Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
heartbeat.c
Go to the documentation of this file.
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2004, 2005 Oracle. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/jiffies.h>
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/bio.h>
28 #include <linux/blkdev.h>
29 #include <linux/delay.h>
30 #include <linux/file.h>
31 #include <linux/kthread.h>
32 #include <linux/configfs.h>
33 #include <linux/random.h>
34 #include <linux/crc32.h>
35 #include <linux/time.h>
36 #include <linux/debugfs.h>
37 #include <linux/slab.h>
38 
39 #include "heartbeat.h"
40 #include "tcp.h"
41 #include "nodemanager.h"
42 #include "quorum.h"
43 
44 #include "masklog.h"
45 
46 
47 /*
48  * The first heartbeat pass had one global thread that would serialize all hb
49  * callback calls. This global serializing sem should only be removed once
50  * we've made sure that all callees can deal with being called concurrently
51  * from multiple hb region threads.
52  */
53 static DECLARE_RWSEM(o2hb_callback_sem);
54 
55 /*
56  * multiple hb threads are watching multiple regions. A node is live
57  * whenever any of the threads sees activity from the node in its region.
58  */
59 static DEFINE_SPINLOCK(o2hb_live_lock);
60 static struct list_head o2hb_live_slots[O2NM_MAX_NODES];
61 static unsigned long o2hb_live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)];
62 static LIST_HEAD(o2hb_node_events);
63 static DECLARE_WAIT_QUEUE_HEAD(o2hb_steady_queue);
64 
65 /*
66  * In global heartbeat, we maintain a series of region bitmaps.
67  * - o2hb_region_bitmap allows us to limit the region number to max region.
68  * - o2hb_live_region_bitmap tracks live regions (seen steady iterations).
69  * - o2hb_quorum_region_bitmap tracks live regions that have seen all nodes
70  * heartbeat on it.
71  * - o2hb_failed_region_bitmap tracks the regions that have seen io timeouts.
72  */
73 static unsigned long o2hb_region_bitmap[BITS_TO_LONGS(O2NM_MAX_REGIONS)];
74 static unsigned long o2hb_live_region_bitmap[BITS_TO_LONGS(O2NM_MAX_REGIONS)];
75 static unsigned long o2hb_quorum_region_bitmap[BITS_TO_LONGS(O2NM_MAX_REGIONS)];
76 static unsigned long o2hb_failed_region_bitmap[BITS_TO_LONGS(O2NM_MAX_REGIONS)];
77 
78 #define O2HB_DB_TYPE_LIVENODES 0
79 #define O2HB_DB_TYPE_LIVEREGIONS 1
80 #define O2HB_DB_TYPE_QUORUMREGIONS 2
81 #define O2HB_DB_TYPE_FAILEDREGIONS 3
82 #define O2HB_DB_TYPE_REGION_LIVENODES 4
83 #define O2HB_DB_TYPE_REGION_NUMBER 5
84 #define O2HB_DB_TYPE_REGION_ELAPSED_TIME 6
85 #define O2HB_DB_TYPE_REGION_PINNED 7
87  int db_type;
88  int db_size;
89  int db_len;
90  void *db_data;
91 };
92 
93 static struct o2hb_debug_buf *o2hb_db_livenodes;
94 static struct o2hb_debug_buf *o2hb_db_liveregions;
95 static struct o2hb_debug_buf *o2hb_db_quorumregions;
96 static struct o2hb_debug_buf *o2hb_db_failedregions;
97 
98 #define O2HB_DEBUG_DIR "o2hb"
99 #define O2HB_DEBUG_LIVENODES "livenodes"
100 #define O2HB_DEBUG_LIVEREGIONS "live_regions"
101 #define O2HB_DEBUG_QUORUMREGIONS "quorum_regions"
102 #define O2HB_DEBUG_FAILEDREGIONS "failed_regions"
103 #define O2HB_DEBUG_REGION_NUMBER "num"
104 #define O2HB_DEBUG_REGION_ELAPSED_TIME "elapsed_time_in_ms"
105 #define O2HB_DEBUG_REGION_PINNED "pinned"
106 
107 static struct dentry *o2hb_debug_dir;
108 static struct dentry *o2hb_debug_livenodes;
109 static struct dentry *o2hb_debug_liveregions;
110 static struct dentry *o2hb_debug_quorumregions;
111 static struct dentry *o2hb_debug_failedregions;
112 
113 static LIST_HEAD(o2hb_all_regions);
114 
115 static struct o2hb_callback {
116  struct list_head list;
117 } o2hb_callbacks[O2HB_NUM_CB];
118 
119 static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type);
120 
121 #define O2HB_DEFAULT_BLOCK_BITS 9
122 
127 };
128 
130  "local", /* O2HB_HEARTBEAT_LOCAL */
131  "global", /* O2HB_HEARTBEAT_GLOBAL */
132 };
133 
136 
137 /*
138  * o2hb_dependent_users tracks the number of registered callbacks that depend
139  * on heartbeat. o2net and o2dlm are two entities that register this callback.
140  * However only o2dlm depends on the heartbeat. It does not want the heartbeat
141  * to stop while a dlm domain is still active.
142  */
143 unsigned int o2hb_dependent_users;
144 
145 /*
146  * In global heartbeat mode, all regions are pinned if there are one or more
147  * dependent users and the quorum region count is <= O2HB_PIN_CUT_OFF. All
148  * regions are unpinned if the region count exceeds the cut off or the number
149  * of dependent users falls to zero.
150  */
151 #define O2HB_PIN_CUT_OFF 3
152 
153 /*
154  * In local heartbeat mode, we assume the dlm domain name to be the same as
155  * region uuid. This is true for domains created for the file system but not
156  * necessarily true for userdlm domains. This is a known limitation.
157  *
158  * In global heartbeat mode, we pin/unpin all o2hb regions. This solution
159  * works for both file system and userdlm domains.
160  */
161 static int o2hb_region_pin(const char *region_uuid);
162 static void o2hb_region_unpin(const char *region_uuid);
163 
164 /* Only sets a new threshold if there are no active regions.
165  *
166  * No locking or otherwise interesting code is required for reading
167  * o2hb_dead_threshold as it can't change once regions are active and
168  * it's not interesting to anyone until then anyway. */
169 static void o2hb_dead_threshold_set(unsigned int threshold)
170 {
171  if (threshold > O2HB_MIN_DEAD_THRESHOLD) {
172  spin_lock(&o2hb_live_lock);
173  if (list_empty(&o2hb_all_regions))
175  spin_unlock(&o2hb_live_lock);
176  }
177 }
178 
179 static int o2hb_global_hearbeat_mode_set(unsigned int hb_mode)
180 {
181  int ret = -1;
182 
183  if (hb_mode < O2HB_HEARTBEAT_NUM_MODES) {
184  spin_lock(&o2hb_live_lock);
185  if (list_empty(&o2hb_all_regions)) {
186  o2hb_heartbeat_mode = hb_mode;
187  ret = 0;
188  }
189  spin_unlock(&o2hb_live_lock);
190  }
191 
192  return ret;
193 }
194 
200 };
201 
210 };
211 
212 /* each thread owns a region.. when we're asked to tear down the region
213  * we ask the thread to stop, who cleans up the region */
214 struct o2hb_region {
216 
218  unsigned hr_unclean_stop:1,
220  hr_item_pinned:1,
221  hr_item_dropped:1;
222 
223  /* protected by the hr_callback_sem */
225 
226  unsigned int hr_blocks;
227  unsigned long long hr_start_block;
228 
229  unsigned int hr_block_bits;
230  unsigned int hr_block_bytes;
231 
232  unsigned int hr_slots_per_page;
233  unsigned int hr_num_pages;
234 
235  struct page **hr_slot_data;
238 
239  /* live node map of this region */
241  unsigned int hr_region_num;
242 
252 
253  /* let the person setting up hb wait for it to return until it
254  * has reached a 'steady' state. This will be fixed when we have
255  * a more complete api that doesn't lead to this sort of fragility. */
257 
258  /* terminate o2hb thread if it does not reach steady state
259  * (hr_steady_iterations == 0) within hr_unsteady_iterations */
261 
263 
264  unsigned int hr_timeout_ms;
265 
266  /* randomized as the region goes up and down so that a node
267  * recognizes a node going up and down in one iteration */
269 
271  unsigned long hr_last_timeout_start;
272 
273  /* Used during o2hb_check_slot to hold a copy of the block
274  * being checked because we temporarily have to zero out the
275  * crc field. */
277 };
278 
282  int wc_error;
283 };
284 
285 static int o2hb_pop_count(void *map, int count)
286 {
287  int i = -1, pop = 0;
288 
289  while ((i = find_next_bit(map, count, i + 1)) < count)
290  pop++;
291  return pop;
292 }
293 
294 static void o2hb_write_timeout(struct work_struct *work)
295 {
296  int failed, quorum;
297  unsigned long flags;
298  struct o2hb_region *reg =
299  container_of(work, struct o2hb_region,
300  hr_write_timeout_work.work);
301 
302  mlog(ML_ERROR, "Heartbeat write timeout to device %s after %u "
303  "milliseconds\n", reg->hr_dev_name,
304  jiffies_to_msecs(jiffies - reg->hr_last_timeout_start));
305 
307  spin_lock_irqsave(&o2hb_live_lock, flags);
308  if (test_bit(reg->hr_region_num, o2hb_quorum_region_bitmap))
309  set_bit(reg->hr_region_num, o2hb_failed_region_bitmap);
310  failed = o2hb_pop_count(&o2hb_failed_region_bitmap,
312  quorum = o2hb_pop_count(&o2hb_quorum_region_bitmap,
314  spin_unlock_irqrestore(&o2hb_live_lock, flags);
315 
316  mlog(ML_HEARTBEAT, "Number of regions %d, failed regions %d\n",
317  quorum, failed);
318 
319  /*
320  * Fence if the number of failed regions >= half the number
321  * of quorum regions
322  */
323  if ((failed << 1) < quorum)
324  return;
325  }
326 
328 }
329 
330 static void o2hb_arm_write_timeout(struct o2hb_region *reg)
331 {
332  /* Arm writeout only after thread reaches steady state */
333  if (atomic_read(&reg->hr_steady_iterations) != 0)
334  return;
335 
336  mlog(ML_HEARTBEAT, "Queue write timeout for %u ms\n",
338 
340  spin_lock(&o2hb_live_lock);
341  clear_bit(reg->hr_region_num, o2hb_failed_region_bitmap);
342  spin_unlock(&o2hb_live_lock);
343  }
348 }
349 
350 static void o2hb_disarm_write_timeout(struct o2hb_region *reg)
351 {
353 }
354 
355 static inline void o2hb_bio_wait_init(struct o2hb_bio_wait_ctxt *wc)
356 {
357  atomic_set(&wc->wc_num_reqs, 1);
358  init_completion(&wc->wc_io_complete);
359  wc->wc_error = 0;
360 }
361 
362 /* Used in error paths too */
363 static inline void o2hb_bio_wait_dec(struct o2hb_bio_wait_ctxt *wc,
364  unsigned int num)
365 {
366  /* sadly atomic_sub_and_test() isn't available on all platforms. The
367  * good news is that the fast path only completes one at a time */
368  while(num--) {
369  if (atomic_dec_and_test(&wc->wc_num_reqs)) {
370  BUG_ON(num > 0);
371  complete(&wc->wc_io_complete);
372  }
373  }
374 }
375 
376 static void o2hb_wait_on_io(struct o2hb_region *reg,
377  struct o2hb_bio_wait_ctxt *wc)
378 {
379  o2hb_bio_wait_dec(wc, 1);
381 }
382 
383 static void o2hb_bio_end_io(struct bio *bio,
384  int error)
385 {
386  struct o2hb_bio_wait_ctxt *wc = bio->bi_private;
387 
388  if (error) {
389  mlog(ML_ERROR, "IO Error %d\n", error);
390  wc->wc_error = error;
391  }
392 
393  o2hb_bio_wait_dec(wc, 1);
394  bio_put(bio);
395 }
396 
397 /* Setup a Bio to cover I/O against num_slots slots starting at
398  * start_slot. */
399 static struct bio *o2hb_setup_one_bio(struct o2hb_region *reg,
400  struct o2hb_bio_wait_ctxt *wc,
401  unsigned int *current_slot,
