Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
fs_enet-main.c
Go to the documentation of this file.
1 /*
2  * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3  *
4  * Copyright (c) 2003 Intracom S.A.
5  * by Pantelis Antoniou <[email protected]>
6  *
7  * 2005 (c) MontaVista Software, Inc.
8  * Vitaly Bordug <[email protected]>
9  *
10  * Heavily based on original FEC driver by Dan Malek <[email protected]>
11  * and modifications by Joakim Tjernlund <[email protected]>
12  *
13  * This file is licensed under the terms of the GNU General Public License
14  * version 2. This program is licensed "as is" without any warranty of any
15  * kind, whether express or implied.
16  */
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/skbuff.h>
32 #include <linux/spinlock.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/bitops.h>
36 #include <linux/fs.h>
37 #include <linux/platform_device.h>
38 #include <linux/phy.h>
39 #include <linux/of.h>
40 #include <linux/of_mdio.h>
41 #include <linux/of_platform.h>
42 #include <linux/of_gpio.h>
43 #include <linux/of_net.h>
44 
45 #include <linux/vmalloc.h>
46 #include <asm/pgtable.h>
47 #include <asm/irq.h>
48 #include <asm/uaccess.h>
49 
50 #include "fs_enet.h"
51 
52 /*************************************************/
53 
54 MODULE_AUTHOR("Pantelis Antoniou <[email protected]>");
55 MODULE_DESCRIPTION("Freescale Ethernet Driver");
56 MODULE_LICENSE("GPL");
58 
59 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
60 module_param(fs_enet_debug, int, 0);
61 MODULE_PARM_DESC(fs_enet_debug,
62  "Freescale bitmapped debugging message enable value");
63 
64 #ifdef CONFIG_NET_POLL_CONTROLLER
65 static void fs_enet_netpoll(struct net_device *dev);
66 #endif
67 
68 static void fs_set_multicast_list(struct net_device *dev)
69 {
70  struct fs_enet_private *fep = netdev_priv(dev);
71 
72  (*fep->ops->set_multicast_list)(dev);
73 }
74 
75 static void skb_align(struct sk_buff *skb, int align)
76 {
77  int off = ((unsigned long)skb->data) & (align - 1);
78 
79  if (off)
80  skb_reserve(skb, align - off);
81 }
82 
83 /* NAPI receive function */
84 static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
85 {
86  struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
87  struct net_device *dev = fep->ndev;
88  const struct fs_platform_info *fpi = fep->fpi;
89  cbd_t __iomem *bdp;
90  struct sk_buff *skb, *skbn, *skbt;
91  int received = 0;
92  u16 pkt_len, sc;
93  int curidx;
94 
95  /*
96  * First, grab all of the stats for the incoming packet.
97  * These get messed up if we get called due to a busy condition.
98  */
99  bdp = fep->cur_rx;
100 
101  /* clear RX status bits for napi*/
102  (*fep->ops->napi_clear_rx_event)(dev);
103 
104  while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
105  curidx = bdp - fep->rx_bd_base;
106 
107  /*
108  * Since we have allocated space to hold a complete frame,
109  * the last indicator should be set.
110  */
111  if ((sc & BD_ENET_RX_LAST) == 0)
112  dev_warn(fep->dev, "rcv is not +last\n");
113 
114  /*
115  * Check for errors.
116  */
119  fep->stats.rx_errors++;
120  /* Frame too long or too short. */
121  if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
122  fep->stats.rx_length_errors++;
123  /* Frame alignment */
124  if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
125  fep->stats.rx_frame_errors++;
126  /* CRC Error */
127  if (sc & BD_ENET_RX_CR)
128  fep->stats.rx_crc_errors++;
129  /* FIFO overrun */
130  if (sc & BD_ENET_RX_OV)
131  fep->stats.rx_crc_errors++;
132 
133  skb = fep->rx_skbuff[curidx];
134 
135  dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
138 
139  skbn = skb;
140 
141  } else {
142  skb = fep->rx_skbuff[curidx];
143 
144  dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
147 
148  /*
149  * Process the incoming frame.
