Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
i2c-pnx.c
Go to the documentation of this file.
1 /*
2  * Provides I2C support for Philips PNX010x/PNX4008 boards.
3  *
4  * Authors: Dennis Kovalev <[email protected]>
5  * Vitaly Wool <[email protected]>
6  *
7  * 2004-2006 (c) MontaVista Software, Inc. This file is licensed under
8  * the terms of the GNU General Public License version 2. This program
9  * is licensed "as is" without any warranty of any kind, whether express
10  * or implied.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/interrupt.h>
15 #include <linux/ioport.h>
16 #include <linux/delay.h>
17 #include <linux/i2c.h>
18 #include <linux/timer.h>
19 #include <linux/completion.h>
20 #include <linux/platform_device.h>
21 #include <linux/i2c-pnx.h>
22 #include <linux/io.h>
23 #include <linux/err.h>
24 #include <linux/clk.h>
25 #include <linux/slab.h>
26 #include <linux/of_i2c.h>
27 
28 #define I2C_PNX_TIMEOUT_DEFAULT 10 /* msec */
29 #define I2C_PNX_SPEED_KHZ_DEFAULT 100
30 #define I2C_PNX_REGION_SIZE 0x100
31 
32 enum {
33  mstatus_tdi = 0x00000001,
34  mstatus_afi = 0x00000002,
35  mstatus_nai = 0x00000004,
36  mstatus_drmi = 0x00000008,
37  mstatus_active = 0x00000020,
38  mstatus_scl = 0x00000040,
39  mstatus_sda = 0x00000080,
40  mstatus_rff = 0x00000100,
41  mstatus_rfe = 0x00000200,
42  mstatus_tff = 0x00000400,
43  mstatus_tfe = 0x00000800,
44 };
45 
46 enum {
47  mcntrl_tdie = 0x00000001,
48  mcntrl_afie = 0x00000002,
49  mcntrl_naie = 0x00000004,
50  mcntrl_drmie = 0x00000008,
51  mcntrl_drsie = 0x00000010,
52  mcntrl_rffie = 0x00000020,
53  mcntrl_daie = 0x00000040,
54  mcntrl_tffie = 0x00000080,
55  mcntrl_reset = 0x00000100,
56  mcntrl_cdbmode = 0x00000400,
57 };
58 
59 enum {
60  rw_bit = 1 << 0,
61  start_bit = 1 << 8,
62  stop_bit = 1 << 9,
63 };
64 
65 #define I2C_REG_RX(a) ((a)->ioaddr) /* Rx FIFO reg (RO) */
66 #define I2C_REG_TX(a) ((a)->ioaddr) /* Tx FIFO reg (WO) */
67 #define I2C_REG_STS(a) ((a)->ioaddr + 0x04) /* Status reg (RO) */
68 #define I2C_REG_CTL(a) ((a)->ioaddr + 0x08) /* Ctl reg */
69 #define I2C_REG_CKL(a) ((a)->ioaddr + 0x0c) /* Clock divider low */
70 #define I2C_REG_CKH(a) ((a)->ioaddr + 0x10) /* Clock divider high */
71 #define I2C_REG_ADR(a) ((a)->ioaddr + 0x14) /* I2C address */
72 #define I2C_REG_RFL(a) ((a)->ioaddr + 0x18) /* Rx FIFO level (RO) */
73 #define I2C_REG_TFL(a) ((a)->ioaddr + 0x1c) /* Tx FIFO level (RO) */
74 #define I2C_REG_RXB(a) ((a)->ioaddr + 0x20) /* Num of bytes Rx-ed (RO) */