402  unsigned int max_slots)
403 {
404  int len, current_page;
405  unsigned int vec_len, vec_start;
406  unsigned int bits = reg->hr_block_bits;
407  unsigned int spp = reg->hr_slots_per_page;
408  unsigned int cs = *current_slot;
409  struct bio *bio;
410  struct page *page;
411 
412  /* Testing has shown this allocation to take long enough under
413  * GFP_KERNEL that the local node can get fenced. It would be
414  * nicest if we could pre-allocate these bios and avoid this
415  * all together. */
416  bio = bio_alloc(GFP_ATOMIC, 16);
417  if (!bio) {
418  mlog(ML_ERROR, "Could not alloc slots BIO!\n");
419  bio = ERR_PTR(-ENOMEM);
420  goto bail;
421  }
422 
423  /* Must put everything in 512 byte sectors for the bio... */
424  bio->bi_sector = (reg->hr_start_block + cs) << (bits - 9);
425  bio->bi_bdev = reg->hr_bdev;
426  bio->bi_private = wc;
427  bio->bi_end_io = o2hb_bio_end_io;
428 
429  vec_start = (cs << bits) % PAGE_CACHE_SIZE;
430  while(cs < max_slots) {
431  current_page = cs / spp;
432  page = reg->hr_slot_data[current_page];
433 
434  vec_len = min(PAGE_CACHE_SIZE - vec_start,
435  (max_slots-cs) * (PAGE_CACHE_SIZE/spp) );
436 
437  mlog(ML_HB_BIO, "page %d, vec_len = %u, vec_start = %u\n",
438  current_page, vec_len, vec_start);
439 
440  len = bio_add_page(bio, page, vec_len, vec_start);
441  if (len != vec_len) break;
442 
443  cs += vec_len / (PAGE_CACHE_SIZE/spp);
444  vec_start = 0;
445  }
446 
447 bail:
448  *current_slot = cs;
449  return bio;
450 }
451 
452 static int o2hb_read_slots(struct o2hb_region *reg,
453  unsigned int max_slots)
454 {
455  unsigned int current_slot=0;
456  int status;
457  struct o2hb_bio_wait_ctxt wc;
458  struct bio *bio;
459 
460  o2hb_bio_wait_init(&wc);
461 
462  while(current_slot < max_slots) {
463  bio = o2hb_setup_one_bio(reg, &wc, &current_slot, max_slots);
464  if (IS_ERR(bio)) {
465  status = PTR_ERR(bio);
466  mlog_errno(status);
467  goto bail_and_wait;
468  }
469 
470  atomic_inc(&wc.wc_num_reqs);
471  submit_bio(READ, bio);
472  }
473 
474  status = 0;
475 
476 bail_and_wait:
477  o2hb_wait_on_io(reg, &wc);
478  if (wc.wc_error && !status)
479  status = wc.wc_error;
480 
481  return status;
482 }
483 
484 static int o2hb_issue_node_write(struct o2hb_region *reg,
485  struct o2hb_bio_wait_ctxt *write_wc)
486 {
487  int status;
488  unsigned int slot;
489  struct bio *bio;
490 
491  o2hb_bio_wait_init(write_wc);
492 
493  slot = o2nm_this_node();
494 
495  bio = o2hb_setup_one_bio(reg, write_wc, &slot, slot+1);
496  if (IS_ERR(bio)) {
497  status = PTR_ERR(bio);
498  mlog_errno(status);
499  goto bail;
500  }
501 
502  atomic_inc(&write_wc->wc_num_reqs);
503  submit_bio(WRITE, bio);
504 
505  status = 0;
506 bail:
507  return status;
508 }
509 
510 static u32 o2hb_compute_block_crc_le(struct o2hb_region *reg,
511  struct o2hb_disk_heartbeat_block *hb_block)
512 {
513  __le32 old_cksum;
514  u32 ret;
515 
516  /* We want to compute the block crc with a 0 value in the
517  * hb_cksum field. Save it off here and replace after the
518  * crc. */
519  old_cksum = hb_block->hb_cksum;
520  hb_block->hb_cksum = 0;
521 
522  ret = crc32_le(0, (unsigned char *) hb_block, reg->hr_block_bytes);
523 
524  hb_block->hb_cksum = old_cksum;
525 
526  return ret;
527 }
528 
529 static void o2hb_dump_slot(struct o2hb_disk_heartbeat_block *hb_block)
530 {
531  mlog(ML_ERROR, "Dump slot information: seq = 0x%llx, node = %u, "
532  "cksum = 0x%x, generation 0x%llx\n",
533  (long long)le64_to_cpu(hb_block->hb_seq),
534  hb_block->hb_node, le32_to_cpu(hb_block->hb_cksum),
535  (long long)le64_to_cpu(hb_block->hb_generation));
536 }
537 
538 static int o2hb_verify_crc(struct o2hb_region *reg,
539  struct o2hb_disk_heartbeat_block *hb_block)
540 {
541  u32 read, computed;
542 
543  read = le32_to_cpu(hb_block->hb_cksum);
544  computed = o2hb_compute_block_crc_le(reg, hb_block);
545 
546  return read == computed;
547 }
548 
549 /*
550  * Compare the slot data with what we wrote in the last iteration.
551  * If the match fails, print an appropriate error message. This is to
552  * detect errors like... another node hearting on the same slot,
553  * flaky device that is losing writes, etc.
554  * Returns 1 if check succeeds, 0 otherwise.
555  */
556 static int o2hb_check_own_slot(struct o2hb_region *reg)
557 {
558  struct o2hb_disk_slot *slot;
559  struct o2hb_disk_heartbeat_block *hb_block;
560  char *errstr;
561 
562  slot = &reg->hr_slots[o2nm_this_node()];
563  /* Don't check on our 1st timestamp */
564  if (!slot->ds_last_time)
565  return 0;
566 
567  hb_block = slot->ds_raw_block;
568  if (le64_to_cpu(hb_block->hb_seq) == slot->ds_last_time &&
569  le64_to_cpu(hb_block->hb_generation) == slot->ds_last_generation &&
570  hb_block->hb_node == slot->ds_node_num)
571  return 1;
572 
573 #define ERRSTR1 "Another node is heartbeating on device"
574 #define ERRSTR2 "Heartbeat generation mismatch on device"
575 #define ERRSTR3 "Heartbeat sequence mismatch on device"
576 
577  if (hb_block->hb_node != slot->ds_node_num)
578  errstr = ERRSTR1;
579  else if (le64_to_cpu(hb_block->hb_generation) !=
580  slot->ds_last_generation)
581  errstr = ERRSTR2;
582  else
583  errstr = ERRSTR3;
584 
585  mlog(ML_ERROR, "%s (%s): expected(%u:0x%llx, 0x%llx), "
586  "ondisk(%u:0x%llx, 0x%llx)\n", errstr, reg->hr_dev_name,
587  slot->ds_node_num, (unsigned long long)slot->ds_last_generation,
588  (unsigned long long)slot->ds_last_time, hb_block->hb_node,
589  (unsigned long long)le64_to_cpu(hb_block->hb_generation),
590  (unsigned long long)le64_to_cpu(hb_block->hb_seq));
591 
592  return 0;
593 }
594 
595 static inline void o2hb_prepare_block(struct o2hb_region *reg,
596  u64 generation)
597 {
598  int node_num;
599  u64 cputime;
600  struct o2hb_disk_slot *slot;
601  struct o2hb_disk_heartbeat_block *hb_block;
602 
603  node_num = o2nm_this_node();
604  slot = &reg->hr_slots[node_num];
605 
606  hb_block = (struct o2hb_disk_heartbeat_block *)slot->ds_raw_block;
607  memset(hb_block, 0, reg->hr_block_bytes);
608  /* TODO: time stuff */
609  cputime = CURRENT_TIME.tv_sec;
610  if (!cputime)
611  cputime = 1;
612 
613  hb_block->hb_seq = cpu_to_le64(cputime);
614  hb_block->hb_node = node_num;
615  hb_block->hb_generation = cpu_to_le64(generation);
617 
618  /* This step must always happen last! */
619  hb_block->hb_cksum = cpu_to_le32(o2hb_compute_block_crc_le(reg,
620  hb_block));
621 
622  mlog(ML_HB_BIO, "our node generation = 0x%llx, cksum = 0x%x\n",
623  (long long)generation,
624  le32_to_cpu(hb_block->hb_cksum));
625 }
626 
627 static void o2hb_fire_callbacks(struct o2hb_callback *hbcall,
628  struct o2nm_node *node,
629  int idx)
630 {
631  struct list_head *iter;
632  struct o2hb_callback_func *f;
633 
634  list_for_each(iter, &hbcall->list) {
635  f = list_entry(iter, struct o2hb_callback_func, hc_item);
636  mlog(ML_HEARTBEAT, "calling funcs %p\n", f);
637  (f->hc_func)(node, idx, f->hc_data);
638  }
639 }
640 
641 /* Will run the list in order until we process the passed event */
642 static void o2hb_run_event_list(struct o2hb_node_event *queued_event)
643 {
644  int empty;
645  struct o2hb_callback *hbcall;
646  struct o2hb_node_event *event;
647 
648  spin_lock(&o2hb_live_lock);
649  empty = list_empty(&queued_event->hn_item);
650  spin_unlock(&o2hb_live_lock);
651  if (empty)
652  return;
653 
654  /* Holding callback sem assures we don't alter the callback
655  * lists when doing this, and serializes ourselves with other
656  * processes wanting callbacks. */
657  down_write(&o2hb_callback_sem);
658 
659  spin_lock(&o2hb_live_lock);
660  while (!list_empty(&o2hb_node_events)
661  && !list_empty(&queued_event->hn_item)) {
662  event = list_entry(o2hb_node_events.next,
663  struct o2hb_node_event,
664  hn_item);
665  list_del_init(&event->hn_item);
666  spin_unlock(&o2hb_live_lock);
667 
668  mlog(ML_HEARTBEAT, "Node %s event for %d\n",
669  event->hn_event_type == O2HB_NODE_UP_CB ? "UP" : "DOWN",
670  event->hn_node_num);
671 
672  hbcall = hbcall_from_type(event->hn_event_type);
673 
674  /* We should *never* have gotten on to the list with a
675  * bad type... This isn't something that we should try
676  * to recover from. */
677  BUG_ON(IS_ERR(hbcall));
678 
679  o2hb_fire_callbacks(hbcall, event->hn_node, event->hn_node_num);
680 
681  spin_lock(&o2hb_live_lock);
682  }
683  spin_unlock(&o2hb_live_lock);
684 
685  up_write(&o2hb_callback_sem);
686 }
687 
688 static void o2hb_queue_node_event(struct o2hb_node_event *event,
690  struct o2nm_node *node,
691  int node_num)
692 {
693  assert_spin_locked(&o2hb_live_lock);
694 
695  BUG_ON((!node) && (type != O2HB_NODE_DOWN_CB));
696 
697  event->hn_event_type = type;
698  event->hn_node = node;
699  event->hn_node_num = node_num;
700 
701  mlog(ML_HEARTBEAT, "Queue node %s event for node %d\n",
702  type == O2HB_NODE_UP_CB ? "UP" : "DOWN", node_num);
703 
704  list_add_tail(&event->hn_item, &o2hb_node_events);
705 }
706 
707 static void o2hb_shutdown_slot(struct o2hb_disk_slot *slot)
708 {
709  struct o2hb_node_event event =
710  { .hn_item = LIST_HEAD_INIT(event.hn_item), };
711  struct o2nm_node *node;
712 
713  node = o2nm_get_node_by_num(slot->ds_node_num);
714  if (!node)
715  return;
716 
717  spin_lock(&o2hb_live_lock);
718  if (!list_empty(&slot->ds_live_item)) {
719  mlog(ML_HEARTBEAT, "Shutdown, node %d leaves region\n",
720  slot->ds_node_num);
721 
722  list_del_init(&slot->ds_live_item);
723 
724  if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
725  clear_bit(slot->ds_node_num, o2hb_live_node_bitmap);
726 
727  o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, node,
728  slot->ds_node_num);
729  }
730  }
731  spin_unlock(&o2hb_live_lock);
732 
733  o2hb_run_event_list(&event);
734 
735  o2nm_node_put(node);
736 }
737 
738 static void o2hb_set_quorum_device(struct o2hb_region *reg)
739 {
741  return;
742 
743  /* Prevent race with o2hb_heartbeat_group_drop_item() */
744  if (kthread_should_stop())
745  return;
746 
747  /* Tag region as quorum only after thread reaches steady state */
748  if (atomic_read(&reg->hr_steady_iterations) != 0)
749  return;
750 
751  spin_lock(&o2hb_live_lock);
752 
753  if (test_bit(reg->hr_region_num, o2hb_quorum_region_bitmap))
754  goto unlock;
755 
756  /*
757  * A region can be added to the quorum only when it sees all
758  * live nodes heartbeat on it. In other words, the region has been
759  * added to all nodes.