150  */
151  fep->stats.rx_packets++;
152  pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
153  fep->stats.rx_bytes += pkt_len + 4;
154 
155  if (pkt_len <= fpi->rx_copybreak) {
156  /* +2 to make IP header L1 cache aligned */
157  skbn = netdev_alloc_skb(dev, pkt_len + 2);
158  if (skbn != NULL) {
159  skb_reserve(skbn, 2); /* align IP header */
160  skb_copy_from_linear_data(skb,
161  skbn->data, pkt_len);
162  /* swap */
163  skbt = skb;
164  skb = skbn;
165  skbn = skbt;
166  }
167  } else {
168  skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
169 
170  if (skbn)
171  skb_align(skbn, ENET_RX_ALIGN);
172  }
173 
174  if (skbn != NULL) {
175  skb_put(skb, pkt_len); /* Make room */
176  skb->protocol = eth_type_trans(skb, dev);
177  received++;
178  netif_receive_skb(skb);
179  } else {
180  dev_warn(fep->dev,
181  "Memory squeeze, dropping packet.\n");
182  fep->stats.rx_dropped++;
183  skbn = skb;
184  }
185  }
186 
187  fep->rx_skbuff[curidx] = skbn;
188  CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
190  DMA_FROM_DEVICE));
191  CBDW_DATLEN(bdp, 0);
192  CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
193 
194  /*
195  * Update BD pointer to next entry.
196  */
197  if ((sc & BD_ENET_RX_WRAP) == 0)
198  bdp++;
199  else
200  bdp = fep->rx_bd_base;
201 
202  (*fep->ops->rx_bd_done)(dev);
203 
204  if (received >= budget)
205  break;
206  }
207 
208  fep->cur_rx = bdp;
209 
210  if (received < budget) {
211  /* done */
212  napi_complete(napi);
213  (*fep->ops->napi_enable_rx)(dev);
214  }
215  return received;
216 }
217 
218 /* non NAPI receive function */
219 static int fs_enet_rx_non_napi(struct net_device *dev)
220 {
221  struct fs_enet_private *fep = netdev_priv(dev);
222  const struct fs_platform_info *fpi = fep->fpi;
223  cbd_t __iomem *bdp;
224  struct sk_buff *skb, *skbn, *skbt;
225  int received = 0;
226  u16 pkt_len, sc;
227  int curidx;
228  /*
229  * First, grab all of the stats for the incoming packet.
230  * These get messed up if we get called due to a busy condition.
231  */
232  bdp = fep->cur_rx;
233 
234  while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
235 
236  curidx = bdp - fep->rx_bd_base;
237 
238  /*
239  * Since we have allocated space to hold a complete frame,
240  * the last indicator should be set.
241  */
242  if ((sc & BD_ENET_RX_LAST) == 0)
243  dev_warn(fep->dev, "rcv is not +last\n");
244 
245  /*
246  * Check for errors.
247  */
249  BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
250  fep->stats.rx_errors++;
251  /* Frame too long or too short. */
252  if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
253  fep->stats.rx_length_errors++;
254  /* Frame alignment */
255  if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
256  fep->stats.rx_frame_errors++;
257  /* CRC Error */
258  if (sc & BD_ENET_RX_CR)
259  fep->stats.rx_crc_errors++;
260  /* FIFO overrun */
261  if (sc & BD_ENET_RX_OV)
262  fep->stats.rx_crc_errors++;
263 
264  skb = fep->rx_skbuff[curidx];
265 
266  dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
269 
270  skbn = skb;
271 
272  } else {
273 
274  skb = fep->rx_skbuff[curidx];
275 
276  dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
279 
280  /*
281  * Process the incoming frame.
282  */
283  fep->stats.rx_packets++;
284  pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
285  fep->stats.rx_bytes += pkt_len + 4;
286 
287  if (pkt_len <= fpi->rx_copybreak) {
288  /* +2 to make IP header L1 cache aligned */
289  skbn = netdev_alloc_skb(dev, pkt_len + 2);
290  if (skbn != NULL) {
291  skb_reserve(skbn, 2); /* align IP header */
292  skb_copy_from_linear_data(skb,
293  skbn->data, pkt_len);
294  /* swap */
295  skbt = skb;
296  skb = skbn;
297  skbn = skbt;
298  }
299  } else {
300  skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
301 
302  if (skbn)
303  skb_align(skbn, ENET_RX_ALIGN);
304  }
305 
306  if (skbn != NULL) {
307  skb_put(skb, pkt_len); /* Make room */
308  skb->protocol = eth_type_trans(skb, dev);
309  received++;
310  netif_rx(skb);
311  } else {
312  dev_warn(fep->dev,
313  "Memory squeeze, dropping packet.\n");
314  fep->stats.rx_dropped++;
315  skbn = skb;
316  }
317  }
318 
319  fep->rx_skbuff[curidx] = skbn;
320  CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
322  DMA_FROM_DEVICE));
323  CBDW_DATLEN(bdp, 0);
324  CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
325 
326  /*
327  * Update BD pointer to next entry.
