINVAL;
1665  if (IS_MNT_UNBINDABLE(old))
1666  goto out2;
1667 
1668  if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
1669  goto out2;
1670 
1671  if (recurse)
1672  mnt = copy_tree(old, old_path.dentry, 0);
1673  else
1674  mnt = clone_mnt(old, old_path.dentry, 0);
1675 
1676  if (IS_ERR(mnt)) {
1677  err = PTR_ERR(mnt);
1678  goto out;
1679  }
1680 
1681  err = graft_tree(mnt, path);
1682  if (err) {
1683  br_write_lock(&vfsmount_lock);
1684  umount_tree(mnt, 0, &umount_list);
1685  br_write_unlock(&vfsmount_lock);
1686  }
1687 out2:
1688  unlock_mount(path);
1689  release_mounts(&umount_list);
1690 out:
1691  path_put(&old_path);
1692  return err;
1693 }
1694 
1695 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1696 {
1697  int error = 0;
1698  int readonly_request = 0;
1699 
1700  if (ms_flags & MS_RDONLY)
1701  readonly_request = 1;
1702  if (readonly_request == __mnt_is_readonly(mnt))
1703  return 0;
1704 
1705  if (readonly_request)
1706  error = mnt_make_readonly(real_mount(mnt));
1707  else
1708  __mnt_unmake_readonly(real_mount(mnt));
1709  return error;
1710 }
1711 
1712 /*
1713  * change filesystem flags. dir should be a physical root of filesystem.
1714  * If you've mounted a non-root directory somewhere and want to do remount
1715  * on it - tough luck.
1716  */
1717 static int do_remount(struct path *path, int flags, int mnt_flags,
1718  void *data)
1719 {
1720  int err;
1721  struct super_block *sb = path->mnt->mnt_sb;
1722  struct mount *mnt = real_mount(path->mnt);
1723 
1724  if (!capable(CAP_SYS_ADMIN))
1725  return -EPERM;
1726 
1727  if (!check_mnt(mnt))
1728  return -EINVAL;
1729 
1730  if (path->dentry != path->mnt->mnt_root)
1731  return -EINVAL;
1732 
1733  err = security_sb_remount(sb, data);
1734  if (err)
1735  return err;
1736 
1737  down_write(&sb->s_umount);
1738  if (flags & MS_BIND)
1739  err = change_mount_flags(path->mnt, flags);
1740  else
1741  err = do_remount_sb(sb, flags, data, 0);
1742  if (!err) {
1743  br_write_lock(&vfsmount_lock);
1744  mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1745  mnt->mnt.mnt_flags = mnt_flags;
1746  br_write_unlock(&vfsmount_lock);
1747  }
1748  up_write(&sb->s_umount);
1749  if (!err) {
1750  br_write_lock(&vfsmount_lock);
1751  touch_mnt_namespace(mnt->mnt_ns);
1752  br_write_unlock(&vfsmount_lock);
1753  }
1754  return err;
1755 }
1756 
1757 static inline int tree_contains_unbindable(struct mount *mnt)
1758 {
1759  struct mount *p;
1760  for (p = mnt; p; p = next_mnt(p, mnt)) {
1761  if (IS_MNT_UNBINDABLE(p))
1762  return 1;
1763  }
1764  return 0;
1765 }
1766 
1767 static int do_move_mount(struct path *path, const char *old_name)
1768 {
1769  struct path old_path, parent_path;
1770  struct mount *p;
1771  struct mount *old;
1772  int err = 0;
1773  if (!capable(CAP_SYS_ADMIN))
1774  return -EPERM;
1775  if (!old_name || !*old_name)
1776  return -EINVAL;
1777  err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1778  if (err)
1779  return err;
1780 
1781  err = lock_mount(path);
1782  if (err < 0)
1783  goto out;
1784 
1785  old = real_mount(old_path.mnt);
1786  p = real_mount(path->mnt);
1787 
1788  err = -EINVAL;
1789  if (!check_mnt(p) || !check_mnt(old))
1790  goto out1;
1791 
1792  if (d_unlinked(path->dentry))
1793  goto out1;
1794 
1795  err = -EINVAL;
1796  if (old_path.dentry != old_path.mnt->mnt_root)
1797  goto out1;
1798 
1799  if (!mnt_has_parent(old))
1800  goto out1;
1801 
1802  if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1803  S_ISDIR(old_path.dentry->d_inode->i_mode))
1804  goto out1;
1805  /*
1806  * Don't move a mount residing in a shared parent.