760  */
761  if (memcmp(reg->hr_live_node_bitmap, o2hb_live_node_bitmap,
762  sizeof(o2hb_live_node_bitmap)))
763  goto unlock;
764 
765  printk(KERN_NOTICE "o2hb: Region %s (%s) is now a quorum device\n",
766  config_item_name(&reg->hr_item), reg->hr_dev_name);
767 
768  set_bit(reg->hr_region_num, o2hb_quorum_region_bitmap);
769 
770  /*
771  * If global heartbeat active, unpin all regions if the
772  * region count > CUT_OFF
773  */
774  if (o2hb_pop_count(&o2hb_quorum_region_bitmap,
776  o2hb_region_unpin(NULL);
777 unlock:
778  spin_unlock(&o2hb_live_lock);
779 }
780 
781 static int o2hb_check_slot(struct o2hb_region *reg,
782  struct o2hb_disk_slot *slot)
783 {
784  int changed = 0, gen_changed = 0;
785  struct o2hb_node_event event =
786  { .hn_item = LIST_HEAD_INIT(event.hn_item), };
787  struct o2nm_node *node;
788  struct o2hb_disk_heartbeat_block *hb_block = reg->hr_tmp_block;
789  u64 cputime;
790  unsigned int dead_ms = o2hb_dead_threshold * O2HB_REGION_TIMEOUT_MS;
791  unsigned int slot_dead_ms;
792  int tmp;
793 
794  memcpy(hb_block, slot->ds_raw_block, reg->hr_block_bytes);
795 
796  /*
797  * If a node is no longer configured but is still in the livemap, we
798  * may need to clear that bit from the livemap.
799  */
800  node = o2nm_get_node_by_num(slot->ds_node_num);
801  if (!node) {
802  spin_lock(&o2hb_live_lock);
803  tmp = test_bit(slot->ds_node_num, o2hb_live_node_bitmap);
804  spin_unlock(&o2hb_live_lock);
805  if (!tmp)
806  return 0;
807  }
808 
809  if (!o2hb_verify_crc(reg, hb_block)) {
810  /* all paths from here will drop o2hb_live_lock for
811  * us. */
812  spin_lock(&o2hb_live_lock);
813 
814  /* Don't print an error on the console in this case -
815  * a freshly formatted heartbeat area will not have a
816  * crc set on it. */
817  if (list_empty(&slot->ds_live_item))
818  goto out;
819 
820  /* The node is live but pushed out a bad crc. We
821  * consider it a transient miss but don't populate any
822  * other values as they may be junk. */
823  mlog(ML_ERROR, "Node %d has written a bad crc to %s\n",
824  slot->ds_node_num, reg->hr_dev_name);
825  o2hb_dump_slot(hb_block);
826 
827  slot->ds_equal_samples++;
828  goto fire_callbacks;
829  }
830 
831  /* we don't care if these wrap.. the state transitions below
832  * clear at the right places */
833  cputime = le64_to_cpu(hb_block->hb_seq);
834  if (slot->ds_last_time != cputime)
835  slot->ds_changed_samples++;
836  else
837  slot->ds_equal_samples++;
838  slot->ds_last_time = cputime;
839 
840  /* The node changed heartbeat generations. We assume this to
841  * mean it dropped off but came back before we timed out. We
842  * want to consider it down for the time being but don't want
843  * to lose any changed_samples state we might build up to
844  * considering it live again. */
845  if (slot->ds_last_generation != le64_to_cpu(hb_block->hb_generation)) {
846  gen_changed = 1;
847  slot->ds_equal_samples = 0;
848  mlog(ML_HEARTBEAT, "Node %d changed generation (0x%llx "
849  "to 0x%llx)\n", slot->ds_node_num,
850  (long long)slot->ds_last_generation,
851  (long long)le64_to_cpu(hb_block->hb_generation));
852  }
853 
854  slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation);
855 
856  mlog(ML_HEARTBEAT, "Slot %d gen 0x%llx cksum 0x%x "
857  "seq %llu last %llu changed %u equal %u\n",
858  slot->ds_node_num, (long long)slot->ds_last_generation,
859  le32_to_cpu(hb_block->hb_cksum),
860  (unsigned long long)le64_to_cpu(hb_block->hb_seq),
861  (unsigned long long)slot->ds_last_time, slot->ds_changed_samples,
862  slot->ds_equal_samples);
863 
864  spin_lock(&o2hb_live_lock);
865 
866 fire_callbacks:
867  /* dead nodes only come to life after some number of
868  * changes at any time during their dead time */
869  if (list_empty(&slot->ds_live_item) &&
871  mlog(ML_HEARTBEAT, "Node %d (id 0x%llx) joined my region\n",
872  slot->ds_node_num, (long long)slot->ds_last_generation);
873 
875 
876  /* first on the list generates a callback */
877  if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
878  mlog(ML_HEARTBEAT, "o2hb: Add node %d to live nodes "
879  "bitmap\n", slot->ds_node_num);
880  set_bit(slot->ds_node_num, o2hb_live_node_bitmap);
881 
882  o2hb_queue_node_event(&event, O2HB_NODE_UP_CB, node,
883  slot->ds_node_num);
884 
885  changed = 1;
886  }
887 
889  &o2hb_live_slots[slot->ds_node_num]);
890 
891  slot->ds_equal_samples = 0;
892 
893  /* We want to be sure that all nodes agree on the
894  * number of milliseconds before a node will be
895  * considered dead. The self-fencing timeout is
896  * computed from this value, and a discrepancy might
897  * result in heartbeat calling a node dead when it
898  * hasn't self-fenced yet. */
899  slot_dead_ms = le32_to_cpu(hb_block->hb_dead_ms);
900  if (slot_dead_ms && slot_dead_ms != dead_ms) {
901  /* TODO: Perhaps we can fail the region here. */
902  mlog(ML_ERROR, "Node %d on device %s has a dead count "
903  "of %u ms, but our count is %u ms.\n"
904  "Please double check your configuration values "
905  "for 'O2CB_HEARTBEAT_THRESHOLD'\n",
906  slot->ds_node_num, reg->hr_dev_name, slot_dead_ms,
907  dead_ms);
908  }
909  goto out;
910  }
911 
912  /* if the list is dead, we're done.. */
913  if (list_empty(&slot->ds_live_item))
914  goto out;
915 
916  /* live nodes only go dead after enough consequtive missed
917  * samples.. reset the missed counter whenever we see
918  * activity */
919  if (slot->ds_equal_samples >= o2hb_dead_threshold || gen_changed) {
920  mlog(ML_HEARTBEAT, "Node %d left my region\n",
921  slot->ds_node_num);
922 
924 
925  /* last off the live_slot generates a callback */
926  list_del_init(&slot->ds_live_item);
927  if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
928  mlog(ML_HEARTBEAT, "o2hb: Remove node %d from live "
929  "nodes bitmap\n", slot->ds_node_num);
930  clear_bit(slot->ds_node_num, o2hb_live_node_bitmap);
931 
932  /* node can be null */
933  o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB,
934  node, slot->ds_node_num);
935 
936  changed = 1;
937  }
938 
939  /* We don't clear this because the node is still
940  * actually writing new blocks. */
941  if (!gen_changed)
942  slot->ds_changed_samples = 0;
943  goto out;
944  }
945  if (slot->ds_changed_samples) {
946  slot->ds_changed_samples = 0;
947  slot->ds_equal_samples = 0;
948  }
949 out:
950  spin_unlock(&o2hb_live_lock);
951 
952  o2hb_run_event_list(&event);
953 
954  if (node)
955  o2nm_node_put(node);
956  return changed;
957 }
958 
959 /* This could be faster if we just implmented a find_last_bit, but I
960  * don't think the circumstances warrant it. */
961 static int o2hb_highest_node(unsigned long *nodes,
962  int numbits)
963 {
964  int highest, node;
965 
966  highest = numbits;
967  node = -1;
968  while ((node = find_next_bit(nodes, numbits, node + 1)) != -1) {
969  if (node >= numbits)
970  break;
971 
972  highest = node;
973  }
974 
975  return highest;
976 }
977 
978 static int o2hb_do_disk_heartbeat(struct o2hb_region *reg)
979 {
980  int i, ret, highest_node;
981  int membership_change = 0, own_slot_ok = 0;
982  unsigned long configured_nodes[BITS_TO_LONGS(O2NM_MAX_NODES)];
983  unsigned long live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)];
984  struct o2hb_bio_wait_ctxt write_wc;
985 
986  ret = o2nm_configured_node_map(configured_nodes,
987  sizeof(configured_nodes));
988  if (ret) {
989  mlog_errno(ret);
990  goto bail;
991  }
992 
993  /*
994  * If a node is not configured but is in the livemap, we still need
995  * to read the slot so as to be able to remove it from the livemap.