328  */
329  if ((sc & BD_ENET_RX_WRAP) == 0)
330  bdp++;
331  else
332  bdp = fep->rx_bd_base;
333 
334  (*fep->ops->rx_bd_done)(dev);
335  }
336 
337  fep->cur_rx = bdp;
338 
339  return 0;
340 }
341 
342 static void fs_enet_tx(struct net_device *dev)
343 {
344  struct fs_enet_private *fep = netdev_priv(dev);
345  cbd_t __iomem *bdp;
346  struct sk_buff *skb;
347  int dirtyidx, do_wake, do_restart;
348  u16 sc;
349 
350  spin_lock(&fep->tx_lock);
351  bdp = fep->dirty_tx;
352 
353  do_wake = do_restart = 0;
354  while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
355  dirtyidx = bdp - fep->tx_bd_base;
356 
357  if (fep->tx_free == fep->tx_ring)
358  break;
359 
360  skb = fep->tx_skbuff[dirtyidx];
361 
362  /*
363  * Check for errors.
364  */
365  if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
367 
368  if (sc & BD_ENET_TX_HB) /* No heartbeat */
369  fep->stats.tx_heartbeat_errors++;
370  if (sc & BD_ENET_TX_LC) /* Late collision */
371  fep->stats.tx_window_errors++;
372  if (sc & BD_ENET_TX_RL) /* Retrans limit */
373  fep->stats.tx_aborted_errors++;
374  if (sc & BD_ENET_TX_UN) /* Underrun */
375  fep->stats.tx_fifo_errors++;
376  if (sc & BD_ENET_TX_CSL) /* Carrier lost */
377  fep->stats.tx_carrier_errors++;
378 
379  if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
380  fep->stats.tx_errors++;
381  do_restart = 1;
382  }
383  } else
384  fep->stats.tx_packets++;
385 
386  if (sc & BD_ENET_TX_READY) {
387  dev_warn(fep->dev,
388  "HEY! Enet xmit interrupt and TX_READY.\n");
389  }
390 
391  /*
392  * Deferred means some collisions occurred during transmit,
393  * but we eventually sent the packet OK.
394  */
395  if (sc & BD_ENET_TX_DEF)
396  fep->stats.collisions++;
397 
398  /* unmap */
399  dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
400  skb->len, DMA_TO_DEVICE);
401 
402  /*
403  * Free the sk buffer associated with this last transmit.
404  */
405  dev_kfree_skb_irq(skb);
406  fep->tx_skbuff[dirtyidx] = NULL;
407 
408  /*
409  * Update pointer to next buffer descriptor to be transmitted.
410  */
411  if ((sc & BD_ENET_TX_WRAP) == 0)
412  bdp++;
413  else
414  bdp = fep->tx_bd_base;
415 
416  /*
417  * Since we have freed up a buffer, the ring is no longer
418  * full.
419  */
420  if (!fep->tx_free++)
421  do_wake = 1;
422  }
423 
424  fep->dirty_tx = bdp;
425 
426  if (do_restart)
427  (*fep->ops->tx_restart)(dev);
428 
429  spin_unlock(&fep->tx_lock);
430 
431  if (do_wake)
432  netif_wake_queue(dev);
433 }
434 
435 /*
436  * The interrupt handler.
437  * This is called from the MPC core interrupt.
438  */
439 static irqreturn_t
440 fs_enet_interrupt(int irq, void *dev_id)
441 {
442  struct net_device *dev = dev_id;
443  struct fs_enet_private *fep;
444  const struct fs_platform_info *fpi;
445  u32 int_events;
446  u32 int_clr_events;
447  int nr, napi_ok;
448  int handled;
449 
450  fep = netdev_priv(dev);
451  fpi = fep->fpi;
452 
453  nr = 0;
454  while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
455  nr++;
456 
457  int_clr_events = int_events;
458  if (fpi->use_napi)
459  int_clr_events &= ~fep->ev_napi_rx;
460 
461  (*fep->ops->clear_int_events)(dev, int_clr_events);
462 
463  if (int_events & fep->ev_err)
464  (*fep->ops->ev_error)(dev, int_events);
465 
466  if (int_events & fep->ev_rx) {
467  if (!fpi->use_napi)
468  fs_enet_rx_non_napi(dev);
469  else {
470  napi_ok = napi_schedule_prep(&fep->napi);
471 
472  (*fep->ops->napi_disable_rx)(dev);
473  (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
474 
475  /* NOTE: it is possible for FCCs in NAPI mode */
476  /* to submit a spurious interrupt while in poll */
477  if (napi_ok)
478  __napi_schedule(&fep->napi);
479  }
480  }
481 
482  if (int_events & fep->ev_tx)
483  fs_enet_tx(dev);
484  }
485 
486  handled = nr > 0;
487  return IRQ_RETVAL(handled);
488 }
489 
490 void fs_init_bds(struct net_device *dev)
491 {
492  struct fs_enet_private *fep = netdev_priv(dev);
493  cbd_t __iomem *bdp;
494  struct sk_buff *skb;
495  int i;
496 
497  fs_cleanup_bds(dev);
498 
499  fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
500  fep->tx_free = fep->tx_ring;
501  fep->cur_rx = fep->rx_bd_base;
502 
503  /*
504  * Initialize the receive buffer descriptors.