75 #define I2C_REG_TXB(a) ((a)->ioaddr + 0x24) /* Num of bytes Tx-ed (RO) */
76 #define I2C_REG_TXS(a) ((a)->ioaddr + 0x28) /* Tx slave FIFO (RO) */
77 #define I2C_REG_STFL(a) ((a)->ioaddr + 0x2c) /* Tx slave FIFO level (RO) */
78 
79 static inline int wait_timeout(struct i2c_pnx_algo_data *data)
80 {
81  long timeout = data->timeout;
82  while (timeout > 0 &&
83  (ioread32(I2C_REG_STS(data)) & mstatus_active)) {
84  mdelay(1);
85  timeout--;
86  }
87  return (timeout <= 0);
88 }
89 
90 static inline int wait_reset(struct i2c_pnx_algo_data *data)
91 {
92  long timeout = data->timeout;
93  while (timeout > 0 &&
94  (ioread32(I2C_REG_CTL(data)) & mcntrl_reset)) {
95  mdelay(1);
96  timeout--;
97  }
98  return (timeout <= 0);
99 }
100 
101 static inline void i2c_pnx_arm_timer(struct i2c_pnx_algo_data *alg_data)
102 {
103  struct timer_list *timer = &alg_data->mif.timer;
104  unsigned long expires = msecs_to_jiffies(alg_data->timeout);
105 
106  if (expires <= 1)
107  expires = 2;
108 
109  del_timer_sync(timer);
110 
111  dev_dbg(&alg_data->adapter.dev, "Timer armed at %lu plus %lu jiffies.\n",
112  jiffies, expires);
113 
114  timer->expires = jiffies + expires;
115  timer->data = (unsigned long)alg_data;
116 
117  add_timer(timer);
118 }
119 
127 static int i2c_pnx_start(unsigned char slave_addr,
128  struct i2c_pnx_algo_data *alg_data)
129 {
130  dev_dbg(&alg_data->adapter.dev, "%s(): addr 0x%x mode %d\n", __func__,
131  slave_addr, alg_data->mif.mode);
132 
133  /* Check for 7 bit slave addresses only */
134  if (slave_addr & ~0x7f) {
135  dev_err(&alg_data->adapter.dev,
136  "%s: Invalid slave address %x. Only 7-bit addresses are supported\n",
137  alg_data->adapter.name, slave_addr);
138  return -EINVAL;
139  }
140 
141  /* First, make sure bus is idle */
142  if (wait_timeout(alg_data)) {
143  /* Somebody else is monopolizing the bus */
144  dev_err(&alg_data->adapter.dev,
145  "%s: Bus busy. Slave addr = %02x, cntrl = %x, stat = %x\n",
146  alg_data->adapter.name, slave_addr,
147  ioread32(I2C_REG_CTL(alg_data)),
148  ioread32(I2C_REG_STS(alg_data)));
149  return -EBUSY;
150  } else if (ioread32(I2C_REG_STS(alg_data)) & mstatus_afi) {
151  /* Sorry, we lost the bus */
152  dev_err(&alg_data->adapter.dev,
153  "%s: Arbitration failure. Slave addr = %02x\n",
154  alg_data->adapter.name, slave_addr);
155  return -EIO;
156  }
157 
158  /*
159  * OK, I2C is enabled and we have the bus.
160  * Clear the current TDI and AFI status flags.