1807  */
1808  if (IS_MNT_SHARED(old->mnt_parent))
1809  goto out1;
1810  /*
1811  * Don't move a mount tree containing unbindable mounts to a destination
1812  * mount which is shared.
1813  */
1814  if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1815  goto out1;
1816  err = -ELOOP;
1817  for (; mnt_has_parent(p); p = p->mnt_parent)
1818  if (p == old)
1819  goto out1;
1820 
1821  err = attach_recursive_mnt(old, path, &parent_path);
1822  if (err)
1823  goto out1;
1824 
1825  /* if the mount is moved, it should no longer be expire
1826  * automatically */
1827  list_del_init(&old->mnt_expire);
1828 out1:
1829  unlock_mount(path);
1830 out:
1831  if (!err)
1832  path_put(&parent_path);
1833  path_put(&old_path);
1834  return err;
1835 }
1836 
1837 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1838 {
1839  int err;
1840  const char *subtype = strchr(fstype, '.');
1841  if (subtype) {
1842  subtype++;
1843  err = -EINVAL;
1844  if (!subtype[0])
1845  goto err;
1846  } else
1847  subtype = "";
1848 
1849  mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1850  err = -ENOMEM;
1851  if (!mnt->mnt_sb->s_subtype)
1852  goto err;
1853  return mnt;
1854 
1855  err:
1856  mntput(mnt);
1857  return ERR_PTR(err);
1858 }
1859 
1860 static struct vfsmount *
1861 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1862 {
1863  struct file_system_type *type = get_fs_type(fstype);
1864  struct vfsmount *mnt;
1865  if (!type)
1866  return ERR_PTR(-ENODEV);
1867  mnt = vfs_kern_mount(type, flags, name, data);
1868  if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1869  !mnt->mnt_sb->s_subtype)
1870  mnt = fs_set_subtype(mnt, fstype);
1871  put_filesystem(type);
1872  return mnt;
1873 }
1874 
1875 /*
1876  * add a mount into a namespace's mount tree
1877  */
1878 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
1879 {
1880  int err;
1881 
1882  mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1883 
1884  err = lock_mount(path);
1885  if (err)
1886  return err;
1887 
1888  err = -EINVAL;
1889  if (unlikely(!check_mnt(real_mount(path->mnt)))) {
1890  /* that's acceptable only for automounts done in private ns */
1891  if (!(mnt_flags & MNT_SHRINKABLE))
1892  goto unlock;
1893  /* ... and for those we'd better have mountpoint still alive */
1894  if (!real_mount(path->mnt)->mnt_ns)
1895  goto unlock;
1896  }
1897 
1898  /* Refuse the same filesystem on the same mount point */
1899  err = -EBUSY;
1900  if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
1901  path->mnt->mnt_root == path->dentry)
1902  goto unlock;
1903 
1904  err = -EINVAL;
1905  if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
1906  goto unlock;
1907 
1908  newmnt->mnt.mnt_flags = mnt_flags;
1909  err = graft_tree(newmnt, path);
1910 
1911 unlock:
1912  unlock_mount(path);
1913  return err;
1914 }
1915 
1916 /*
1917  * create a new mount for userspace and request it to be added into the
1918  * namespace's tree
1919  */
1920 static int do_new_mount(struct path *path, const char *type, int flags,
1921  int mnt_flags, const char *name, void *data)
1922 {
1923  struct vfsmount *mnt;
1924  int err;
1925 
1926  if (!type)
1927  return -EINVAL;
1928 
1929  /* we need capabilities... */
1930  if (!capable(CAP_SYS_ADMIN))
1931  return -EPERM;
1932 
1933  mnt = do_kern_mount(type, flags, name, data);
1934  if (IS_ERR(mnt))
1935  return PTR_ERR(mnt);
1936 
1937  err = do_add_mount(real_mount(mnt), path, mnt_flags);
1938  if (err)
1939  mntput(mnt);
1940  return err;
1941 }
1942 
1943 int finish_automount(struct vfsmount *m, struct path *path)
1944 {
1945  struct mount *mnt = real_mount(m);
1946  int err;
1947  /* The new mount record should have at least 2 refs to prevent it being
1948  * expired before we get a chance to add it
1949  */
1950  BUG_ON(mnt_get_count(mnt) < 2);
1951 
1952  if (m->mnt_sb == path->mnt->mnt_sb &&
1953  m->mnt_root == path->dentry) {
1954  err = -ELOOP;
1955  goto fail;
1956  }
1957 