996  */
997  o2hb_fill_node_map(live_node_bitmap, sizeof(live_node_bitmap));
998  i = -1;
999  while ((i = find_next_bit(live_node_bitmap,
1000  O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) {
1001  set_bit(i, configured_nodes);
1002  }
1003 
1004  highest_node = o2hb_highest_node(configured_nodes, O2NM_MAX_NODES);
1005  if (highest_node >= O2NM_MAX_NODES) {
1006  mlog(ML_NOTICE, "o2hb: No configured nodes found!\n");
1007  ret = -EINVAL;
1008  goto bail;
1009  }
1010 
1011  /* No sense in reading the slots of nodes that don't exist
1012  * yet. Of course, if the node definitions have holes in them
1013  * then we're reading an empty slot anyway... Consider this
1014  * best-effort. */
1015  ret = o2hb_read_slots(reg, highest_node + 1);
1016  if (ret < 0) {
1017  mlog_errno(ret);
1018  goto bail;
1019  }
1020 
1021  /* With an up to date view of the slots, we can check that no
1022  * other node has been improperly configured to heartbeat in
1023  * our slot. */
1024  own_slot_ok = o2hb_check_own_slot(reg);
1025 
1026  /* fill in the proper info for our next heartbeat */
1027  o2hb_prepare_block(reg, reg->hr_generation);
1028 
1029  ret = o2hb_issue_node_write(reg, &write_wc);
1030  if (ret < 0) {
1031  mlog_errno(ret);
1032  goto bail;
1033  }
1034 
1035  i = -1;
1036  while((i = find_next_bit(configured_nodes,
1037  O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) {
1038  membership_change |= o2hb_check_slot(reg, &reg->hr_slots[i]);
1039  }
1040 
1041  /*
1042  * We have to be sure we've advertised ourselves on disk
1043  * before we can go to steady state. This ensures that
1044  * people we find in our steady state have seen us.
1045  */
1046  o2hb_wait_on_io(reg, &write_wc);
1047  if (write_wc.wc_error) {
1048  /* Do not re-arm the write timeout on I/O error - we
1049  * can't be sure that the new block ever made it to
1050  * disk */
1051  mlog(ML_ERROR, "Write error %d on device \"%s\"\n",
1052  write_wc.wc_error, reg->hr_dev_name);
1053  ret = write_wc.wc_error;
1054  goto bail;
1055  }
1056 
1057  /* Skip disarming the timeout if own slot has stale/bad data */
1058  if (own_slot_ok) {
1059  o2hb_set_quorum_device(reg);
1060  o2hb_arm_write_timeout(reg);
1061  }
1062 
1063 bail:
1064  /* let the person who launched us know when things are steady */
1065  if (atomic_read(&reg->hr_steady_iterations) != 0) {
1066  if (!ret && own_slot_ok && !membership_change) {
1068  wake_up(&o2hb_steady_queue);
1069  }
1070  }
1071 
1072  if (atomic_read(&reg->hr_steady_iterations) != 0) {
1074  printk(KERN_NOTICE "o2hb: Unable to stabilize "
1075  "heartbeart on region %s (%s)\n",
1076  config_item_name(&reg->hr_item),
1077  reg->hr_dev_name);
1078  atomic_set(&reg->hr_steady_iterations, 0);
1079  reg->hr_aborted_start = 1;
1080  wake_up(&o2hb_steady_queue);
1081  ret = -EIO;
1082  }
1083  }
1084 
1085  return ret;
1086 }
1087 
1088 /* Subtract b from a, storing the result in a. a *must* have a larger
1089  * value than b. */
1090 static void o2hb_tv_subtract(struct timeval *a,
1091  struct timeval *b)
1092 {
1093  /* just return 0 when a is after b */
1094  if (a->tv_sec < b->tv_sec ||
1095  (a->tv_sec == b->tv_sec && a->tv_usec < b->tv_usec)) {
1096  a->tv_sec = 0;
1097  a->tv_usec = 0;
1098  return;
1099  }
1100 
1101  a->tv_sec -= b->tv_sec;
1102  a->tv_usec -= b->tv_usec;
1103  while ( a->tv_usec < 0 ) {
1104  a->tv_sec--;
1105  a->tv_usec += 1000000;
1106  }
1107 }
1108 
1109 static unsigned int o2hb_elapsed_msecs(struct timeval *start,
1110  struct timeval *end)
1111 {
1112  struct timeval res = *end;
1113 
1114  o2hb_tv_subtract(&res, start);
1115 
1116  return res.tv_sec * 1000 + res.tv_usec / 1000;
1117 }
1118 
1119 /*
1120  * we ride the region ref that the region dir holds. before the region
1121  * dir is removed and drops it ref it will wait to tear down this
1122  * thread.
1123  */
1124 static int o2hb_thread(void *data)
1125 {
1126  int i, ret;
1127  struct o2hb_region *reg = data;
1128  struct o2hb_bio_wait_ctxt write_wc;
1129  struct timeval before_hb, after_hb;
1130  unsigned int elapsed_msec;
1131 
1132  mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread running\n");
1133 
1134  set_user_nice(current, -20);
1135 
1136  /* Pin node */
1138 
1139  while (!kthread_should_stop() &&
1140  !reg->hr_unclean_stop && !reg->hr_aborted_start) {
1141  /* We track the time spent inside
1142  * o2hb_do_disk_heartbeat so that we avoid more than
1143  * hr_timeout_ms between disk writes. On busy systems
1144  * this should result in a heartbeat which is less
1145  * likely to time itself out. */
1146  do_gettimeofday(&before_hb);
1147 
1148  ret = o2hb_do_disk_heartbeat(reg);
1149 
1150  do_gettimeofday(&after_hb);
1151  elapsed_msec = o2hb_elapsed_msecs(&before_hb, &after_hb);
1152 
1154  "start = %lu.%lu, end = %lu.%lu, msec = %u\n",
1155  before_hb.tv_sec, (unsigned long) before_hb.tv_usec,
1156  after_hb.tv_sec, (unsigned long) after_hb.tv_usec,
1157  elapsed_msec);
1158 
1159  if (!kthread_should_stop() &&
1160  elapsed_msec < reg->hr_timeout_ms) {
1161  /* the kthread api has blocked signals for us so no
1162  * need to record the return value. */
1163  msleep_interruptible(reg->hr_timeout_ms - elapsed_msec);
1164  }
1165  }
1166 
1167  o2hb_disarm_write_timeout(reg);
1168 
1169  /* unclean stop is only used in very bad situation */
1170  for(i = 0; !reg->hr_unclean_stop && i < reg->hr_blocks; i++)
1171  o2hb_shutdown_slot(&reg->hr_slots[i]);
1172 
1173  /* Explicit down notification - avoid forcing the other nodes
1174  * to timeout on this region when we could just as easily
1175  * write a clear generation - thus indicating to them that
1176  * this node has left this region.
1177  */
1178  if (!reg->hr_unclean_stop && !reg->hr_aborted_start) {
1179  o2hb_prepare_block(reg, 0);
1180  ret = o2hb_issue_node_write(reg, &write_wc);
1181  if (ret == 0)
1182  o2hb_wait_on_io(reg, &write_wc);
1183  else
1184  mlog_errno(ret);
1185  }
1186 
1187  /* Unpin node */
1189 
1190  mlog(ML_HEARTBEAT|ML_KTHREAD, "o2hb thread exiting\n");
1191 
1192  return 0;
1193 }
1194 
1195 #ifdef CONFIG_DEBUG_FS
1196 static int o2hb_debug_open(struct inode *inode, struct file *file)
1197 {
1198  struct o2hb_debug_buf *db = inode->i_private;
1199  struct o2hb_region *reg;
1200  unsigned long map[BITS_TO_LONGS(O2NM_MAX_NODES)];
1201  unsigned long lts;
1202  char *buf = NULL;
1203  int i = -1;
1204  int out = 0;
1205 
1206  /* max_nodes should be the largest bitmap we pass here */
1207  BUG_ON(sizeof(map) < db->db_size);
1208 
1209  buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1210  if (!buf)
1211  goto bail;
1212 
1213  switch (db->db_type) {
1218  spin_lock(&o2hb_live_lock);
1219  memcpy(map, db->db_data, db->db_size);
1220  spin_unlock(&o2hb_live_lock);
1221  break;
1222 
1224  spin_lock(&o2hb_live_lock);
1225  reg = (struct o2hb_region *)db->db_data;
1226  memcpy(map, reg->hr_live_node_bitmap, db->db_size);
1227  spin_unlock(&o2hb_live_lock);
1228  break;
1229 
1231  reg = (struct o2hb_region *)db->db_data;
1232  out += snprintf(buf + out, PAGE_SIZE - out, "%d\n",
1233  reg->hr_region_num);
1234  goto done;
1235 
1237  reg = (struct o2hb_region *)db->db_data;
1238  lts = reg->hr_last_timeout_start;
1239  /* If 0, it has never been set before */
1240  if (lts)
1241  lts = jiffies_to_msecs(jiffies - lts);
1242  out += snprintf(buf + out, PAGE_SIZE - out, "%lu\n", lts);
1243  goto done;
1244 
1246  reg = (struct o2hb_region *)db->db_data;
1247  out += snprintf(buf + out, PAGE_SIZE - out, "%u\n",
1248  !!reg->hr_item_pinned);
1249  goto done;
1250 
1251  default:
1252  goto done;
1253  }
1254 
1255  while ((i = find_next_bit(map, db->db_len, i + 1)) < db->db_len)
1256  out += snprintf(buf + out, PAGE_SIZE - out, "%d ", i);
1257  out += snprintf(buf + out, PAGE_SIZE - out, "\n");
1258 
1259 done:
1260  i_size_write(inode, out);
1261 
1262  file->private_data = buf;
1263 
1264  return 0;
1265 bail:
1266  return -ENOMEM;
1267 }
1268 
1269 static int o2hb_debug_release(struct inode *inode, struct file *file)
1270 {
1271  kfree(file->private_data);
1272  return 0;
1273 }
1274 
1275 static ssize_t o2hb_debug_read(struct file *file, char __user *buf,
1276  size_t nbytes, loff_t *ppos)
1277 {
1278  return simple_read_from_buffer(buf, nbytes, ppos, file->private_data,
1279  i_size_read(file->f_mapping->host));
1280 }
1281 #else
1282 static int o2hb_debug_open(struct inode *inode, struct file *file)
1283 {
1284  return 0;
1285 }
1286 static int o2hb_debug_release(struct inode *inode, struct file *file)
1287 {
1288  return 0;
1289 }
1290 static ssize_t o2hb_debug_read(struct file *file, char __user *buf,
1291  size_t nbytes, loff_t *ppos)
1292 {
1293  return 0;
1294 }
1295 #endif /* CONFIG_DEBUG_FS */
1296 
1297 static const struct file_operations o2hb_debug_fops = {
1298  .open = o2hb_debug_open,
1299  .release = o2hb_debug_release,
1300  .read = o2hb_debug_read,
1301  .llseek = generic_file_llseek,
1302 };
1303 
1304 void o2hb_exit(void)
1305 {
1306  kfree(o2hb_db_livenodes);
1307  kfree(o2hb_db_liveregions);
1308  kfree(o2hb_db_quorumregions);
1309  kfree(o2hb_db_failedregions);
1310  debugfs_remove(o2hb_debug_failedregions);
1311  debugfs_remove(o2hb_debug_quorumregions);
1312  debugfs_remove(o2hb_debug_liveregions);
1313  debugfs_remove(o2hb_debug_livenodes);
1314  debugfs_remove(o2hb_debug_dir);
1315 }
1316 
1317 static struct dentry *o2hb_debug_create(const char *name, struct dentry *dir,