161  */
162  iowrite32(ioread32(I2C_REG_STS(alg_data)) | mstatus_tdi | mstatus_afi,
163  I2C_REG_STS(alg_data));
164 
165  dev_dbg(&alg_data->adapter.dev, "%s(): sending %#x\n", __func__,
166  (slave_addr << 1) | start_bit | alg_data->mif.mode);
167 
168  /* Write the slave address, START bit and R/W bit */
169  iowrite32((slave_addr << 1) | start_bit | alg_data->mif.mode,
170  I2C_REG_TX(alg_data));
171 
172  dev_dbg(&alg_data->adapter.dev, "%s(): exit\n", __func__);
173 
174  return 0;
175 }
176 
183 static void i2c_pnx_stop(struct i2c_pnx_algo_data *alg_data)
184 {
185  /* Only 1 msec max timeout due to interrupt context */
186  long timeout = 1000;
187 
188  dev_dbg(&alg_data->adapter.dev, "%s(): entering: stat = %04x.\n",
189  __func__, ioread32(I2C_REG_STS(alg_data)));
190 
191  /* Write a STOP bit to TX FIFO */
192  iowrite32(0xff | stop_bit, I2C_REG_TX(alg_data));
193 
194  /* Wait until the STOP is seen. */
195  while (timeout > 0 &&
196  (ioread32(I2C_REG_STS(alg_data)) & mstatus_active)) {
197  /* may be called from interrupt context */
198  udelay(1);
199  timeout--;
200  }
201 
202  dev_dbg(&alg_data->adapter.dev, "%s(): exiting: stat = %04x.\n",
203  __func__, ioread32(I2C_REG_STS(alg_data)));
204 }
205 
212 static int i2c_pnx_master_xmit(struct i2c_pnx_algo_data *alg_data)
213 {
214  u32 val;
215 
216  dev_dbg(&alg_data->adapter.dev, "%s(): entering: stat = %04x.\n",
217  __func__, ioread32(I2C_REG_STS(alg_data)));
218 
219  if (alg_data->mif.len > 0) {
220  /* We still have something to talk about... */
221  val = *alg_data->mif.buf++;
222 
223  if (alg_data->mif.len == 1)
224  val |= stop_bit;
225 
226  alg_data->mif.len--;
227  iowrite32(val, I2C_REG_TX(alg_data));
228 
229  dev_dbg(&alg_data->adapter.dev, "%s(): xmit %#x [%d]\n",
230  __func__, val, alg_data->mif.len + 1);
231 
232  if (alg_data->mif.len == 0) {
233  if (alg_data->last) {
234  /* Wait until the STOP is seen. */
235  if (wait_timeout(alg_data))
236  dev_err(&alg_data->adapter.dev,
237  "The bus is still active after timeout\n");
238  }
239  /* Disable master interrupts */
240  iowrite32(ioread32(I2C_REG_CTL(alg_data)) &
242  I2C_REG_CTL(alg_data));
243 
244  del_timer_sync(&alg_data->mif.timer);
245 
246  dev_dbg(&alg_data->adapter.dev,
247  "%s(): Waking up xfer routine.\n",
248  __func__);
249 
250  complete(&alg_data->mif.complete);
251  }
252  } else if (alg_data->mif.len == 0) {
253  /* zero-sized transfer */
254  i2c_pnx_stop(alg_data);
255 
256  /* Disable master interrupts. */
257  iowrite32(ioread32(I2C_REG_CTL(alg_data)) &
259  I2C_REG_CTL(alg_data));
260 
261  /* Stop timer. */
262  del_timer_sync(&alg_data->mif.timer);
263  dev_dbg(&alg_data->adapter.dev,
264  "%s(): Waking up xfer routine after zero-xfer.\n",
265  __func__);
266 
267  complete(&alg_data->mif.complete);
268  }
269 
270  dev_dbg(&alg_data->adapter.dev, "%s(): exiting: stat = %04x.\n",
271  __func__, ioread32(I2C_REG_STS(alg_data)));
272 
273  return 0;
274 }
275 
282 static int i2c_pnx_master_rcv(struct i2c_pnx_algo_data *alg_data)
283 {
284  unsigned int val = 0;
285  u32 ctl = 0;
286 
287  dev_dbg(&alg_data->adapter.dev, "%s(): entering: stat = %04x.\n",
288  __func__, ioread32(I2C_REG_STS(alg_data)));
289 
290  /* Check, whether there is already data,
291  * or we didn't 'ask' for it yet.
292  */
293  if (ioread32(I2C_REG_STS(alg_data)) & mstatus_rfe) {
294  /* 'Asking' is done asynchronously, e.g. dummy TX of several
295  * bytes is done before the first actual RX arrives in FIFO.
296  * Therefore, ordered bytes (via TX) are counted separately.
