Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
i3000_edac.c
Go to the documentation of this file.
1 /*
2  * Intel 3000/3010 Memory Controller kernel module
3  * Copyright (C) 2007 Akamai Technologies, Inc.
4  * Shamelessly copied from:
5  * Intel D82875P Memory Controller kernel module
6  * (C) 2003 Linux Networx (http://lnxi.com)
7  *
8  * This file may be distributed under the terms of the
9  * GNU General Public License.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/pci.h>
15 #include <linux/pci_ids.h>
16 #include <linux/edac.h>
17 #include "edac_core.h"
18 
19 #define I3000_REVISION "1.1"
20 
21 #define EDAC_MOD_STR "i3000_edac"
22 
23 #define I3000_RANKS 8
24 #define I3000_RANKS_PER_CHANNEL 4
25 #define I3000_CHANNELS 2
26 
27 /* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */
28 
29 #define I3000_MCHBAR 0x44 /* MCH Memory Mapped Register BAR */
30 #define I3000_MCHBAR_MASK 0xffffc000
31 #define I3000_MMR_WINDOW_SIZE 16384
32 
33 #define I3000_EDEAP 0x70 /* Extended DRAM Error Address Pointer (8b)
34  *
35  * 7:1 reserved
36  * 0 bit 32 of address
37  */
38 #define I3000_DEAP 0x58 /* DRAM Error Address Pointer (32b)
39  *
40  * 31:7 address
41  * 6:1 reserved
42  * 0 Error channel 0/1
43  */
44 #define I3000_DEAP_GRAIN (1 << 7)
45 
46 /*
47  * Helper functions to decode the DEAP/EDEAP hardware registers.
48  *
49  * The type promotion here is deliberate; we're deriving an
50  * unsigned long pfn and offset from hardware regs which are u8/u32.
51  */
52 
53 static inline unsigned long deap_pfn(u8 edeap, u32 deap)
54 {
55  deap >>= PAGE_SHIFT;
56  deap |= (edeap & 1) << (32 - PAGE_SHIFT);
57  return deap;
58 }
59 
60 static inline unsigned long deap_offset(u32 deap)
61 {
62  return deap & ~(I3000_DEAP_GRAIN - 1) & ~PAGE_MASK;
63 }
64 
65 static inline int deap_channel(u32 deap)
66 {
67  return deap & 1;
68 }
69 
70 #define I3000_DERRSYN 0x5c /* DRAM Error Syndrome (8b)
71  *
72  * 7:0 DRAM ECC Syndrome
73  */
74 
75 #define I3000_ERRSTS 0xc8 /* Error Status Register (16b)
76  *
77  * 15:12 reserved
78  * 11 MCH Thermal Sensor Event
79  * for SMI/SCI/SERR
80  * 10 reserved
81  * 9 LOCK to non-DRAM Memory Flag (LCKF)
82  * 8 Received Refresh Timeout Flag (RRTOF)
83  * 7:2 reserved
84  * 1 Multi-bit DRAM ECC Error Flag (DMERR)
85  * 0 Single-bit DRAM ECC Error Flag (DSERR)
86  */
87 #define I3000_ERRSTS_BITS 0x0b03 /* bits which indicate errors */
88 #define I3000_ERRSTS_UE 0x0002
89 #define I3000_ERRSTS_CE 0x0001
90 
91 #define I3000_ERRCMD 0xca /* Error Command (16b)
92  *
93  * 15:12 reserved
94  * 11 SERR on MCH Thermal Sensor Event
95  * (TSESERR)
96  * 10 reserved
97  * 9 SERR on LOCK to non-DRAM Memory
98  * (LCKERR)
99  * 8 SERR on DRAM Refresh Timeout
100  * (DRTOERR)
101  * 7:2 reserved
102  * 1 SERR Multi-Bit DRAM ECC Error
103  * (DMERR)
104  * 0 SERR on Single-Bit ECC Error
105  * (DSERR)
106  */
108 /* Intel MMIO register space - device 0 function 0 - MMR space */
109 
110 #define I3000_DRB_SHIFT 25 /* 32MiB grain */
111 
112 #define I3000_C0DRB 0x100 /* Channel 0 DRAM Rank Boundary (8b x 4)
113  *
114  * 7:0 Channel 0 DRAM Rank Boundary Address
115  */
116 #define I3000_C1DRB 0x180 /* Channel 1 DRAM Rank Boundary (8b x 4)
117  *
118  * 7:0 Channel 1 DRAM Rank Boundary Address
119  */
120 
121 #define I3000_C0DRA 0x108 /* Channel 0 DRAM Rank Attribute (8b x 2)
122  *
123  * 7 reserved
124  * 6:4 DRAM odd Rank Attribute
125  * 3 reserved
126  * 2:0 DRAM even Rank Attribute
127  *
128  * Each attribute defines the page
129  * size of the corresponding rank:
130  * 000: unpopulated
131  * 001: reserved
132  * 010: 4 KB
133  * 011: 8 KB
134  * 100: 16 KB
135  * Others: reserved
136  */
137 #define I3000_C1DRA 0x188 /* Channel 1 DRAM Rank Attribute (8b x 2) */
138 
139 static inline unsigned char odd_rank_attrib(unsigned char dra)
140 {
141  return (dra & 0x70) >> 4;
142 }
143 