1318  struct o2hb_debug_buf **db, int db_len,
1319  int type, int size, int len, void *data)
1320 {
1321  *db = kmalloc(db_len, GFP_KERNEL);
1322  if (!*db)
1323  return NULL;
1324 
1325  (*db)->db_type = type;
1326  (*db)->db_size = size;
1327  (*db)->db_len = len;
1328  (*db)->db_data = data;
1329 
1330  return debugfs_create_file(name, S_IFREG|S_IRUSR, dir, *db,
1331  &o2hb_debug_fops);
1332 }
1333 
1334 static int o2hb_debug_init(void)
1335 {
1336  int ret = -ENOMEM;
1337 
1338  o2hb_debug_dir = debugfs_create_dir(O2HB_DEBUG_DIR, NULL);
1339  if (!o2hb_debug_dir) {
1340  mlog_errno(ret);
1341  goto bail;
1342  }
1343 
1344  o2hb_debug_livenodes = o2hb_debug_create(O2HB_DEBUG_LIVENODES,
1345  o2hb_debug_dir,
1346  &o2hb_db_livenodes,
1347  sizeof(*o2hb_db_livenodes),
1349  sizeof(o2hb_live_node_bitmap),
1351  o2hb_live_node_bitmap);
1352  if (!o2hb_debug_livenodes) {
1353  mlog_errno(ret);
1354  goto bail;
1355  }
1356 
1357  o2hb_debug_liveregions = o2hb_debug_create(O2HB_DEBUG_LIVEREGIONS,
1358  o2hb_debug_dir,
1359  &o2hb_db_liveregions,
1360  sizeof(*o2hb_db_liveregions),
1362  sizeof(o2hb_live_region_bitmap),
1364  o2hb_live_region_bitmap);
1365  if (!o2hb_debug_liveregions) {
1366  mlog_errno(ret);
1367  goto bail;
1368  }
1369 
1370  o2hb_debug_quorumregions =
1371  o2hb_debug_create(O2HB_DEBUG_QUORUMREGIONS,
1372  o2hb_debug_dir,
1373  &o2hb_db_quorumregions,
1374  sizeof(*o2hb_db_quorumregions),
1376  sizeof(o2hb_quorum_region_bitmap),
1378  o2hb_quorum_region_bitmap);
1379  if (!o2hb_debug_quorumregions) {
1380  mlog_errno(ret);
1381  goto bail;
1382  }
1383 
1384  o2hb_debug_failedregions =
1385  o2hb_debug_create(O2HB_DEBUG_FAILEDREGIONS,
1386  o2hb_debug_dir,
1387  &o2hb_db_failedregions,
1388  sizeof(*o2hb_db_failedregions),
1390  sizeof(o2hb_failed_region_bitmap),
1392  o2hb_failed_region_bitmap);
1393  if (!o2hb_debug_failedregions) {
1394  mlog_errno(ret);
1395  goto bail;
1396  }
1397 
1398  ret = 0;
1399 bail:
1400  if (ret)
1401  o2hb_exit();
1402 
1403  return ret;
1404 }
1405 
1406 int o2hb_init(void)
1407 {
1408  int i;
1409 
1410  for (i = 0; i < ARRAY_SIZE(o2hb_callbacks); i++)
1411  INIT_LIST_HEAD(&o2hb_callbacks[i].list);
1412 
1413  for (i = 0; i < ARRAY_SIZE(o2hb_live_slots); i++)
1414  INIT_LIST_HEAD(&o2hb_live_slots[i]);
1415 
1416  INIT_LIST_HEAD(&o2hb_node_events);
1417 
1418  memset(o2hb_live_node_bitmap, 0, sizeof(o2hb_live_node_bitmap));
1419  memset(o2hb_region_bitmap, 0, sizeof(o2hb_region_bitmap));
1420  memset(o2hb_live_region_bitmap, 0, sizeof(o2hb_live_region_bitmap));
1421  memset(o2hb_quorum_region_bitmap, 0, sizeof(o2hb_quorum_region_bitmap));
1422  memset(o2hb_failed_region_bitmap, 0, sizeof(o2hb_failed_region_bitmap));
1423 
1425 
1426  return o2hb_debug_init();
1427 }
1428 
1429 /* if we're already in a callback then we're already serialized by the sem */
1430 static void o2hb_fill_node_map_from_callback(unsigned long *map,
1431  unsigned bytes)
1432 {
1433  BUG_ON(bytes < (BITS_TO_LONGS(O2NM_MAX_NODES) * sizeof(unsigned long)));
1434 
1435  memcpy(map, &o2hb_live_node_bitmap, bytes);
1436 }
1437 
1438 /*
1439  * get a map of all nodes that are heartbeating in any regions
1440  */
1441 void o2hb_fill_node_map(unsigned long *map, unsigned bytes)
1442 {
1443  /* callers want to serialize this map and callbacks so that they
1444  * can trust that they don't miss nodes coming to the party */
1445  down_read(&o2hb_callback_sem);
1446  spin_lock(&o2hb_live_lock);
1447  o2hb_fill_node_map_from_callback(map, bytes);
1448  spin_unlock(&o2hb_live_lock);
1449  up_read(&o2hb_callback_sem);
1450 }
1452 
1453 /*
1454  * heartbeat configfs bits. The heartbeat set is a default set under
1455  * the cluster set in nodemanager.c.
1456  */
1457 
1458 static struct o2hb_region *to_o2hb_region(struct config_item *item)
1459 {
1460  return item ? container_of(item, struct o2hb_region, hr_item) : NULL;
1461 }
1462 
1463 /* drop_item only drops its ref after killing the thread, nothing should
1464  * be using the region anymore. this has to clean up any state that
1465  * attributes might have built up. */
1466 static void o2hb_region_release(struct config_item *item)
1467 {
1468  int i;
1469  struct page *page;
1470  struct o2hb_region *reg = to_o2hb_region(item);
1471 
1472  mlog(ML_HEARTBEAT, "hb region release (%s)\n", reg->hr_dev_name);
1473 
1474  if (reg->hr_tmp_block)
1475  kfree(reg->hr_tmp_block);
1476 
1477  if (reg->hr_slot_data) {
1478  for (i = 0; i < reg->hr_num_pages; i++) {
1479  page = reg->hr_slot_data[i];
1480  if (page)
1481  __free_page(page);
1482  }
1483  kfree(reg->hr_slot_data);
1484  }
1485 
1486  if (reg->hr_bdev)
1488 
1489  if (reg->hr_slots)
1490  kfree(reg->hr_slots);
1491 
1492  kfree(reg->hr_db_regnum);
1493  kfree(reg->hr_db_livenodes);
1499 
1500  spin_lock(&o2hb_live_lock);
1501  list_del(&reg->hr_all_item);
1502  spin_unlock(&o2hb_live_lock);
1503 
1504  kfree(reg);
1505 }
1506 
1507 static int o2hb_read_block_input(struct o2hb_region *reg,
1508  const char *page,
1509  size_t count,
1510  unsigned long *ret_bytes,
1511  unsigned int *ret_bits)
1512 {
1513  unsigned long bytes;
1514  char *p = (char *)page;
1515 
1516  bytes = simple_strtoul(p, &p, 0);
1517  if (!p || (*p && (*p != '\n')))
1518  return -EINVAL;
1519 
1520  /* Heartbeat and fs min / max block sizes are the same. */
1521  if (bytes > 4096 || bytes < 512)
1522  return -ERANGE;
1523  if (hweight16(bytes) != 1)
1524  return -EINVAL;
1525 
1526  if (ret_bytes)
1527  *ret_bytes = bytes;
1528  if (ret_bits)
1529  *ret_bits = ffs(bytes) - 1;
1530 
1531  return 0;
1532 }
1533 
1534 static ssize_t o2hb_region_block_bytes_read(struct o2hb_region *reg,
1535  char *page)
1536 {
1537  return sprintf(page, "%u\n", reg->hr_block_bytes);
1538 }
1539 
1540 static ssize_t o2hb_region_block_bytes_write(struct o2hb_region *reg,
1541  const char *page,
1542  size_t count)
1543 {
1544  int status;
1545  unsigned long block_bytes;
1546  unsigned int block_bits;
1547 
1548  if (reg->hr_bdev)
1549  return -EINVAL;
1550 
1551  status = o2hb_read_block_input(reg, page, count,
1552  &block_bytes, &block_bits);
1553  if (status)
1554  return status;
1555 
1556  reg->hr_block_bytes = (unsigned int)block_bytes;
1557  reg->hr_block_bits = block_bits;
1558 
1559  return count;
1560 }
1561 
1562 static ssize_t o2hb_region_start_block_read(struct o2hb_region *reg,
1563  char *page)
1564 {
1565  return sprintf(page, "%llu\n", reg->hr_start_block);
1566 }
1567 
1568 static ssize_t o2hb_region_start_block_write(struct o2hb_region *reg,
1569  const char *page,
1570  size_t count)
1571 {
1572  unsigned long long tmp;
1573  char *p = (char *)page;
1574 
1575  if (reg->hr_bdev)
1576  return -EINVAL;
1577 
1578  tmp = simple_strtoull(p, &p, 0);
1579  if (!p || (*p && (*p != '\n')))
1580  return -EINVAL;
1581 
1582  reg->hr_start_block = tmp;
1583 
1584  return count;
1585 }
1586 
1587 static ssize_t o2hb_region_blocks_read(struct o2hb_region *reg,
1588  char *page)
1589 {
1590  return sprintf(page, "%d\n", reg->hr_blocks);
1591 }
1592 
1593 static ssize_t o2hb_region_blocks_write(struct o2hb_region *reg,
1594  const char *page,
1595  size_t count)
1596 {
1597  unsigned long tmp;
1598  char *p = (char *)page;
1599 
1600  if (reg->hr_bdev)
1601  return -EINVAL;
1602 
1603  tmp = simple_strtoul(p, &p, 0);
1604  if (!p || (*p && (*p != '\n')))
1605  return -EINVAL;
1606 
1607  if (tmp > O2NM_MAX_NODES || tmp == 0)
1608  return -ERANGE;
1609 
1610  reg->hr_blocks = (unsigned int)tmp;
1611 
1612  return count;
1613 }
1614 
1615 static ssize_t o2hb_region_dev_read(struct o2hb_region *reg,
1616  char *page)
1617 {
1618  unsigned int ret = 0;
1619 
1620  if (reg->hr_bdev)
1621  ret = sprintf(page, "%s\n", reg->hr_dev_name);
1622 
1623  return ret;
1624 }
1625 
1626 static void o2hb_init_region_params(struct o2hb_region *reg)
1627 {
1630 
1631  mlog(ML_HEARTBEAT, "hr_start_block = %llu, hr_blocks = %u\n",
1632  reg->hr_start_block, reg->hr_blocks);
1633  mlog(ML_HEARTBEAT, "hr_block_bytes = %u, hr_block_bits = %u\n",
1634  reg->hr_block_bytes, reg->hr_block_bits);
1635  mlog(ML_HEARTBEAT, "hr_timeout_ms = %u\n", reg->hr_timeout_ms);
1636  mlog(ML_HEARTBEAT, "dead threshold = %u\n", o2hb_dead_threshold);
1637 }
1638 
1639 static int o2hb_map_slot_data(struct o2hb_region *reg)
1640 {
1641  int i, j;
1642  unsigned int last_slot;
1643  unsigned int spp = reg->hr_slots_per_page;
1644  struct page *page;
1645  char *raw;
1646  struct o2hb_disk_slot *slot;
1647 
1649  if (reg->hr_tmp_block == NULL) {
1650  mlog_errno(-ENOMEM);
1651  return -ENOMEM;
1652  }
1653 
1654  reg->hr_slots = kcalloc(reg->hr_blocks,
1655  sizeof(struct o2hb_disk_slot), GFP_KERNEL);
1656  if (reg->hr_slots == NULL) {
1657  mlog_errno(-ENOMEM);
1658  return -ENOMEM;
1659  }
1660 
1661  for(i = 0; i < reg->hr_blocks; i++) {
1662  slot = &reg->hr_slots[i];
1663  slot->ds_node_num = i;
1664  INIT_LIST_HEAD(&slot->ds_live_item);
1665  slot->ds_raw_block = NULL;
1666  }
1667 
1668  reg->hr_num_pages = (reg->hr_blocks + spp - 1) / spp;
1669  mlog(ML_HEARTBEAT, "Going to require %u pages to cover %u blocks "
1670  "at %u blocks per page\n",
1671  reg->hr_num_pages, reg->hr_blocks, spp);
1672 
1673  reg->hr_slot_data = kcalloc(reg->hr_num_pages, sizeof(struct page *),
1674  GFP_KERNEL);
1675  if (!reg->hr_slot_data) {
1676  mlog_errno(-ENOMEM);
1677  return -ENOMEM;
1678  }
1679 
1680  for(i = 0; i < reg->hr_num_pages; i++) {
1681  page = alloc_page(GFP_KERNEL);