505  */
506  for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
507  skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
508  if (skb == NULL) {
509  dev_warn(fep->dev,
510  "Memory squeeze, unable to allocate skb\n");
511  break;
512  }
513  skb_align(skb, ENET_RX_ALIGN);
514  fep->rx_skbuff[i] = skb;
515  CBDW_BUFADDR(bdp,
516  dma_map_single(fep->dev, skb->data,
518  DMA_FROM_DEVICE));
519  CBDW_DATLEN(bdp, 0); /* zero */
520  CBDW_SC(bdp, BD_ENET_RX_EMPTY |
521  ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
522  }
523  /*
524  * if we failed, fillup remainder
525  */
526  for (; i < fep->rx_ring; i++, bdp++) {
527  fep->rx_skbuff[i] = NULL;
528  CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
529  }
530 
531  /*
532  * ...and the same for transmit.
533  */
534  for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
535  fep->tx_skbuff[i] = NULL;
536  CBDW_BUFADDR(bdp, 0);
537  CBDW_DATLEN(bdp, 0);
538  CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
539  }
540 }
541 
542 void fs_cleanup_bds(struct net_device *dev)
543 {
544  struct fs_enet_private *fep = netdev_priv(dev);
545  struct sk_buff *skb;
546  cbd_t __iomem *bdp;
547  int i;
548 
549  /*
550  * Reset SKB transmit buffers.
551  */
552  for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
553  if ((skb = fep->tx_skbuff[i]) == NULL)
554  continue;
555 
556  /* unmap */
557  dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
558  skb->len, DMA_TO_DEVICE);
559 
560  fep->tx_skbuff[i] = NULL;
561  dev_kfree_skb(skb);
562  }
563 
564  /*
565  * Reset SKB receive buffers
566  */
567  for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
568  if ((skb = fep->rx_skbuff[i]) == NULL)
569  continue;
570 
571  /* unmap */
572  dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
575 
576  fep->rx_skbuff[i] = NULL;
577 
578  dev_kfree_skb(skb);
579  }
580 }
581 
582 /**********************************************************************************/
583 
584 #ifdef CONFIG_FS_ENET_MPC5121_FEC
585 /*
586  * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
587  */
588 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
589  struct sk_buff *skb)
590 {
591  struct sk_buff *new_skb;
592  struct fs_enet_private *fep = netdev_priv(dev);
593 
594  /* Alloc new skb */
595  new_skb = netdev_alloc_skb(dev, skb->len + 4);
596  if (!new_skb) {
597  if (net_ratelimit()) {
598  dev_warn(fep->dev,
599  "Memory squeeze, dropping tx packet.\n");
600  }
601  return NULL;
602  }
603 
604  /* Make sure new skb is properly aligned */
605  skb_align(new_skb, 4);
606 
607  /* Copy data to new skb ... */
608  skb_copy_from_linear_data(skb, new_skb->data, skb->len);
609  skb_put(new_skb, skb->len);
610 
611  /* ... and free an old one */
612  dev_kfree_skb_any(skb);
613 
614  return new_skb;
615 }
616 #endif
617 
618 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
619 {
620  struct fs_enet_private *fep = netdev_priv(dev);
621  cbd_t __iomem *bdp;
622  int curidx;
623  u16 sc;
624  unsigned long flags;
625 
626 #ifdef CONFIG_FS_ENET_MPC5121_FEC
627  if (((unsigned long)skb->data) & 0x3) {
628  skb = tx_skb_align_workaround(dev, skb);
629  if (!skb) {
630  /*
631  * We have lost packet due to memory allocation error
632  * in tx_skb_align_workaround(). Hopefully original
633  * skb is still valid, so try transmit it later.