297  */
298  if (alg_data->mif.order) {
299  dev_dbg(&alg_data->adapter.dev,
300  "%s(): Write dummy data to fill Rx-fifo...\n",
301  __func__);
302 
303  if (alg_data->mif.order == 1) {
304  /* Last byte, do not acknowledge next rcv. */
305  val |= stop_bit;
306 
307  /*
308  * Enable interrupt RFDAIE (data in Rx fifo),
309  * and disable DRMIE (need data for Tx)
310  */
311  ctl = ioread32(I2C_REG_CTL(alg_data));
312  ctl |= mcntrl_rffie | mcntrl_daie;
313  ctl &= ~mcntrl_drmie;
314  iowrite32(ctl, I2C_REG_CTL(alg_data));
315  }
316 
317  /*
318  * Now we'll 'ask' for data:
319  * For each byte we want to receive, we must
320  * write a (dummy) byte to the Tx-FIFO.
321  */
322  iowrite32(val, I2C_REG_TX(alg_data));
323  alg_data->mif.order--;
324  }
325  return 0;
326  }
327 
328  /* Handle data. */
329  if (alg_data->mif.len > 0) {
330  val = ioread32(I2C_REG_RX(alg_data));
331  *alg_data->mif.buf++ = (u8) (val & 0xff);
332  dev_dbg(&alg_data->adapter.dev, "%s(): rcv 0x%x [%d]\n",
333  __func__, val, alg_data->mif.len);
334 
335  alg_data->mif.len--;
336  if (alg_data->mif.len == 0) {
337  if (alg_data->last)
338  /* Wait until the STOP is seen. */
339  if (wait_timeout(alg_data))
340  dev_err(&alg_data->adapter.dev,
341  "The bus is still active after timeout\n");
342 
343  /* Disable master interrupts */
344  ctl = ioread32(I2C_REG_CTL(alg_data));
345  ctl &= ~(mcntrl_afie | mcntrl_naie | mcntrl_rffie |
347  iowrite32(ctl, I2C_REG_CTL(alg_data));
348 
349  /* Kill timer. */
350  del_timer_sync(&alg_data->mif.timer);
351  complete(&alg_data->mif.complete);
352  }
353  }
354 
355  dev_dbg(&alg_data->adapter.dev, "%s(): exiting: stat = %04x.\n",
356  __func__, ioread32(I2C_REG_STS(alg_data)));
357 
358  return 0;
359 }
360 
361 static irqreturn_t i2c_pnx_interrupt(int irq, void *dev_id)
362 {
363  struct i2c_pnx_algo_data *alg_data = dev_id;
364  u32 stat, ctl;
365 
366  dev_dbg(&alg_data->adapter.dev,
367  "%s(): mstat = %x mctrl = %x, mode = %d\n",
368  __func__,
369  ioread32(I2C_REG_STS(alg_data)),
370  ioread32(I2C_REG_CTL(alg_data)),
371  alg_data->mif.mode);
372  stat = ioread32(I2C_REG_STS(alg_data));
373 
374  /* let's see what kind of event this is */
375  if (stat & mstatus_afi) {
376  /* We lost arbitration in the midst of a transfer */
377  alg_data->mif.ret = -EIO;
378 
379  /* Disable master interrupts. */
380  ctl = ioread32(I2C_REG_CTL(alg_data));
381  ctl &= ~(mcntrl_afie | mcntrl_naie | mcntrl_rffie |
382  mcntrl_drmie);
383  iowrite32(ctl, I2C_REG_CTL(alg_data));
384 
385  /* Stop timer, to prevent timeout. */
386  del_timer_sync(&alg_data->mif.timer);
387  complete(&alg_data->mif.complete);
388  } else if (stat & mstatus_nai) {
389  /* Slave did not acknowledge, generate a STOP */
390  dev_dbg(&alg_data->adapter.dev,
391  "%s(): Slave did not acknowledge, generating a STOP.\n",
392  __func__);
393  i2c_pnx_stop(alg_data);
394 
395  /* Disable master interrupts. */
396  ctl = ioread32(I2C_REG_CTL(alg_data));
397  ctl &= ~(mcntrl_afie | mcntrl_naie | mcntrl_rffie |
398  mcntrl_drmie);
399  iowrite32(ctl, I2C_REG_CTL(alg_data));
400 
401  /* Our return value. */
402  alg_data->mif.ret = -EIO;
403 
404  /* Stop timer, to prevent timeout. */
405  del_timer_sync(&alg_data->mif.timer);
406  complete(&alg_data->mif.complete);
407  } else {
408  /*
409  * Two options:
410  * - Master Tx needs data.