1682  if (!page) {
1683  mlog_errno(-ENOMEM);
1684  return -ENOMEM;
1685  }
1686 
1687  reg->hr_slot_data[i] = page;
1688 
1689  last_slot = i * spp;
1690  raw = page_address(page);
1691  for (j = 0;
1692  (j < spp) && ((j + last_slot) < reg->hr_blocks);
1693  j++) {
1694  BUG_ON((j + last_slot) >= reg->hr_blocks);
1695 
1696  slot = &reg->hr_slots[j + last_slot];
1697  slot->ds_raw_block =
1698  (struct o2hb_disk_heartbeat_block *) raw;
1699 
1700  raw += reg->hr_block_bytes;
1701  }
1702  }
1703 
1704  return 0;
1705 }
1706 
1707 /* Read in all the slots available and populate the tracking
1708  * structures so that we can start with a baseline idea of what's
1709  * there. */
1710 static int o2hb_populate_slot_data(struct o2hb_region *reg)
1711 {
1712  int ret, i;
1713  struct o2hb_disk_slot *slot;
1714  struct o2hb_disk_heartbeat_block *hb_block;
1715 
1716  ret = o2hb_read_slots(reg, reg->hr_blocks);
1717  if (ret) {
1718  mlog_errno(ret);
1719  goto out;
1720  }
1721 
1722  /* We only want to get an idea of the values initially in each
1723  * slot, so we do no verification - o2hb_check_slot will
1724  * actually determine if each configured slot is valid and
1725  * whether any values have changed. */
1726  for(i = 0; i < reg->hr_blocks; i++) {
1727  slot = &reg->hr_slots[i];
1728  hb_block = (struct o2hb_disk_heartbeat_block *) slot->ds_raw_block;
1729 
1730  /* Only fill the values that o2hb_check_slot uses to
1731  * determine changing slots */
1732  slot->ds_last_time = le64_to_cpu(hb_block->hb_seq);
1733  slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation);
1734  }
1735 
1736 out:
1737  return ret;
1738 }
1739 
1740 /* this is acting as commit; we set up all of hr_bdev and hr_task or nothing */
1741 static ssize_t o2hb_region_dev_write(struct o2hb_region *reg,
1742  const char *page,
1743  size_t count)
1744 {
1745  struct task_struct *hb_task;
1746  long fd;
1747  int sectsize;
1748  char *p = (char *)page;
1749  struct fd f;
1750  struct inode *inode;
1751  ssize_t ret = -EINVAL;
1752  int live_threshold;
1753 
1754  if (reg->hr_bdev)
1755  goto out;
1756 
1757  /* We can't heartbeat without having had our node number
1758  * configured yet. */
1759  if (o2nm_this_node() == O2NM_MAX_NODES)
1760  goto out;
1761 
1762  fd = simple_strtol(p, &p, 0);
1763  if (!p || (*p && (*p != '\n')))
1764  goto out;
1765 
1766  if (fd < 0 || fd >= INT_MAX)
1767  goto out;
1768 
1769  f = fdget(fd);
1770  if (f.file == NULL)
1771  goto out;
1772 
1773  if (reg->hr_blocks == 0 || reg->hr_start_block == 0 ||
1774  reg->hr_block_bytes == 0)
1775  goto out2;
1776 
1777  inode = igrab(f.file->f_mapping->host);
1778  if (inode == NULL)
1779  goto out2;
1780 
1781  if (!S_ISBLK(inode->i_mode))
1782  goto out3;
1783 
1784  reg->hr_bdev = I_BDEV(f.file->f_mapping->host);
1785  ret = blkdev_get(reg->hr_bdev, FMODE_WRITE | FMODE_READ, NULL);
1786  if (ret) {
1787  reg->hr_bdev = NULL;
1788  goto out3;
1789  }
1790  inode = NULL;
1791 
1792  bdevname(reg->hr_bdev, reg->hr_dev_name);
1793 
1794  sectsize = bdev_logical_block_size(reg->hr_bdev);
1795  if (sectsize != reg->hr_block_bytes) {
1796  mlog(ML_ERROR,
1797  "blocksize %u incorrect for device, expected %d",
1798  reg->hr_block_bytes, sectsize);
1799  ret = -EINVAL;
1800  goto out3;
1801  }
1802 
1803  o2hb_init_region_params(reg);
1804 
1805  /* Generation of zero is invalid */
1806  do {
1808  sizeof(reg->hr_generation));
1809  } while (reg->hr_generation == 0);
1810 
1811  ret = o2hb_map_slot_data(reg);
1812  if (ret) {
1813  mlog_errno(ret);
1814  goto out3;
1815  }
1816 
1817  ret = o2hb_populate_slot_data(reg);
1818  if (ret) {
1819  mlog_errno(ret);
1820  goto out3;
1821  }
1822 
1823  INIT_DELAYED_WORK(&reg->hr_write_timeout_work, o2hb_write_timeout);
1824 
1825  /*
1826  * A node is considered live after it has beat LIVE_THRESHOLD
1827  * times. We're not steady until we've given them a chance
1828  * _after_ our first read.
1829  * The default threshold is bare minimum so as to limit the delay
1830  * during mounts. For global heartbeat, the threshold doubled for the
1831  * first region.
1832  */
1833  live_threshold = O2HB_LIVE_THRESHOLD;
1835  spin_lock(&o2hb_live_lock);
1836  if (o2hb_pop_count(&o2hb_region_bitmap, O2NM_MAX_REGIONS) == 1)
1837  live_threshold <<= 1;
1838  spin_unlock(&o2hb_live_lock);
1839  }
1840  ++live_threshold;
1841  atomic_set(&reg->hr_steady_iterations, live_threshold);
1842  /* unsteady_iterations is double the steady_iterations */
1843  atomic_set(&reg->hr_unsteady_iterations, (live_threshold << 1));
1844 
1845  hb_task = kthread_run(o2hb_thread, reg, "o2hb-%s",
1846  reg->hr_item.ci_name);
1847  if (IS_ERR(hb_task)) {
1848  ret = PTR_ERR(hb_task);
1849  mlog_errno(ret);
1850  goto out3;
1851  }
1852 
1853  spin_lock(&o2hb_live_lock);
1854  reg->hr_task = hb_task;
1855  spin_unlock(&o2hb_live_lock);
1856 
1857  ret = wait_event_interruptible(o2hb_steady_queue,
1858  atomic_read(&reg->hr_steady_iterations) == 0);
1859  if (ret) {
1860  atomic_set(&reg->hr_steady_iterations, 0);
1861  reg->hr_aborted_start = 1;
1862  }
1863 
1864  if (reg->hr_aborted_start) {
1865  ret = -EIO;
1866  goto out3;
1867  }
1868 
1869  /* Ok, we were woken. Make sure it wasn't by drop_item() */
1870  spin_lock(&o2hb_live_lock);
1871  hb_task = reg->hr_task;
1873  set_bit(reg->hr_region_num, o2hb_live_region_bitmap);
1874  spin_unlock(&o2hb_live_lock);
1875 
1876  if (hb_task)
1877  ret = count;
1878  else
1879  ret = -EIO;
1880 
1881  if (hb_task && o2hb_global_heartbeat_active())
1882  printk(KERN_NOTICE "o2hb: Heartbeat started on region %s (%s)\n",
1883  config_item_name(&reg->hr_item), reg->hr_dev_name);
1884 
1885 out3:
1886  iput(inode);
1887 out2:
1888  fdput(f);
1889 out:
1890  if (ret < 0) {
1891  if (reg->hr_bdev) {
1893  reg->hr_bdev = NULL;
1894  }
1895  }
1896  return ret;
1897 }
1898 
1899 static ssize_t o2hb_region_pid_read(struct o2hb_region *reg,
1900  char *page)
1901 {
1902  pid_t pid = 0;
1903 
1904  spin_lock(&o2hb_live_lock);
1905  if (reg->hr_task)
1906  pid = task_pid_nr(reg->hr_task);
1907  spin_unlock(&o2hb_live_lock);
1908 
1909  if (!pid)
1910  return 0;
1911 
1912  return sprintf(page, "%u\n", pid);
1913 }
1914 
1917  ssize_t (*show)(struct o2hb_region *, char *);
1918  ssize_t (*store)(struct o2hb_region *, const char *, size_t);
1919 };
1920 
1921 static struct o2hb_region_attribute o2hb_region_attr_block_bytes = {
1922  .attr = { .ca_owner = THIS_MODULE,
1923  .ca_name = "block_bytes",
1924  .ca_mode = S_IRUGO | S_IWUSR },
1925  .show = o2hb_region_block_bytes_read,
1926  .store = o2hb_region_block_bytes_write,
1927 };
1928 
1929 static struct o2hb_region_attribute o2hb_region_attr_start_block = {
1930  .attr = { .ca_owner = THIS_MODULE,
1931  .ca_name = "start_block",
1932  .ca_mode = S_IRUGO | S_IWUSR },
1933  .show = o2hb_region_start_block_read,
1934  .store = o2hb_region_start_block_write,
1935 };
1936 
1937 static struct o2hb_region_attribute o2hb_region_attr_blocks = {
1938  .attr = { .ca_owner = THIS_MODULE,
1939  .ca_name = "blocks",
1940  .ca_mode = S_IRUGO | S_IWUSR },
1941  .show = o2hb_region_blocks_read,
1942  .store = o2hb_region_blocks_write,
1943 };
1944 
1945 static struct o2hb_region_attribute o2hb_region_attr_dev = {
1946  .attr = { .ca_owner = THIS_MODULE,
1947  .ca_name = "dev",
1948  .ca_mode = S_IRUGO | S_IWUSR },
1949  .show = o2hb_region_dev_read,
1950  .store = o2hb_region_dev_write,
1951 };
1952 
1953 static struct o2hb_region_attribute o2hb_region_attr_pid = {
1954  .attr = { .ca_owner = THIS_MODULE,
1955  .ca_name = "pid",
1956  .ca_mode = S_IRUGO | S_IRUSR },
1957  .show = o2hb_region_pid_read,
1958 };
1959 
1960 static struct configfs_attribute *o2hb_region_attrs[] = {
1961  &o2hb_region_attr_block_bytes.attr,
1962  &o2hb_region_attr_start_block.attr,
1963  &o2hb_region_attr_blocks.attr,
1964  &o2hb_region_attr_dev.attr,
1965  &o2hb_region_attr_pid.attr,
1966  NULL,
1967 };
1968 
1969 static ssize_t o2hb_region_show(struct config_item *item,
1970  struct configfs_attribute *attr,
1971  char *page)
1972 {
1973  struct o2hb_region *reg = to_o2hb_region(item);
1974  struct o2hb_region_attribute *o2hb_region_attr =
1975  container_of(attr, struct o2hb_region_attribute, attr);
1976  ssize_t ret = 0;
1977 
1978  if (o2hb_region_attr->show)
1979  ret = o2hb_region_attr->show(reg, page);
1980  return ret;
1981 }
1982 
1983 static ssize_t o2hb_region_store(struct config_item *item,
1984  struct configfs_attribute *attr,
1985  const char *page, size_t count)
1986 {
1987  struct o2hb_region *reg = to_o2hb_region(item);
1988  struct o2hb_region_attribute *o2hb_region_attr =
1989  container_of(attr, struct o2hb_region_attribute, attr);
1990  ssize_t ret = -EINVAL;
1991 
1992  if (o2hb_region_attr->store)
1993  ret = o2hb_region_attr->store(reg, page, count);
1994  return ret;
1995 }
1996 
1997 static struct configfs_item_operations o2hb_region_item_ops = {
1998  .release = o2hb_region_release,
1999  .show_attribute = o2hb_region_show,
2000  .store_attribute = o2hb_region_store,
2001 };
2002 
2003 static struct config_item_type o2hb_region_type = {
2004  .ct_item_ops = &o2hb_region_item_ops,
2005  .ct_attrs = o2hb_region_attrs,
2006  .ct_owner = THIS_MODULE,
2007 };
2008 
2009 /* heartbeat set */
2010 
2013  /* some stuff? */
2014 };
2015 
2016 static struct o2hb_heartbeat_group *to_o2hb_heartbeat_group(struct config_group *group)
2017 {
2018  return group ?