1958  err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
1959  if (!err)
1960  return 0;
1961 fail:
1962  /* remove m from any expiration list it may be on */
1963  if (!list_empty(&mnt->mnt_expire)) {
1964  down_write(&namespace_sem);
1966  list_del_init(&mnt->mnt_expire);
1968  up_write(&namespace_sem);
1969  }
1970  mntput(m);
1971  mntput(m);
1972  return err;
1973 }
1974 
1980 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
1981 {
1982  down_write(&namespace_sem);
1984 
1985  list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
1986 
1988  up_write(&namespace_sem);
1989 }
1991 
1992 /*
1993  * process a list of expirable mountpoints with the intent of discarding any
1994  * mountpoints that aren't in use and haven't been touched since last we came
1995  * here
1996  */
1997 void mark_mounts_for_expiry(struct list_head *mounts)
1998 {
1999  struct mount *mnt, *next;
2000  LIST_HEAD(graveyard);
2001  LIST_HEAD(umounts);
2002 
2003  if (list_empty(mounts))
2004  return;
2005 
2006  down_write(&namespace_sem);
2008 
2009  /* extract from the expiration list every vfsmount that matches the
2010  * following criteria:
2011  * - only referenced by its parent vfsmount
2012  * - still marked for expiry (marked on the last call here; marks are
2013  * cleared by mntput())
2014  */
2015  list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2016  if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2017  propagate_mount_busy(mnt, 1))
2018  continue;
2019  list_move(&mnt->mnt_expire, &graveyard);
2020  }
2021  while (!list_empty(&graveyard)) {
2022  mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2023  touch_mnt_namespace(mnt->mnt_ns);
2024  umount_tree(mnt, 1, &umounts);
2025  }
2027  up_write(&namespace_sem);
2028 
2029  release_mounts(&umounts);
2030 }
2031 
2033 
2034 /*
2035  * Ripoff of 'select_parent()'
2036  *
2037  * search the list of submounts for a given mountpoint, and move any
2038  * shrinkable submounts to the 'graveyard' list.
2039  */
2040 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2041 {
2042  struct mount *this_parent = parent;
2043  struct list_head *next;
2044  int found = 0;
2045 
2046 repeat:
2047  next = this_parent->mnt_mounts.next;
2048 resume:
2049  while (next != &this_parent->mnt_mounts) {
2050  struct list_head *tmp = next;
2051  struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2052 
2053  next = tmp->next;
2054  if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2055  continue;
2056  /*
2057  * Descend a level if the d_mounts list is non-empty.
2058  */
2059  if (!list_empty(&mnt->mnt_mounts)) {
2060  this_parent = mnt;
2061  goto repeat;
2062  }
2063 
2064  if (!propagate_mount_busy(mnt, 1)) {
2065  list_move_tail(&mnt->mnt_expire, graveyard);
2066  found++;
2067  }
2068  }
2069  /*
2070  * All done at this level ... ascend and resume the search
2071  */
2072  if (this_parent != parent) {
2073  next = this_parent->mnt_child.next;
2074  this_parent = this_parent->mnt_parent;
2075  goto resume;
2076  }
2077  return found;
2078 }
2079 
2080 /*
2081  * process a list of expirable mountpoints with the intent of discarding any
2082  * submounts of a specific parent mountpoint
2083  *
2084  * vfsmount_lock must be held for write
2085  */
2086 static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
2087 {
2088  LIST_HEAD(graveyard);
2089  struct mount *m;
2090 
2091  /* extract submounts of 'mountpoint' from the expiration list */
2092  while (select_submounts(mnt, &graveyard)) {
2093  while (!list_empty(&graveyard)) {
2094  m = list_first_entry(&graveyard, struct mount,
2095  mnt_expire);
2096  touch_mnt_namespace(m->mnt_ns);
2097  umount_tree(m, 1, umounts);
2098  }
2099  }
2100 }
2101 
2102 /*
2103  * Some copy_from_user() implementations do not return the exact number of
2104  * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2105  * Note that this function differs from copy_from_user() in that it will oops
2106  * on bad values of `to', rather than returning a short copy.