634  */
635  return NETDEV_TX_BUSY;
636  }
637  }
638 #endif
639  spin_lock_irqsave(&fep->tx_lock, flags);
640 
641  /*
642  * Fill in a Tx ring entry
643  */
644  bdp = fep->cur_tx;
645 
646  if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
647  netif_stop_queue(dev);
648  spin_unlock_irqrestore(&fep->tx_lock, flags);
649 
650  /*
651  * Ooops. All transmit buffers are full. Bail out.
652  * This should not happen, since the tx queue should be stopped.
653  */
654  dev_warn(fep->dev, "tx queue full!.\n");
655  return NETDEV_TX_BUSY;
656  }
657 
658  curidx = bdp - fep->tx_bd_base;
659  /*
660  * Clear all of the status flags.
661  */
663 
664  /*
665  * Save skb pointer.
666  */
667  fep->tx_skbuff[curidx] = skb;
668 
669  fep->stats.tx_bytes += skb->len;
670 
671  /*
672  * Push the data cache so the CPM does not get stale memory data.
673  */
674  CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
675  skb->data, skb->len, DMA_TO_DEVICE));
676  CBDW_DATLEN(bdp, skb->len);
677 
678  /*
679  * If this was the last BD in the ring, start at the beginning again.
680  */
681  if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
682  fep->cur_tx++;
683  else
684  fep->cur_tx = fep->tx_bd_base;
685 
686  if (!--fep->tx_free)
687  netif_stop_queue(dev);
688 
689  /* Trigger transmission start */
690  sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
692 
693  /* note that while FEC does not have this bit
694  * it marks it as available for software use
695  * yay for hw reuse :) */
696  if (skb->len <= 60)
697  sc |= BD_ENET_TX_PAD;
698  CBDS_SC(bdp, sc);
699 
700  skb_tx_timestamp(skb);
701 
702  (*fep->ops->tx_kickstart)(dev);
703 
704  spin_unlock_irqrestore(&fep->tx_lock, flags);
705 
706  return NETDEV_TX_OK;
707 }
708 
709 static void fs_timeout(struct net_device *dev)
710 {
711  struct fs_enet_private *fep = netdev_priv(dev);
712  unsigned long flags;
713  int wake = 0;
714 
715  fep->stats.tx_errors++;
716 
717  spin_lock_irqsave(&fep->lock, flags);
718 
719  if (dev->flags & IFF_UP) {
720  phy_stop(fep->phydev);
721  (*fep->ops->stop)(dev);
722  (*fep->ops->restart)(dev);
723  phy_start(fep->phydev);
724  }
725 
726  phy_start(fep->phydev);
727  wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
728  spin_unlock_irqrestore(&fep->lock, flags);
729 
730  if (wake)
731  netif_wake_queue(dev);
732 }
733 
734 /*-----------------------------------------------------------------------------
735  * generic link-change handler - should be sufficient for most cases
736  *-----------------------------------------------------------------------------*/
737 static void generic_adjust_link(struct net_device *dev)
738 {
739  struct fs_enet_private *fep = netdev_priv(dev);
740  struct phy_device *phydev = fep->phydev;
741  int new_state = 0;
742 
743  if (phydev->link) {
744  /* adjust to duplex mode */
745  if (phydev->duplex != fep->oldduplex) {
746  new_state = 1;
747  fep->oldduplex = phydev->duplex;
748  }
749 
750  if (phydev->speed != fep->oldspeed) {
751  new_state = 1;
752  fep->oldspeed = phydev->speed;
753  }
754 
755  if (!fep->oldlink) {
756  new_state = 1;
757  fep->oldlink = 1;
758  }
759 
760  if (new_state)
761  fep->ops->restart(dev);
762  } else if (fep->oldlink) {
763  new_state = 1;
764  fep->oldlink = 0;
765  fep->oldspeed = 0;
766  fep->oldduplex = -1;
767  }
768 
769  if (new_state && netif_msg_link(fep))
770  phy_print_status(phydev);
771 }
772 
773 
774 static void fs_adjust_link(struct net_device *dev)
775 {
776  struct fs_enet_private *fep = netdev_priv(dev);
777  unsigned long flags;
778 
779  spin_lock_irqsave(&fep->lock, flags);
780 
781  if(fep->ops->adjust_link)
782  fep->ops->adjust_link(dev);
783  else
784  generic_adjust_link(dev);
785 
786  spin_unlock_irqrestore(&fep->lock, flags);
787 }
788 
789 static int fs_init_phy(struct net_device *dev)
790 {
791  struct fs_enet_private *fep = netdev_priv(dev);
792  struct phy_device *phydev;
793  phy_interface_t iface;
794 
795  fep->oldlink = 0;
796  fep->oldspeed = 0;
797  fep->oldduplex = -1;
798 
799  iface = fep->fpi->use_rmii ?