2020  : NULL;
2021 }
2022 
2023 static int o2hb_debug_region_init(struct o2hb_region *reg, struct dentry *dir)
2024 {
2025  int ret = -ENOMEM;
2026 
2027  reg->hr_debug_dir =
2028  debugfs_create_dir(config_item_name(&reg->hr_item), dir);
2029  if (!reg->hr_debug_dir) {
2030  mlog_errno(ret);
2031  goto bail;
2032  }
2033 
2034  reg->hr_debug_livenodes =
2035  o2hb_debug_create(O2HB_DEBUG_LIVENODES,
2036  reg->hr_debug_dir,
2037  &(reg->hr_db_livenodes),
2038  sizeof(*(reg->hr_db_livenodes)),
2040  sizeof(reg->hr_live_node_bitmap),
2041  O2NM_MAX_NODES, reg);
2042  if (!reg->hr_debug_livenodes) {
2043  mlog_errno(ret);
2044  goto bail;
2045  }
2046 
2047  reg->hr_debug_regnum =
2048  o2hb_debug_create(O2HB_DEBUG_REGION_NUMBER,
2049  reg->hr_debug_dir,
2050  &(reg->hr_db_regnum),
2051  sizeof(*(reg->hr_db_regnum)),
2053  0, O2NM_MAX_NODES, reg);
2054  if (!reg->hr_debug_regnum) {
2055  mlog_errno(ret);
2056  goto bail;
2057  }
2058 
2059  reg->hr_debug_elapsed_time =
2060  o2hb_debug_create(O2HB_DEBUG_REGION_ELAPSED_TIME,
2061  reg->hr_debug_dir,
2062  &(reg->hr_db_elapsed_time),
2063  sizeof(*(reg->hr_db_elapsed_time)),
2065  0, 0, reg);
2066  if (!reg->hr_debug_elapsed_time) {
2067  mlog_errno(ret);
2068  goto bail;
2069  }
2070 
2071  reg->hr_debug_pinned =
2072  o2hb_debug_create(O2HB_DEBUG_REGION_PINNED,
2073  reg->hr_debug_dir,
2074  &(reg->hr_db_pinned),
2075  sizeof(*(reg->hr_db_pinned)),
2077  0, 0, reg);
2078  if (!reg->hr_debug_pinned) {
2079  mlog_errno(ret);
2080  goto bail;
2081  }
2082 
2083  ret = 0;
2084 bail:
2085  return ret;
2086 }
2087 
2088 static struct config_item *o2hb_heartbeat_group_make_item(struct config_group *group,
2089  const char *name)
2090 {
2091  struct o2hb_region *reg = NULL;
2092  int ret;
2093 
2094  reg = kzalloc(sizeof(struct o2hb_region), GFP_KERNEL);
2095  if (reg == NULL)
2096  return ERR_PTR(-ENOMEM);
2097 
2098  if (strlen(name) > O2HB_MAX_REGION_NAME_LEN) {
2099  ret = -ENAMETOOLONG;
2100  goto free;
2101  }
2102 
2103  spin_lock(&o2hb_live_lock);
2104  reg->hr_region_num = 0;
2106  reg->hr_region_num = find_first_zero_bit(o2hb_region_bitmap,
2108  if (reg->hr_region_num >= O2NM_MAX_REGIONS) {
2109  spin_unlock(&o2hb_live_lock);
2110  ret = -EFBIG;
2111  goto free;
2112  }
2113  set_bit(reg->hr_region_num, o2hb_region_bitmap);
2114  }
2115  list_add_tail(&reg->hr_all_item, &o2hb_all_regions);
2116  spin_unlock(&o2hb_live_lock);
2117 
2118  config_item_init_type_name(&reg->hr_item, name, &o2hb_region_type);
2119 
2120  ret = o2hb_debug_region_init(reg, o2hb_debug_dir);
2121  if (ret) {
2122  config_item_put(&reg->hr_item);
2123  goto free;
2124  }
2125 
2126  return &reg->hr_item;
2127 free:
2128  kfree(reg);
2129  return ERR_PTR(ret);
2130 }
2131 
2132 static void o2hb_heartbeat_group_drop_item(struct config_group *group,
2133  struct config_item *item)
2134 {
2135  struct task_struct *hb_task;
2136  struct o2hb_region *reg = to_o2hb_region(item);
2137  int quorum_region = 0;
2138 
2139  /* stop the thread when the user removes the region dir */
2140  spin_lock(&o2hb_live_lock);
2141  hb_task = reg->hr_task;
2142  reg->hr_task = NULL;
2143  reg->hr_item_dropped = 1;
2144  spin_unlock(&o2hb_live_lock);
2145 
2146  if (hb_task)
2147  kthread_stop(hb_task);
2148 
2150  spin_lock(&o2hb_live_lock);
2151  clear_bit(reg->hr_region_num, o2hb_region_bitmap);
2152  clear_bit(reg->hr_region_num, o2hb_live_region_bitmap);
2153  if (test_bit(reg->hr_region_num, o2hb_quorum_region_bitmap))
2154  quorum_region = 1;
2155  clear_bit(reg->hr_region_num, o2hb_quorum_region_bitmap);
2156  spin_unlock(&o2hb_live_lock);
2157  printk(KERN_NOTICE "o2hb: Heartbeat %s on region %s (%s)\n",
2158  ((atomic_read(&reg->hr_steady_iterations) == 0) ?
2159  "stopped" : "start aborted"), config_item_name(item),
2160  reg->hr_dev_name);
2161  }
2162 
2163  /*
2164  * If we're racing a dev_write(), we need to wake them. They will
2165  * check reg->hr_task
2166  */
2167  if (atomic_read(&reg->hr_steady_iterations) != 0) {
2168  reg->hr_aborted_start = 1;
2169  atomic_set(&reg->hr_steady_iterations, 0);
2170  wake_up(&o2hb_steady_queue);
2171  }
2172 
2173  config_item_put(item);
2174 
2175  if (!o2hb_global_heartbeat_active() || !quorum_region)
2176  return;
2177 
2178  /*
2179  * If global heartbeat active and there are dependent users,
2180  * pin all regions if quorum region count <= CUT_OFF
2181  */
2182  spin_lock(&o2hb_live_lock);
2183 
2184  if (!o2hb_dependent_users)
2185  goto unlock;
2186 
2187  if (o2hb_pop_count(&o2hb_quorum_region_bitmap,
2189  o2hb_region_pin(NULL);
2190 
2191 unlock:
2192  spin_unlock(&o2hb_live_lock);
2193 }
2194 
2196  struct configfs_attribute attr;
2197  ssize_t (*show)(struct o2hb_heartbeat_group *, char *);
2198  ssize_t (*store)(struct o2hb_heartbeat_group *, const char *, size_t);
2199 };
2200 
2201 static ssize_t o2hb_heartbeat_group_show(struct config_item *item,
2202  struct configfs_attribute *attr,
2203  char *page)
2204 {
2205  struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item));
2206  struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr =
2207  container_of(attr, struct o2hb_heartbeat_group_attribute, attr);
2208  ssize_t ret = 0;
2209 
2210  if (o2hb_heartbeat_group_attr->show)
2211  ret = o2hb_heartbeat_group_attr->show(reg, page);
2212  return ret;
2213 }
2214 
2215 static ssize_t o2hb_heartbeat_group_store(struct config_item *item,
2216  struct configfs_attribute *attr,
2217  const char *page, size_t count)
2218 {
2219  struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item));
2220  struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr =
2221  container_of(attr, struct o2hb_heartbeat_group_attribute, attr);
2222  ssize_t ret = -EINVAL;
2223 
2224  if (o2hb_heartbeat_group_attr->store)
2225  ret = o2hb_heartbeat_group_attr->store(reg, page, count);
2226  return ret;
2227 }
2228 
2229 static ssize_t o2hb_heartbeat_group_threshold_show(struct o2hb_heartbeat_group *group,
2230  char *page)
2231 {
2232  return sprintf(page, "%u\n", o2hb_dead_threshold);
2233 }
2234 
2235 static ssize_t o2hb_heartbeat_group_threshold_store(struct o2hb_heartbeat_group *group,
2236  const char *page,
2237  size_t count)
2238 {
2239  unsigned long tmp;
2240  char *p = (char *)page;
2241 
2242  tmp = simple_strtoul(p, &p, 10);
2243  if (!p || (*p && (*p != '\n')))
2244  return -EINVAL;
2245 
2246  /* this will validate ranges for us. */
2247  o2hb_dead_threshold_set((unsigned int) tmp);
2248 
2249  return count;
2250 }
2251 
2252 static
2253 ssize_t o2hb_heartbeat_group_mode_show(struct o2hb_heartbeat_group *group,
2254  char *page)
2255 {
2256  return sprintf(page, "%s\n",
2258 }
2259 
2260 static
2261 ssize_t o2hb_heartbeat_group_mode_store(struct o2hb_heartbeat_group *group,
2262  const char *page, size_t count)
2263 {
2264  unsigned int i;
2265  int ret;
2266  size_t len;
2267 
2268  len = (page[count - 1] == '\n') ? count - 1 : count;
2269  if (!len)
2270  return -EINVAL;
2271 
2272  for (i = 0; i < O2HB_HEARTBEAT_NUM_MODES; ++i) {
2273  if (strnicmp(page, o2hb_heartbeat_mode_desc[i], len))
2274  continue;
2275 
2276  ret = o2hb_global_hearbeat_mode_set(i);
2277  if (!ret)
2278  printk(KERN_NOTICE "o2hb: Heartbeat mode set to %s\n",
2280  return count;
2281  }
2282 
2283  return -EINVAL;
2284 
2285 }
2286 
2287 static struct o2hb_heartbeat_group_attribute o2hb_heartbeat_group_attr_threshold = {
2288  .attr = { .ca_owner = THIS_MODULE,
2289  .ca_name = "dead_threshold",
2290  .ca_mode = S_IRUGO | S_IWUSR },
2291  .show = o2hb_heartbeat_group_threshold_show,
2292  .store = o2hb_heartbeat_group_threshold_store,
2293 };
2294 
2295 static struct o2hb_heartbeat_group_attribute o2hb_heartbeat_group_attr_mode = {
2296  .attr = { .ca_owner = THIS_MODULE,
2297  .ca_name = "mode",
2298  .ca_mode = S_IRUGO | S_IWUSR },
2299  .show = o2hb_heartbeat_group_mode_show,
2300  .store = o2hb_heartbeat_group_mode_store,
2301 };
2302 
2303 static struct configfs_attribute *o2hb_heartbeat_group_attrs[] = {
2304  &o2hb_heartbeat_group_attr_threshold.attr,
2305  &o2hb_heartbeat_group_attr_mode.attr,
2306  NULL,
2307 };
2308 
2309 static struct configfs_item_operations o2hb_hearbeat_group_item_ops = {
2310  .show_attribute = o2hb_heartbeat_group_show,
2311  .store_attribute = o2hb_heartbeat_group_store,
2312 };
2313 
2314 static struct configfs_group_operations o2hb_heartbeat_group_group_ops = {
2315  .make_item = o2hb_heartbeat_group_make_item,
2316  .drop_item = o2hb_heartbeat_group_drop_item,
2317 };
2318 
2319 static struct config_item_type o2hb_heartbeat_group_type = {
2320  .ct_group_ops = &o2hb_heartbeat_group_group_ops,
2321  .ct_item_ops = &o2hb_hearbeat_group_item_ops,
2322  .ct_attrs = o2hb_heartbeat_group_attrs,
2323  .ct_owner = THIS_MODULE,
2324 };
2325 
2326 /* this is just here to avoid touching group in heartbeat.h which the
2327  * entire damn world #includes */
2329 {
2330  struct o2hb_heartbeat_group *hs = NULL;
2331  struct config_group *ret = NULL;
2332 
2333  hs = kzalloc(sizeof(struct o2hb_heartbeat_group), GFP_KERNEL);
2334  if (hs == NULL)
2335  goto out;
2336 
2337  config_group_init_type_name(&hs->hs_group, "heartbeat",
2338  &o2hb_heartbeat_group_type);
2339 
2340  ret = &hs->hs_group;
2341 out:
2342  if (ret == NULL)
2343  kfree(hs);
2344  return ret;
2345 }
2346 
2347 void o2hb_free_hb_set(struct config_group *group)
2348 {
2349  struct o2hb_heartbeat_group *hs = to_o2hb_heartbeat_group(group);
2350  kfree(hs);
2351 }
2352 
2353 /* hb callback registration and issuing */
2354 
2355 static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type)
2356 {
2357  if (type == O2HB_NUM_CB)
2358  return ERR_PTR(-EINVAL);
2359 
2360  return &o2hb_callbacks[type];
2361 }
2362 
2364  enum o2hb_callback_type type,
2365  o2hb_cb_func *func,
2366  void *data,
2367  int priority)
2368 {
2369  INIT_LIST_HEAD(&hc->hc_item);
2370  hc->hc_func = func;
2371  hc->hc_data = data;
2372  hc->hc_priority = priority;
2373  hc->hc_type = type;
2374  hc->hc_magic = O2HB_CB_MAGIC;
2375 }
2377 
2378 /*
2379  * In local heartbeat mode, region_uuid passed matches the dlm domain name.