2107  */
2108 static long exact_copy_from_user(void *to, const void __user * from,
2109  unsigned long n)
2110 {
2111  char *t = to;
2112  const char __user *f = from;
2113  char c;
2114 
2115  if (!access_ok(VERIFY_READ, from, n))
2116  return n;
2117 
2118  while (n) {
2119  if (__get_user(c, f)) {
2120  memset(t, 0, n);
2121  break;
2122  }
2123  *t++ = c;
2124  f++;
2125  n--;
2126  }
2127  return n;
2128 }
2129 
2130 int copy_mount_options(const void __user * data, unsigned long *where)
2131 {
2132  int i;
2133  unsigned long page;
2134  unsigned long size;
2135 
2136  *where = 0;
2137  if (!data)
2138  return 0;
2139 
2140  if (!(page = __get_free_page(GFP_KERNEL)))
2141  return -ENOMEM;
2142 
2143  /* We only care that *some* data at the address the user
2144  * gave us is valid. Just in case, we'll zero
2145  * the remainder of the page.
2146  */
2147  /* copy_from_user cannot cross TASK_SIZE ! */
2148  size = TASK_SIZE - (unsigned long)data;
2149  if (size > PAGE_SIZE)
2150  size = PAGE_SIZE;
2151 
2152  i = size - exact_copy_from_user((void *)page, data, size);
2153  if (!i) {
2154  free_page(page);
2155  return -EFAULT;
2156  }
2157  if (i != PAGE_SIZE)
2158  memset((char *)page + i, 0, PAGE_SIZE - i);
2159  *where = page;
2160  return 0;
2161 }
2162 
2163 int copy_mount_string(const void __user *data, char **where)
2164 {
2165  char *tmp;
2166 
2167  if (!data) {
2168  *where = NULL;
2169  return 0;
2170  }
2171 
2172  tmp = strndup_user(data, PAGE_SIZE);
2173  if (IS_ERR(tmp))
2174  return PTR_ERR(tmp);
2175 
2176  *where = tmp;
2177  return 0;
2178 }
2179 
2180 /*
2181  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2182  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2183  *
2184  * data is a (void *) that can point to any structure up to
2185  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2186  * information (or be NULL).
2187  *
2188  * Pre-0.97 versions of mount() didn't have a flags word.
2189  * When the flags word was introduced its top half was required
2190  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2191  * Therefore, if this magic number is present, it carries no information
2192  * and must be discarded.
2193  */
2194 long do_mount(const char *dev_name, const char *dir_name,
2195  const char *type_page, unsigned long flags, void *data_page)
2196 {
2197  struct path path;
2198  int retval = 0;
2199  int mnt_flags = 0;
2200 
2201  /* Discard magic */
2202  if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2203  flags &= ~MS_MGC_MSK;
2204 
2205  /* Basic sanity checks */
2206 
2207  if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2208  return -EINVAL;
2209 
2210  if (data_page)
2211  ((char *)data_page)[PAGE_SIZE - 1] = 0;
2212 
2213  /* ... and get the mountpoint */
2214  retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2215  if (retval)
2216  return retval;
2217 
2218  retval = security_sb_mount(dev_name, &path,
2219  type_page, flags, data_page);
2220  if (retval)
2221  goto dput_out;
2222 
2223  /* Default to relatime unless overriden */
2224  if (!(flags & MS_NOATIME))
2225  mnt_flags |= MNT_RELATIME;
2226 
2227  /* Separate the per-mountpoint flags */
2228  if (flags & MS_NOSUID)
2229  mnt_flags |= MNT_NOSUID;
2230  if (flags & MS_NODEV)
2231  mnt_flags |= MNT_NODEV;
2232  if (flags & MS_NOEXEC)
2233  mnt_flags |= MNT_NOEXEC;
2234  if (flags & MS_NOATIME)
2235  mnt_flags |= MNT_NOATIME;
2236  if (flags & MS_NODIRATIME)
2237  mnt_flags |= MNT_NODIRATIME;
2238  if (flags & MS_STRICTATIME)
2239  mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2240  if (flags & MS_RDONLY)
2241  mnt_flags |= MNT_READONLY;
2242 
2243  flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2244  MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2245  MS_STRICTATIME);
2246 
2247  if (flags & MS_REMOUNT)
2248  retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2249  data_page);
2250  else if (flags & MS_BIND)
2251  retval = do_loopback(&path, dev_name, flags & MS_REC);
2252  else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2253  retval = do_change_type(&path, flags);
2254  else if (flags & MS_MOVE)
2255  retval = do_move_mount(&path, dev_name);
2256  else
2257  retval = do_new_mount(&path, type_page, flags, mnt_flags,
2258  dev_name, data_page);
2259 dput_out:
2260  path_put(&path);
2261  return retval;
2262 }
2263 
2264 static struct mnt_namespace *alloc_mnt_ns(void)
2265 {
2266  struct mnt_namespace *new_ns;
2267 
2268  new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2269  if (!new_ns)
2270  return ERR_PTR(-ENOMEM);
2271  atomic_set(&new_ns->count, 1);
2272  new_ns->root = NULL;
2273  INIT_LIST_HEAD(&new_ns->list);
2274  init_waitqueue_head(&new_ns->poll);
2275  new_ns->event = 0;
2276  return new_ns;
2277 }
2278 
2279 /*
2280  * Allocate a new namespace structure and populate it with contents
2281  * copied from the namespace of the passed in task structure.