801 
802  phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
803  iface);
804  if (!phydev) {
805  phydev = of_phy_connect_fixed_link(dev, &fs_adjust_link,
806  iface);
807  }
808  if (!phydev) {
809  dev_err(&dev->dev, "Could not attach to PHY\n");
810  return -ENODEV;
811  }
812 
813  fep->phydev = phydev;
814 
815  return 0;
816 }
817 
818 static int fs_enet_open(struct net_device *dev)
819 {
820  struct fs_enet_private *fep = netdev_priv(dev);
821  int r;
822  int err;
823 
824  /* to initialize the fep->cur_rx,... */
825  /* not doing this, will cause a crash in fs_enet_rx_napi */
826  fs_init_bds(fep->ndev);
827 
828  if (fep->fpi->use_napi)
829  napi_enable(&fep->napi);
830 
831  /* Install our interrupt handler. */
832  r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
833  "fs_enet-mac", dev);
834  if (r != 0) {
835  dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
836  if (fep->fpi->use_napi)
837  napi_disable(&fep->napi);
838  return -EINVAL;
839  }
840 
841  err = fs_init_phy(dev);
842  if (err) {
843  free_irq(fep->interrupt, dev);
844  if (fep->fpi->use_napi)
845  napi_disable(&fep->napi);
846  return err;
847  }
848  phy_start(fep->phydev);
849 
850  netif_start_queue(dev);
851 
852  return 0;
853 }
854 
855 static int fs_enet_close(struct net_device *dev)
856 {
857  struct fs_enet_private *fep = netdev_priv(dev);
858  unsigned long flags;
859 
860  netif_stop_queue(dev);
861  netif_carrier_off(dev);
862  if (fep->fpi->use_napi)
863  napi_disable(&fep->napi);
864  phy_stop(fep->phydev);
865 
866  spin_lock_irqsave(&fep->lock, flags);
867  spin_lock(&fep->tx_lock);
868  (*fep->ops->stop)(dev);
869  spin_unlock(&fep->tx_lock);
870  spin_unlock_irqrestore(&fep->lock, flags);
871 
872  /* release any irqs */
873  phy_disconnect(fep->phydev);
874  fep->phydev = NULL;
875  free_irq(fep->interrupt, dev);
876 
877  return 0;
878 }
879 
880 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
881 {
882  struct fs_enet_private *fep = netdev_priv(dev);
883  return &fep->stats;
884 }
885 
886 /*************************************************************************/
887 
888 static void fs_get_drvinfo(struct net_device *dev,
889  struct ethtool_drvinfo *info)
890 {
891  strcpy(info->driver, DRV_MODULE_NAME);
893 }
894 
895 static int fs_get_regs_len(struct net_device *dev)
896 {
897  struct fs_enet_private *fep = netdev_priv(dev);
898 
899  return (*fep->ops->get_regs_len)(dev);
900 }
901 
902 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
903  void *p)
904 {
905  struct fs_enet_private *fep = netdev_priv(dev);
906  unsigned long flags;
907  int r, len;
908 
909  len = regs->len;
910 
911  spin_lock_irqsave(&fep->lock, flags);
912  r = (*fep->ops->get_regs)(dev, p, &len);
913  spin_unlock_irqrestore(&fep->lock, flags);
914 
915  if (r == 0)
916  regs->version = 0;
917 }
918 
919 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
920 {
921  struct fs_enet_private *fep = netdev_priv(dev);
922 
923  if (!fep->phydev)
924  return -ENODEV;
925 
926  return phy_ethtool_gset(fep->phydev, cmd);
927 }
928 
929 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
930 {
931  struct fs_enet_private *fep = netdev_priv(dev);
932 
933  if (!fep->phydev)
934  return -ENODEV;
935 
936  return phy_ethtool_sset(fep->phydev, cmd);
937 }
938 
939 static int fs_nway_reset(struct net_device *dev)
940 {
941  return 0;
942 }
943 
944 static u32 fs_get_msglevel(struct net_device *dev)
945 {
946  struct fs_enet_private *fep = netdev_priv(dev);