2380  * In global heartbeat mode, region_uuid passed is NULL.
2381  *
2382  * In local, we only pin the matching region. In global we pin all the active
2383  * regions.
2384  */
2385 static int o2hb_region_pin(const char *region_uuid)
2386 {
2387  int ret = 0, found = 0;
2388  struct o2hb_region *reg;
2389  char *uuid;
2390 
2391  assert_spin_locked(&o2hb_live_lock);
2392 
2393  list_for_each_entry(reg, &o2hb_all_regions, hr_all_item) {
2394  uuid = config_item_name(&reg->hr_item);
2395 
2396  /* local heartbeat */
2397  if (region_uuid) {
2398  if (strcmp(region_uuid, uuid))
2399  continue;
2400  found = 1;
2401  }
2402 
2403  if (reg->hr_item_pinned || reg->hr_item_dropped)
2404  goto skip_pin;
2405 
2406  /* Ignore ENOENT only for local hb (userdlm domain) */
2407  ret = o2nm_depend_item(&reg->hr_item);
2408  if (!ret) {
2409  mlog(ML_CLUSTER, "Pin region %s\n", uuid);
2410  reg->hr_item_pinned = 1;
2411  } else {
2412  if (ret == -ENOENT && found)
2413  ret = 0;
2414  else {
2415  mlog(ML_ERROR, "Pin region %s fails with %d\n",
2416  uuid, ret);
2417  break;
2418  }
2419  }
2420 skip_pin:
2421  if (found)
2422  break;
2423  }
2424 
2425  return ret;
2426 }
2427 
2428 /*
2429  * In local heartbeat mode, region_uuid passed matches the dlm domain name.
2430  * In global heartbeat mode, region_uuid passed is NULL.
2431  *
2432  * In local, we only unpin the matching region. In global we unpin all the
2433  * active regions.
2434  */
2435 static void o2hb_region_unpin(const char *region_uuid)
2436 {
2437  struct o2hb_region *reg;
2438  char *uuid;
2439  int found = 0;
2440 
2441  assert_spin_locked(&o2hb_live_lock);
2442 
2443  list_for_each_entry(reg, &o2hb_all_regions, hr_all_item) {
2444  uuid = config_item_name(&reg->hr_item);
2445  if (region_uuid) {
2446  if (strcmp(region_uuid, uuid))
2447  continue;
2448  found = 1;
2449  }
2450 
2451  if (reg->hr_item_pinned) {
2452  mlog(ML_CLUSTER, "Unpin region %s\n", uuid);
2453  o2nm_undepend_item(&reg->hr_item);
2454  reg->hr_item_pinned = 0;
2455  }
2456  if (found)
2457  break;
2458  }
2459 }
2460 
2461 static int o2hb_region_inc_user(const char *region_uuid)
2462 {
2463  int ret = 0;
2464 
2465  spin_lock(&o2hb_live_lock);
2466 
2467  /* local heartbeat */
2469  ret = o2hb_region_pin(region_uuid);
2470  goto unlock;
2471  }
2472 
2473  /*
2474  * if global heartbeat active and this is the first dependent user,
2475  * pin all regions if quorum region count <= CUT_OFF
2476  */
2478  if (o2hb_dependent_users > 1)
2479  goto unlock;
2480 
2481  if (o2hb_pop_count(&o2hb_quorum_region_bitmap,
2483  ret = o2hb_region_pin(NULL);
2484 
2485 unlock:
2486  spin_unlock(&o2hb_live_lock);
2487  return ret;
2488 }
2489 
2490 void o2hb_region_dec_user(const char *region_uuid)
2491 {
2492  spin_lock(&o2hb_live_lock);
2493 
2494  /* local heartbeat */
2496  o2hb_region_unpin(region_uuid);
2497  goto unlock;
2498  }
2499 
2500  /*
2501  * if global heartbeat active and there are no dependent users,
2502  * unpin all quorum regions
2503  */
2505  if (!o2hb_dependent_users)
2506  o2hb_region_unpin(NULL);
2507 
2508 unlock:
2509  spin_unlock(&o2hb_live_lock);
2510 }
2511 
2512 int o2hb_register_callback(const char *region_uuid,
2513  struct o2hb_callback_func *hc)
2514 {
2515  struct o2hb_callback_func *tmp;
2516  struct list_head *iter;
2517  struct o2hb_callback *hbcall;
2518  int ret;
2519 
2520  BUG_ON(hc->hc_magic != O2HB_CB_MAGIC);
2521  BUG_ON(!list_empty(&hc->hc_item));
2522 
2523  hbcall = hbcall_from_type(hc->hc_type);
2524  if (IS_ERR(hbcall)) {
2525  ret = PTR_ERR(hbcall);
2526  goto out;
2527  }
2528 
2529  if (region_uuid) {
2530  ret = o2hb_region_inc_user(region_uuid);
2531  if (ret) {
2532  mlog_errno(ret);
2533  goto out;
2534  }
2535  }
2536 
2537  down_write(&o2hb_callback_sem);
2538 
2539  list_for_each(iter, &hbcall->list) {
2540  tmp = list_entry(iter, struct o2hb_callback_func, hc_item);
2541  if (hc->hc_priority < tmp->hc_priority) {
2542  list_add_tail(&hc->hc_item, iter);
2543  break;
2544  }
2545  }
2546  if (list_empty(&hc->hc_item))
2547  list_add_tail(&hc->hc_item, &hbcall->list);
2548 
2549  up_write(&o2hb_callback_sem);
2550  ret = 0;
2551 out:
2552  mlog(ML_CLUSTER, "returning %d on behalf of %p for funcs %p\n",
2553  ret, __builtin_return_address(0), hc);
2554  return ret;
2555 }
2557 
2558 void o2hb_unregister_callback(const char *region_uuid,
2559  struct o2hb_callback_func *hc)
2560 {
2561  BUG_ON(hc->hc_magic != O2HB_CB_MAGIC);
2562 
2563  mlog(ML_CLUSTER, "on behalf of %p for funcs %p\n",
2564  __builtin_return_address(0), hc);
2565 
2566  /* XXX Can this happen _with_ a region reference? */
2567  if (list_empty(&hc->hc_item))
2568  return;
2569 
2570  if (region_uuid)
2571  o2hb_region_dec_user(region_uuid);
2572 
2573  down_write(&o2hb_callback_sem);
2574 
2575  list_del_init(&hc->hc_item);
2576 
2577  up_write(&o2hb_callback_sem);
2578 }
2580 
2582 {
2583  unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)];
2584 
2585  o2hb_fill_node_map(testing_map, sizeof(testing_map));
2586  if (!test_bit(node_num, testing_map)) {
2588  "node (%u) does not have heartbeating enabled.\n",
2589  node_num);
2590  return 0;
2591  }
2592 
2593  return 1;
2594 }
2596 
2598 {
2599  unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)];
2600 
2601  o2hb_fill_node_map_from_callback(testing_map, sizeof(testing_map));
2602  if (!test_bit(node_num, testing_map)) {
2604  "node (%u) does not have heartbeating enabled.\n",
2605  node_num);
2606  return 0;
2607  }
2608 
2609  return 1;
2610 }
2612 
2613 /* Makes sure our local node is configured with a node number, and is
2614  * heartbeating. */
2616 {
2617  u8 node_num;
2618 
2619  /* if this node was set then we have networking */
2620  node_num = o2nm_this_node();
2621  if (node_num == O2NM_MAX_NODES) {
2622  mlog(ML_HEARTBEAT, "this node has not been configured.\n");
2623  return 0;
2624  }
2625 
2626  return o2hb_check_node_heartbeating(node_num);
2627 }
2629 
2630 /*
2631  * this is just a hack until we get the plumbing which flips file systems
2632  * read only and drops the hb ref instead of killing the node dead.
2633  */
2635 {
2636  struct o2hb_region *reg;
2637 
2638  mlog(ML_ERROR, "stopping heartbeat on all active regions.\n");
2639 
2640  spin_lock(&o2hb_live_lock);
2641 
2642  list_for_each_entry(reg, &o2hb_all_regions, hr_all_item)
2643  reg->hr_unclean_stop = 1;
2644 
2645  spin_unlock(&o2hb_live_lock);
2646 }
2648 
2649 int o2hb_get_all_regions(char *region_uuids, u8 max_regions)
2650 {
2651  struct o2hb_region *reg;
2652  int numregs = 0;
2653  char *p;
2654 
2655  spin_lock(&o2hb_live_lock);
2656 
2657  p = region_uuids;
2658  list_for_each_entry(reg, &o2hb_all_regions, hr_all_item) {
2659  mlog(0, "Region: %s\n", config_item_name(&reg->hr_item));
2660  if (numregs < max_regions) {
2661  memcpy(p, config_item_name(&reg->hr_item),
2664  }
2665  numregs++;
2666  }
2667 
2668  spin_unlock(&o2hb_live_lock);
2669 
2670  return numregs;
2671 }
2673 
2675 {
2677 }