2282  */
2283 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2284  struct fs_struct *fs)
2285 {
2286  struct mnt_namespace *new_ns;
2287  struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2288  struct mount *p, *q;
2289  struct mount *old = mnt_ns->root;
2290  struct mount *new;
2291 
2292  new_ns = alloc_mnt_ns();
2293  if (IS_ERR(new_ns))
2294  return new_ns;
2295 
2296  down_write(&namespace_sem);
2297  /* First pass: copy the tree topology */
2298  new = copy_tree(old, old->mnt.mnt_root, CL_COPY_ALL | CL_EXPIRE);
2299  if (IS_ERR(new)) {
2300  up_write(&namespace_sem);
2301  kfree(new_ns);
2302  return ERR_CAST(new);
2303  }
2304  new_ns->root = new;
2305  br_write_lock(&vfsmount_lock);
2306  list_add_tail(&new_ns->list, &new->mnt_list);
2307  br_write_unlock(&vfsmount_lock);
2308 
2309  /*
2310  * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2311  * as belonging to new namespace. We have already acquired a private
2312  * fs_struct, so tsk->fs->lock is not needed.
2313  */
2314  p = old;
2315  q = new;
2316  while (p) {
2317  q->mnt_ns = new_ns;
2318  if (fs) {
2319  if (&p->mnt == fs->root.mnt) {
2320  fs->root.mnt = mntget(&q->mnt);
2321  rootmnt = &p->mnt;
2322  }
2323  if (&p->mnt == fs->pwd.mnt) {
2324  fs->pwd.mnt = mntget(&q->mnt);
2325  pwdmnt = &p->mnt;
2326  }
2327  }
2328  p = next_mnt(p, old);
2329  q = next_mnt(q, new);
2330  }
2331  up_write(&namespace_sem);
2332 
2333  if (rootmnt)
2334  mntput(rootmnt);
2335  if (pwdmnt)
2336  mntput(pwdmnt);
2337 
2338  return new_ns;
2339 }
2340 
2341 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2342  struct fs_struct *new_fs)
2343 {
2344  struct mnt_namespace *new_ns;
2345 
2346  BUG_ON(!ns);
2347  get_mnt_ns(ns);
2348 
2349  if (!(flags & CLONE_NEWNS))
2350  return ns;
2351 
2352  new_ns = dup_mnt_ns(ns, new_fs);
2353 
2354  put_mnt_ns(ns);
2355  return new_ns;
2356 }
2357 
2362 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2363 {
2364  struct mnt_namespace *new_ns = alloc_mnt_ns();
2365  if (!IS_ERR(new_ns)) {
2366  struct mount *mnt = real_mount(m);
2367  mnt->mnt_ns = new_ns;
2368  new_ns->root = mnt;
2369  list_add(&new_ns->list, &mnt->mnt_list);
2370  } else {
2371  mntput(m);
2372  }
2373  return new_ns;
2374 }
2375 
2376 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2377 {
2378  struct mnt_namespace *ns;
2379  struct super_block *s;
2380  struct path path;
2381  int err;
2382 
2383  ns = create_mnt_ns(mnt);
2384  if (IS_ERR(ns))
2385  return ERR_CAST(ns);
2386 
2387  err = vfs_path_lookup(mnt->mnt_root, mnt,
2388  name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2389 
2390  put_mnt_ns(ns);
2391 
2392  if (err)
2393  return ERR_PTR(err);
2394 
2395  /* trade a vfsmount reference for active sb one */
2396  s = path.mnt->mnt_sb;
2397  atomic_inc(&s->s_active);
2398  mntput(path.mnt);
2399  /* lock the sucker */
2400  down_write(&s->s_umount);