411  * - There is data in the Rx-fifo
412  * The latter is only the case if we have requested for data,
413  * via a dummy write. (See 'i2c_pnx_master_rcv'.)
414  * We therefore check, as a sanity check, whether that interrupt
415  * has been enabled.
416  */
417  if ((stat & mstatus_drmi) || !(stat & mstatus_rfe)) {
418  if (alg_data->mif.mode == I2C_SMBUS_WRITE) {
419  i2c_pnx_master_xmit(alg_data);
420  } else if (alg_data->mif.mode == I2C_SMBUS_READ) {
421  i2c_pnx_master_rcv(alg_data);
422  }
423  }
424  }
425 
426  /* Clear TDI and AFI bits */
427  stat = ioread32(I2C_REG_STS(alg_data));
428  iowrite32(stat | mstatus_tdi | mstatus_afi, I2C_REG_STS(alg_data));
429 
430  dev_dbg(&alg_data->adapter.dev,
431  "%s(): exiting, stat = %x ctrl = %x.\n",
432  __func__, ioread32(I2C_REG_STS(alg_data)),
433  ioread32(I2C_REG_CTL(alg_data)));
434 
435  return IRQ_HANDLED;
436 }
437 
438 static void i2c_pnx_timeout(unsigned long data)
439 {
440  struct i2c_pnx_algo_data *alg_data = (struct i2c_pnx_algo_data *)data;
441  u32 ctl;
442 
443  dev_err(&alg_data->adapter.dev,
444  "Master timed out. stat = %04x, cntrl = %04x. Resetting master...\n",
445  ioread32(I2C_REG_STS(alg_data)),
446  ioread32(I2C_REG_CTL(alg_data)));
447 
448  /* Reset master and disable interrupts */
449  ctl = ioread32(I2C_REG_CTL(alg_data));
451  iowrite32(ctl, I2C_REG_CTL(alg_data));
452 
453  ctl |= mcntrl_reset;
454  iowrite32(ctl, I2C_REG_CTL(alg_data));
455  wait_reset(alg_data);
456  alg_data->mif.ret = -EIO;
457  complete(&alg_data->mif.complete);
458 }
459 
460 static inline void bus_reset_if_active(struct i2c_pnx_algo_data *alg_data)
461 {
462  u32 stat;
463 
464  if ((stat = ioread32(I2C_REG_STS(alg_data))) & mstatus_active) {
465  dev_err(&alg_data->adapter.dev,
466  "%s: Bus is still active after xfer. Reset it...\n",
467  alg_data->adapter.name);
468  iowrite32(ioread32(I2C_REG_CTL(alg_data)) | mcntrl_reset,
469  I2C_REG_CTL(alg_data));
470  wait_reset(alg_data);
471  } else if (!(stat & mstatus_rfe) || !(stat & mstatus_tfe)) {
472  /* If there is data in the fifo's after transfer,
473  * flush fifo's by reset.