947  return fep->msg_enable;
948 }
949 
950 static void fs_set_msglevel(struct net_device *dev, u32 value)
951 {
952  struct fs_enet_private *fep = netdev_priv(dev);
953  fep->msg_enable = value;
954 }
955 
956 static const struct ethtool_ops fs_ethtool_ops = {
957  .get_drvinfo = fs_get_drvinfo,
958  .get_regs_len = fs_get_regs_len,
959  .get_settings = fs_get_settings,
960  .set_settings = fs_set_settings,
961  .nway_reset = fs_nway_reset,
962  .get_link = ethtool_op_get_link,
963  .get_msglevel = fs_get_msglevel,
964  .set_msglevel = fs_set_msglevel,
965  .get_regs = fs_get_regs,
966  .get_ts_info = ethtool_op_get_ts_info,
967 };
968 
969 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
970 {
971  struct fs_enet_private *fep = netdev_priv(dev);
972 
973  if (!netif_running(dev))
974  return -EINVAL;
975 
976  return phy_mii_ioctl(fep->phydev, rq, cmd);
977 }
978 
979 extern int fs_mii_connect(struct net_device *dev);
980 extern void fs_mii_disconnect(struct net_device *dev);
981 
982 /**************************************************************************************/
983 
984 #ifdef CONFIG_FS_ENET_HAS_FEC
985 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
986 #else
987 #define IS_FEC(match) 0
988 #endif
989 
990 static const struct net_device_ops fs_enet_netdev_ops = {
991  .ndo_open = fs_enet_open,
992  .ndo_stop = fs_enet_close,
993  .ndo_get_stats = fs_enet_get_stats,
994  .ndo_start_xmit = fs_enet_start_xmit,
995  .ndo_tx_timeout = fs_timeout,
996  .ndo_set_rx_mode = fs_set_multicast_list,
997  .ndo_do_ioctl = fs_ioctl,
998  .ndo_validate_addr = eth_validate_addr,
999  .ndo_set_mac_address = eth_mac_addr,
1000  .ndo_change_mtu = eth_change_mtu,
1001 #ifdef CONFIG_NET_POLL_CONTROLLER
1002  .ndo_poll_controller = fs_enet_netpoll,
1003 #endif
1004 };
1005 
1006 static struct of_device_id fs_enet_match[];
1007 static int __devinit fs_enet_probe(struct platform_device *ofdev)
1008 {
1009  const struct of_device_id *match;
1010  struct net_device *ndev;
1011  struct fs_enet_private *fep;
1012  struct fs_platform_info *fpi;
1013  const u32 *data;
1014  const u8 *mac_addr;
1015  const char *phy_connection_type;
1016  int privsize, len, ret = -ENODEV;
1017 
1018  match = of_match_device(fs_enet_match, &ofdev->dev);
1019  if (!match)
1020  return -EINVAL;
1021 
1022  fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
1023  if (!fpi)
1024  return -ENOMEM;
1025 
1026  if (!IS_FEC(match)) {
1027  data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
1028  if (!data || len != 4)
1029  goto out_free_fpi;
1030 
1031  fpi->cp_command = *data;
1032  }
1033 
1034  fpi->rx_ring = 32;
1035  fpi->tx_ring = 32;
1036  fpi->rx_copybreak = 240;
1037  fpi->use_napi = 1;
1038  fpi->napi_weight = 17;
1039  fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
1040  if ((!fpi->phy_node) && (!of_get_property(ofdev->dev.of_node, "fixed-link",
1041  NULL)))
1042  goto out_free_fpi;
1043 
1044  if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
1045  phy_connection_type = of_get_property(ofdev->dev.of_node,
1046  "phy-connection-type", NULL);
1047  if (phy_connection_type && !strcmp("rmii", phy_connection_type))
1048  fpi->use_rmii = 1;
1049  }
1050 
1051  privsize = sizeof(*fep) +
1052  sizeof(struct sk_buff **) *
1053  (fpi->rx_ring + fpi->tx_ring);
1054 
1055  ndev = alloc_etherdev(privsize);
1056  if (!ndev) {
1057  ret = -ENOMEM;
1058  goto out_put;
1059  }
1060 
1061  SET_NETDEV_DEV(ndev, &ofdev->dev);