2401  /* ... and return the root of (sub)tree on it */
2402  return path.dentry;
2403 }
2405 
2406 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2407  char __user *, type, unsigned long, flags, void __user *, data)
2408 {
2409  int ret;
2410  char *kernel_type;
2411  struct filename *kernel_dir;
2412  char *kernel_dev;
2413  unsigned long data_page;
2414 
2415  ret = copy_mount_string(type, &kernel_type);
2416  if (ret < 0)
2417  goto out_type;
2418 
2419  kernel_dir = getname(dir_name);
2420  if (IS_ERR(kernel_dir)) {
2421  ret = PTR_ERR(kernel_dir);
2422  goto out_dir;
2423  }
2424 
2425  ret = copy_mount_string(dev_name, &kernel_dev);
2426  if (ret < 0)
2427  goto out_dev;
2428 
2429  ret = copy_mount_options(data, &data_page);
2430  if (ret < 0)
2431  goto out_data;
2432 
2433  ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2434  (void *) data_page);
2435 
2436  free_page(data_page);
2437 out_data:
2438  kfree(kernel_dev);
2439 out_dev:
2440  putname(kernel_dir);
2441 out_dir:
2442  kfree(kernel_type);
2443 out_type:
2444  return ret;
2445 }
2446 
2447 /*
2448  * Return true if path is reachable from root
2449  *
2450  * namespace_sem or vfsmount_lock is held
2451  */
2452 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2453  const struct path *root)
2454 {
2455  while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2456  dentry = mnt->mnt_mountpoint;
2457  mnt = mnt->mnt_parent;
2458  }
2459  return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2460 }
2461 
2462 int path_is_under(struct path *path1, struct path *path2)
2463 {
2464  int res;
2466  res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2468  return res;
2469 }
2471 
2472 /*
2473  * pivot_root Semantics:
2474  * Moves the root file system of the current process to the directory put_old,
2475  * makes new_root as the new root file system of the current process, and sets
2476  * root/cwd of all processes which had them on the current root to new_root.
2477  *
2478  * Restrictions:
2479  * The new_root and put_old must be directories, and must not be on the
2480  * same file system as the current process root. The put_old must be
2481  * underneath new_root, i.e. adding a non-zero number of /.. to the string
2482  * pointed to by put_old must yield the same directory as new_root. No other
2483  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2484  *
2485  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2486  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2487  * in this situation.
2488  *
2489  * Notes:
2490  * - we don't move root/cwd if they are not at the root (reason: if something
2491  * cared enough to change them, it's probably wrong to force them elsewhere)
2492  * - it's okay to pick a root that isn't the root of a file system, e.g.
2493  * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2494  * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2495  * first.