474  */
475  iowrite32(ioread32(I2C_REG_CTL(alg_data)) | mcntrl_reset,
476  I2C_REG_CTL(alg_data));
477  wait_reset(alg_data);
478  } else if (stat & mstatus_nai) {
479  iowrite32(ioread32(I2C_REG_CTL(alg_data)) | mcntrl_reset,
480  I2C_REG_CTL(alg_data));
481  wait_reset(alg_data);
482  }
483 }
484 
493 static int
494 i2c_pnx_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
495 {
496  struct i2c_msg *pmsg;
497  int rc = 0, completed = 0, i;
498  struct i2c_pnx_algo_data *alg_data = adap->algo_data;
499  u32 stat = ioread32(I2C_REG_STS(alg_data));
500 
501  dev_dbg(&alg_data->adapter.dev,
502  "%s(): entering: %d messages, stat = %04x.\n",
503  __func__, num, ioread32(I2C_REG_STS(alg_data)));
504 
505  bus_reset_if_active(alg_data);
506 
507  /* Process transactions in a loop. */
508  for (i = 0; rc >= 0 && i < num; i++) {
509  u8 addr;
510 
511  pmsg = &msgs[i];
512  addr = pmsg->addr;
513 
514  if (pmsg->flags & I2C_M_TEN) {
515  dev_err(&alg_data->adapter.dev,
516  "%s: 10 bits addr not supported!\n",
517  alg_data->adapter.name);
518  rc = -EINVAL;
519  break;
520  }
521 
522  alg_data->mif.buf = pmsg->buf;
523  alg_data->mif.len = pmsg->len;
524  alg_data->mif.order = pmsg->len;
525  alg_data->mif.mode = (pmsg->flags & I2C_M_RD) ?
527  alg_data->mif.ret = 0;
528  alg_data->last = (i == num - 1);
529 
530  dev_dbg(&alg_data->adapter.dev, "%s(): mode %d, %d bytes\n",
531  __func__, alg_data->mif.mode, alg_data->mif.len);
532 
533  i2c_pnx_arm_timer(alg_data);
534 
535  /* initialize the completion var */
536  init_completion(&alg_data->mif.complete);
537 
538  /* Enable master interrupt */
541  I2C_REG_CTL(alg_data));
542 
543  /* Put start-code and slave-address on the bus. */
544  rc = i2c_pnx_start(addr, alg_data);
545  if (rc < 0)
546  break;
547 
548  /* Wait for completion */
549  wait_for_completion(&alg_data->mif.complete);
550 
551  if (!(rc = alg_data->mif.ret))
552  completed++;
553  dev_dbg(&alg_data->adapter.dev,
554  "%s(): Complete, return code = %d.\n",
555  __func__, rc);
556 
557  /* Clear TDI and AFI bits in case they are set. */
558  if ((stat = ioread32(I2C_REG_STS(alg_data))) & mstatus_tdi) {
559  dev_dbg(&alg_data->adapter.dev,
560  "%s: TDI still set... clearing now.\n",
561  alg_data->adapter.name);
562  iowrite32(stat, I2C_REG_STS(alg_data));
563  }
564  if ((stat = ioread32(I2C_REG_STS(alg_data))) & mstatus_afi) {
565  dev_dbg(&alg_data->adapter.dev,
566  "%s: AFI still set... clearing now.\n",
567  alg_data->adapter.name);
568  iowrite32(stat, I2C_REG_STS(alg_data));
569  }
570  }
571 
572  bus_reset_if_active(alg_data);
573 
574  /* Cleanup to be sure... */
575  alg_data->mif.buf = NULL;
576  alg_data->mif.len = 0;
577  alg_data->mif.order = 0;
578 
579  dev_dbg(&alg_data->adapter.dev, "%s(): exiting, stat = %x\n",
580  __func__, ioread32(I2C_REG_STS(alg_data)));
581 
582  if (completed != num)
583  return ((rc < 0) ? rc : -EREMOTEIO);
584 
585  return num;
586 }
587 
588 static u32 i2c_pnx_func(struct i2c_adapter *adapter)
589 {
591 }
592 
593 static struct i2c_algorithm pnx_algorithm = {
594  .master_xfer = i2c_pnx_xfer,
595  .functionality = i2c_pnx_func,
596 };
597 
598 #ifdef CONFIG_PM
599 static int i2c_pnx_controller_suspend(struct device *dev)
600 {
601  struct i2c_pnx_algo_data *alg_data = dev_get_drvdata(dev);