1062  dev_set_drvdata(&ofdev->dev, ndev);
1063 
1064  fep = netdev_priv(ndev);
1065  fep->dev = &ofdev->dev;
1066  fep->ndev = ndev;
1067  fep->fpi = fpi;
1068  fep->ops = match->data;
1069 
1070  ret = fep->ops->setup_data(ndev);
1071  if (ret)
1072  goto out_free_dev;
1073 
1074  fep->rx_skbuff = (struct sk_buff **)&fep[1];
1075  fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1076 
1077  spin_lock_init(&fep->lock);
1078  spin_lock_init(&fep->tx_lock);
1079 
1080  mac_addr = of_get_mac_address(ofdev->dev.of_node);
1081  if (mac_addr)
1082  memcpy(ndev->dev_addr, mac_addr, 6);
1083 
1084  ret = fep->ops->allocate_bd(ndev);
1085  if (ret)
1086  goto out_cleanup_data;
1087 
1088  fep->rx_bd_base = fep->ring_base;
1089  fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1090 
1091  fep->tx_ring = fpi->tx_ring;
1092  fep->rx_ring = fpi->rx_ring;
1093 
1094  ndev->netdev_ops = &fs_enet_netdev_ops;
1095  ndev->watchdog_timeo = 2 * HZ;
1096  if (fpi->use_napi)
1097  netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi,
1098  fpi->napi_weight);
1099 
1100  ndev->ethtool_ops = &fs_ethtool_ops;
1101 
1102  init_timer(&fep->phy_timer_list);
1103 
1104  netif_carrier_off(ndev);
1105 
1106  ret = register_netdev(ndev);
1107  if (ret)
1108  goto out_free_bd;
1109 
1110  pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1111 
1112  return 0;
1113 
1114 out_free_bd:
1115  fep->ops->free_bd(ndev);
1116 out_cleanup_data:
1117  fep->ops->cleanup_data(ndev);
1118 out_free_dev:
1119  free_netdev(ndev);
1120  dev_set_drvdata(&ofdev->dev, NULL);
1121 out_put:
1122  of_node_put(fpi->phy_node);
1123 out_free_fpi:
1124  kfree(fpi);
1125  return ret;
1126 }
1127 
1128 static int fs_enet_remove(struct platform_device *ofdev)
1129 {
1130  struct net_device *ndev = dev_get_drvdata(&ofdev->dev);
1131  struct fs_enet_private *fep = netdev_priv(ndev);
1132 
1133  unregister_netdev(ndev);
1134 
1135  fep->ops->free_bd(ndev);
1136  fep->ops->cleanup_data(ndev);
1137  dev_set_drvdata(fep->dev, NULL);
1138  of_node_put(fep->fpi->phy_node);
1139  free_netdev(ndev);
1140  return 0;
1141 }
1142 
1143 static struct of_device_id fs_enet_match[] = {
1144 #ifdef CONFIG_FS_ENET_HAS_SCC
1145  {
1146  .compatible = "fsl,cpm1-scc-enet",
1147  .data = (void *)&fs_scc_ops,
1148  },
1149  {
1150  .compatible = "fsl,cpm2-scc-enet",
1151  .data = (void *)&fs_scc_ops,
1152  },
1153 #endif
1154 #ifdef CONFIG_FS_ENET_HAS_FCC
1155  {
1156  .compatible = "fsl,cpm2-fcc-enet",
1157  .data = (void *)&fs_fcc_ops,
1158  },
1159 #endif
1160 #ifdef CONFIG_FS_ENET_HAS_FEC
1161 #ifdef CONFIG_FS_ENET_MPC5121_FEC
1162  {
1163  .compatible = "fsl,mpc5121-fec",
1164  .data = (void *)&fs_fec_ops,
1165  },
1166  {
1167  .compatible = "fsl,mpc5125-fec",
1168  .data = (void *)&fs_fec_ops,
1169  },
1170 #else
1171  {
1172  .compatible = "fsl,pq1-fec-enet",
1173  .data = (void *)&fs_fec_ops,
1174  },
1175 #endif
1176 #endif
1177  {}
1178 };
1179 MODULE_DEVICE_TABLE(of, fs_enet_match);
1180 
1181 static struct platform_driver fs_enet_driver = {
1182  .driver = {
1183  .owner = THIS_MODULE,
1184  .name = "fs_enet",
1185  .of_match_table = fs_enet_match,
1186  },
1187  .probe = fs_enet_probe,
1188  .remove = fs_enet_remove,
1189 };
1190 
1191 #ifdef CONFIG_NET_POLL_CONTROLLER
1192 static void fs_enet_netpoll(struct net_device *dev)
1193 {
1194  disable_irq(dev->irq);
1195  fs_enet_interrupt(dev->irq, dev);
1196  enable_irq(dev->irq);
1197 }
1198 #endif
1199 
1200 module_platform_driver(fs_enet_driver);