2496  */
2497 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2498  const char __user *, put_old)
2499 {
2500  struct path new, old, parent_path, root_parent, root;
2501  struct mount *new_mnt, *root_mnt;
2502  int error;
2503 
2504  if (!capable(CAP_SYS_ADMIN))
2505  return -EPERM;
2506 
2507  error = user_path_dir(new_root, &new);
2508  if (error)
2509  goto out0;
2510 
2511  error = user_path_dir(put_old, &old);
2512  if (error)
2513  goto out1;
2514 
2515  error = security_sb_pivotroot(&old, &new);
2516  if (error)
2517  goto out2;
2518 
2519  get_fs_root(current->fs, &root);
2520  error = lock_mount(&old);
2521  if (error)
2522  goto out3;
2523 
2524  error = -EINVAL;
2525  new_mnt = real_mount(new.mnt);
2526  root_mnt = real_mount(root.mnt);
2527  if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2528  IS_MNT_SHARED(new_mnt->mnt_parent) ||
2529  IS_MNT_SHARED(root_mnt->mnt_parent))
2530  goto out4;
2531  if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2532  goto out4;
2533  error = -ENOENT;
2534  if (d_unlinked(new.dentry))
2535  goto out4;
2536  if (d_unlinked(old.dentry))
2537  goto out4;
2538  error = -EBUSY;
2539  if (new.mnt == root.mnt ||
2540  old.mnt == root.mnt)
2541  goto out4; /* loop, on the same file system */
2542  error = -EINVAL;
2543  if (root.mnt->mnt_root != root.dentry)
2544  goto out4; /* not a mountpoint */
2545  if (!mnt_has_parent(root_mnt))
2546  goto out4; /* not attached */
2547  if (new.mnt->mnt_root != new.dentry)
2548  goto out4; /* not a mountpoint */
2549  if (!mnt_has_parent(new_mnt))
2550  goto out4; /* not attached */
2551  /* make sure we can reach put_old from new_root */
2552  if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
2553  goto out4;
2555  detach_mnt(new_mnt, &parent_path);
2556  detach_mnt(root_mnt, &root_parent);
2557  /* mount old root on put_old */
2558  attach_mnt(root_mnt, &old);
2559  /* mount new_root on / */
2560  attach_mnt(new_mnt, &root_parent);
2561  touch_mnt_namespace(current->nsproxy->mnt_ns);
2563  chroot_fs_refs(&root, &new);
2564  error = 0;
2565 out4:
2566  unlock_mount(&old);
2567  if (!error) {
2568  path_put(&root_parent);
2569  path_put(&parent_path);
2570  }
2571 out3:
2572  path_put(&root);
2573 out2:
2574  path_put(&old);
2575 out1:
2576  path_put(&new);
2577 out0:
2578  return error;
2579 }
2580 
2581 static void __init init_mount_tree(void)
2582 {
2583  struct vfsmount *mnt;
2584  struct mnt_namespace *ns;
2585  struct path root;
2586 
2587  mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2588  if (IS_ERR(mnt))
2589  panic("Can't create rootfs");
2590 
2591  ns = create_mnt_ns(mnt);
2592  if (IS_ERR(ns))
2593  panic("Can't allocate initial namespace");
2594 
2595  init_task.nsproxy->mnt_ns = ns;
2596  get_mnt_ns(ns);
2597 
2598  root.mnt = mnt;
2599  root.dentry = mnt->mnt_root;
2600 
2601  set_fs_pwd(current->fs, &root);
2602  set_fs_root(current->fs, &root);
2603 }
2604 
2605 void __init mnt_init(void)
2606 {
2607  unsigned u;
2608  int err;
2609 
2610  init_rwsem(&namespace_sem);
2611 
2612  mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2614 
2615  mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2616 
2617  if (!mount_hashtable)
2618  panic("Failed to allocate mount hash table\n");
2619 
2620  printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2621 
2622  for (u = 0; u < HASH_SIZE; u++)
2623  INIT_LIST_HEAD(&mount_hashtable[u]);
2624 
2626 
2627  err = sysfs_init();
2628  if (err)
2629  printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2630  __func__, err);
2631  fs_kobj = kobject_create_and_add("fs", NULL);
2632  if (!fs_kobj)
2633  printk(KERN_WARNING "%s: kobj create error\n", __func__);
2634  init_rootfs();
2635  init_mount_tree();
2636 }
2637 
2638 void put_mnt_ns(struct mnt_namespace *ns)
2639 {
2640  LIST_HEAD(umount_list);
2641 
2642  if (!atomic_dec_and_test(&ns->count))
2643  return;
2644  down_write(&namespace_sem);
2646  umount_tree(ns->root, 0, &umount_list);
2648  up_write(&namespace_sem);
2649  release_mounts(&umount_list);
2650  kfree(ns);
2651 }
2652 
2653 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2654 {
2655  struct vfsmount *mnt;
2656  mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2657  if (!IS_ERR(mnt)) {
2658  /*
2659  * it is a longterm mount, don't release mnt until
2660  * we unmount before file sys is unregistered
2661  */
2662  real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2663  }
2664  return mnt;
2665 }
2667 
2668 void kern_unmount(struct vfsmount *mnt)
2669 {
2670  /* release long term mount so mount point can be released */
2671  if (!IS_ERR_OR_NULL(mnt)) {
2673  real_mount(mnt)->mnt_ns = NULL;
2675  mntput(mnt);
2676  }
2677 }
2679 
2680 bool our_mnt(struct vfsmount *mnt)
2681 {
2682  return check_mnt(real_mount(mnt));
2683 }