602 
603  clk_disable(alg_data->clk);
604 
605  return 0;
606 }
607 
608 static int i2c_pnx_controller_resume(struct device *dev)
609 {
610  struct i2c_pnx_algo_data *alg_data = dev_get_drvdata(dev);
611 
612  return clk_enable(alg_data->clk);
613 }
614 
615 static SIMPLE_DEV_PM_OPS(i2c_pnx_pm,
616  i2c_pnx_controller_suspend, i2c_pnx_controller_resume);
617 #define PNX_I2C_PM (&i2c_pnx_pm)
618 #else
619 #define PNX_I2C_PM NULL
620 #endif
621 
622 static int __devinit i2c_pnx_probe(struct platform_device *pdev)
623 {
624  unsigned long tmp;
625  int ret = 0;
626  struct i2c_pnx_algo_data *alg_data;
627  unsigned long freq;
628  struct resource *res;
630 
631  alg_data = kzalloc(sizeof(*alg_data), GFP_KERNEL);
632  if (!alg_data) {
633  ret = -ENOMEM;
634  goto err_kzalloc;
635  }
636 
637  platform_set_drvdata(pdev, alg_data);
638 
639  alg_data->adapter.dev.parent = &pdev->dev;
640  alg_data->adapter.algo = &pnx_algorithm;
641  alg_data->adapter.algo_data = alg_data;
642  alg_data->adapter.nr = pdev->id;
643 
644  alg_data->timeout = I2C_PNX_TIMEOUT_DEFAULT;
645 #ifdef CONFIG_OF
646  alg_data->adapter.dev.of_node = of_node_get(pdev->dev.of_node);
647  if (pdev->dev.of_node) {
648  of_property_read_u32(pdev->dev.of_node, "clock-frequency",
649  &speed);
650  /*
651  * At this point, it is planned to add an OF timeout property.
652  * As soon as there is a consensus about how to call and handle
653  * this, sth. like the following can be put here:
654  *
655  * of_property_read_u32(pdev->dev.of_node, "timeout",
656  * &alg_data->timeout);
657  */
658  }
659 #endif
660  alg_data->clk = clk_get(&pdev->dev, NULL);
661  if (IS_ERR(alg_data->clk)) {
662  ret = PTR_ERR(alg_data->clk);
663  goto out_drvdata;
664  }
665 
666  init_timer(&alg_data->mif.timer);
667  alg_data->mif.timer.function = i2c_pnx_timeout;
668  alg_data->mif.timer.data = (unsigned long)alg_data;
669 
670  snprintf(alg_data->adapter.name, sizeof(alg_data->adapter.name),
671  "%s", pdev->name);
672 
673  /* Register I/O resource */
674  res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
675  if (!res) {
676  dev_err(&pdev->dev, "Unable to get mem resource.\n");
677  ret = -EBUSY;
678  goto out_clkget;
679  }
681  pdev->name)) {
682  dev_err(&pdev->dev,
683  "I/O region 0x%08x for I2C already in use.\n",
684  res->start);
685  ret = -ENOMEM;
686  goto out_clkget;
687  }
688 
689  alg_data->base = res->start;
690  alg_data->ioaddr = ioremap(res->start, I2C_PNX_REGION_SIZE);
691  if (!alg_data->ioaddr) {
692  dev_err(&pdev->dev, "Couldn't ioremap I2C I/O region\n");
693  ret = -ENOMEM;
694  goto out_release;
695  }
696 
697  ret = clk_enable(alg_data->clk);
698  if (ret)
699  goto out_unmap;
700 
701  freq = clk_get_rate(alg_data->clk);
702 
703  /*
704  * Clock Divisor High This value is the number of system clocks
705  * the serial clock (SCL) will be high.
706  * For example, if the system clock period is 50 ns and the maximum
707  * desired serial period is 10000 ns (100 kHz), then CLKHI would be
708  * set to 0.5*(f_sys/f_i2c)-2=0.5*(20e6/100e3)-2=98. The actual value
709  * programmed into CLKHI will vary from this slightly due to
710  * variations in the output pad's rise and fall times as well as
711  * the deglitching filter length.