144 static inline unsigned char even_rank_attrib(unsigned char dra)
145 {
146  return dra & 0x07;
147 }
148 
149 #define I3000_C0DRC0 0x120 /* DRAM Controller Mode 0 (32b)
150  *
151  * 31:30 reserved
152  * 29 Initialization Complete (IC)
153  * 28:11 reserved
154  * 10:8 Refresh Mode Select (RMS)
155  * 7 reserved
156  * 6:4 Mode Select (SMS)
157  * 3:2 reserved
158  * 1:0 DRAM Type (DT)
159  */
160 
161 #define I3000_C0DRC1 0x124 /* DRAM Controller Mode 1 (32b)
162  *
163  * 31 Enhanced Addressing Enable (ENHADE)
164  * 30:0 reserved
165  */
166 
167 enum i3000p_chips {
168  I3000 = 0,
169 };
170 
171 struct i3000_dev_info {
172  const char *ctl_name;
173 };
174 
175 struct i3000_error_info {
176  u16 errsts;
177  u8 derrsyn;
178  u8 edeap;
179  u32 deap;
180  u16 errsts2;
181 };
182 
183 static const struct i3000_dev_info i3000_devs[] = {
184  [I3000] = {
185  .ctl_name = "i3000"},
186 };
187 
188 static struct pci_dev *mci_pdev;
189 static int i3000_registered = 1;
190 static struct edac_pci_ctl_info *i3000_pci;
191 
192 static void i3000_get_error_info(struct mem_ctl_info *mci,
193  struct i3000_error_info *info)
194 {
195  struct pci_dev *pdev;
196 
197  pdev = to_pci_dev(mci->pdev);
198 
199  /*
200  * This is a mess because there is no atomic way to read all the
201  * registers at once and the registers can transition from CE being
202  * overwritten by UE.
203  */
204  pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts);
205  if (!(info->errsts & I3000_ERRSTS_BITS))
206  return;
207  pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
208  pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
209  pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
210  pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2);
211 
212  /*
213  * If the error is the same for both reads then the first set
214  * of reads is valid. If there is a change then there is a CE
215  * with no info and the second set of reads is valid and
216  * should be UE info.
217  */
218  if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
219  pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
220  pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
221  pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
222  }
223 
224  /*
225  * Clear any error bits.
226  * (Yes, we really clear bits by writing 1 to them.)
227  */
228  pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
230 }
231 
232 static int i3000_process_error_info(struct mem_ctl_info *mci,
233  struct i3000_error_info *info,
234  int handle_errors)
235 {
236  int row, multi_chan, channel;
237  unsigned long pfn, offset;
238 
239  multi_chan = mci->csrows[0]->nr_channels - 1;
240 
241  if (!(info->errsts & I3000_ERRSTS_BITS))
242  return 0;
243 
244  if (!handle_errors)
245  return 1;
246 
247  if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
249  -1, -1, -1,
250  "UE overwrote CE", "");
251  info->errsts = info->errsts2;
252  }
253 
254  pfn = deap_pfn(info->edeap, info->deap);
255  offset = deap_offset(info->deap);
256  channel = deap_channel(info->deap);
257 
258  row = edac_mc_find_csrow_by_page(mci, pfn);
259 
260  if (info->errsts & I3000_ERRSTS_UE)
262  pfn, offset, 0,
263  row, -1, -1,
264  "i3000 UE", "");
265  else
267  pfn, offset, info->derrsyn,
268  row, multi_chan ? channel : 0, -1,
269  "i3000 CE", "");
270 
271  return 1;
272 }
273 
274 static void i3000_check(struct mem_ctl_info *mci)
275 {
276  struct i3000_error_info info;
277 
278  edac_dbg(1, "MC%d\n", mci->mc_idx);
279  i3000_get_error_info(mci, &info);
280  i3000_process_error_info(mci, &info, 1);
281 }
282 
283 static int i3000_is_interleaved(const unsigned char *c0dra,
284  const unsigned char *c1dra,
285  const unsigned char *c0drb,
286  const unsigned char *c1drb)
287 {
288  int i;
289 
290  /*
291  * If the channels aren't populated identically then
292  * we're not interleaved.