712  */
713 
714  tmp = (freq / speed) / 2 - 2;
715  if (tmp > 0x3FF)
716  tmp = 0x3FF;
717  iowrite32(tmp, I2C_REG_CKH(alg_data));
718  iowrite32(tmp, I2C_REG_CKL(alg_data));
719 
720  iowrite32(mcntrl_reset, I2C_REG_CTL(alg_data));
721  if (wait_reset(alg_data)) {
722  ret = -ENODEV;
723  goto out_clock;
724  }
725  init_completion(&alg_data->mif.complete);
726 
727  alg_data->irq = platform_get_irq(pdev, 0);
728  if (alg_data->irq < 0) {
729  dev_err(&pdev->dev, "Failed to get IRQ from platform resource\n");
730  goto out_irq;
731  }
732  ret = request_irq(alg_data->irq, i2c_pnx_interrupt,
733  0, pdev->name, alg_data);
734  if (ret)
735  goto out_clock;
736 
737  /* Register this adapter with the I2C subsystem */
738  ret = i2c_add_numbered_adapter(&alg_data->adapter);
739  if (ret < 0) {
740  dev_err(&pdev->dev, "I2C: Failed to add bus\n");
741  goto out_irq;
742  }
743 
744  of_i2c_register_devices(&alg_data->adapter);
745 
746  dev_dbg(&pdev->dev, "%s: Master at %#8x, irq %d.\n",
747  alg_data->adapter.name, res->start, alg_data->irq);
748 
749  return 0;
750 
751 out_irq:
752  free_irq(alg_data->irq, alg_data);
753 out_clock:
754  clk_disable(alg_data->clk);
755 out_unmap:
756  iounmap(alg_data->ioaddr);
757 out_release:
759 out_clkget:
760  clk_put(alg_data->clk);
761 out_drvdata:
762  kfree(alg_data);
763 err_kzalloc:
764  platform_set_drvdata(pdev, NULL);
765  return ret;
766 }
767 
768 static int __devexit i2c_pnx_remove(struct platform_device *pdev)
769 {
770  struct i2c_pnx_algo_data *alg_data = platform_get_drvdata(pdev);
771 
772  free_irq(alg_data->irq, alg_data);
773  i2c_del_adapter(&alg_data->adapter);
774  clk_disable(alg_data->clk);
775  iounmap(alg_data->ioaddr);
777  clk_put(alg_data->clk);
778  kfree(alg_data);
779  platform_set_drvdata(pdev, NULL);
780 
781  return 0;
782 }
783 
784 #ifdef CONFIG_OF
785 static const struct of_device_id i2c_pnx_of_match[] = {
786  { .compatible = "nxp,pnx-i2c" },
787  { },
788 };
789 MODULE_DEVICE_TABLE(of, i2c_pnx_of_match);
790 #endif
791 
792 static struct platform_driver i2c_pnx_driver = {
793  .driver = {
794  .name = "pnx-i2c",
795  .owner = THIS_MODULE,
796  .of_match_table = of_match_ptr(i2c_pnx_of_match),
797  .pm = PNX_I2C_PM,
798  },
799  .probe = i2c_pnx_probe,
800  .remove = __devexit_p(i2c_pnx_remove),
801 };
802 
803 static int __init i2c_adap_pnx_init(void)
804 {
805  return platform_driver_register(&i2c_pnx_driver);
806 }
807 
808 static void __exit i2c_adap_pnx_exit(void)
809 {
810  platform_driver_unregister(&i2c_pnx_driver);
811 }
812 
813 MODULE_AUTHOR("Vitaly Wool, Dennis Kovalev <[email protected]>");
814 MODULE_DESCRIPTION("I2C driver for Philips IP3204-based I2C busses");
815 MODULE_LICENSE("GPL");
816 MODULE_ALIAS("platform:pnx-i2c");
817 
818 /* We need to make sure I2C is initialized before USB */
819 subsys_initcall(i2c_adap_pnx_init);
820 module_exit(i2c_adap_pnx_exit);