293  */
294  for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++)
295  if (odd_rank_attrib(c0dra[i]) != odd_rank_attrib(c1dra[i]) ||
296  even_rank_attrib(c0dra[i]) !=
297  even_rank_attrib(c1dra[i]))
298  return 0;
299 
300  /*
301  * If the rank boundaries for the two channels are different
302  * then we're not interleaved.
303  */
304  for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++)
305  if (c0drb[i] != c1drb[i])
306  return 0;
307 
308  return 1;
309 }
310 
311 static int i3000_probe1(struct pci_dev *pdev, int dev_idx)
312 {
313  int rc;
314  int i, j;
315  struct mem_ctl_info *mci = NULL;
316  struct edac_mc_layer layers[2];
317  unsigned long last_cumul_size, nr_pages;
318  int interleaved, nr_channels;
319  unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS];
320  unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2];
321  unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL];
322  unsigned long mchbar;
323  void __iomem *window;
324 
325  edac_dbg(0, "MC:\n");
326 
327  pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar);
328  mchbar &= I3000_MCHBAR_MASK;
329  window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE);
330  if (!window) {
331  printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n",
332  mchbar);
333  return -ENODEV;
334  }
335 
336  c0dra[0] = readb(window + I3000_C0DRA + 0); /* ranks 0,1 */
337  c0dra[1] = readb(window + I3000_C0DRA + 1); /* ranks 2,3 */
338  c1dra[0] = readb(window + I3000_C1DRA + 0); /* ranks 0,1 */
339  c1dra[1] = readb(window + I3000_C1DRA + 1); /* ranks 2,3 */
340 
341  for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) {
342  c0drb[i] = readb(window + I3000_C0DRB + i);
343  c1drb[i] = readb(window + I3000_C1DRB + i);
344  }
345 
346  iounmap(window);
347 
348  /*
349  * Figure out how many channels we have.
350  *
351  * If we have what the datasheet calls "asymmetric channels"
352  * (essentially the same as what was called "virtual single
353  * channel mode" in the i82875) then it's a single channel as
354  * far as EDAC is concerned.
355  */
356  interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb);
357  nr_channels = interleaved ? 2 : 1;
358 
360  layers[0].size = I3000_RANKS / nr_channels;
361  layers[0].is_virt_csrow = true;
362  layers[1].type = EDAC_MC_LAYER_CHANNEL;
363  layers[1].size = nr_channels;
364  layers[1].is_virt_csrow = false;
365  mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 0);
366  if (!mci)
367  return -ENOMEM;
368 
369  edac_dbg(3, "MC: init mci\n");
370 
371  mci->pdev = &pdev->dev;
372  mci->mtype_cap = MEM_FLAG_DDR2;
373 
375  mci->edac_cap = EDAC_FLAG_SECDED;
376 
377  mci->mod_name = EDAC_MOD_STR;
378  mci->mod_ver = I3000_REVISION;
379  mci->ctl_name = i3000_devs[dev_idx].ctl_name;
380  mci->dev_name = pci_name(pdev);
381  mci->edac_check = i3000_check;
382  mci->ctl_page_to_phys = NULL;
383 
384  /*
385  * The dram rank boundary (DRB) reg values are boundary addresses
386  * for each DRAM rank with a granularity of 32MB. DRB regs are
387  * cumulative; the last one will contain the total memory
388  * contained in all ranks.
389  *
390  * If we're in interleaved mode then we're only walking through
391  * the ranks of controller 0, so we double all the values we see.
392  */
393  for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) {
394  u8 value;
395  u32 cumul_size;
396  struct csrow_info *csrow = mci->csrows[i];
397 
398  value = drb[i];
399  cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT);
400  if (interleaved)
401  cumul_size <<= 1;
402  edac_dbg(3, "MC: (%d) cumul_size 0x%x\n", i, cumul_size);
403  if (cumul_size == last_cumul_size)
404  continue;
405 
406  csrow->first_page = last_cumul_size;
407  csrow->last_page = cumul_size - 1;
408  nr_pages = cumul_size - last_cumul_size;
409  last_cumul_size = cumul_size;
410 
411  for (j = 0; j < nr_channels; j++) {
412  struct dimm_info *dimm = csrow->channels[j]->dimm;
413 
414  dimm->nr_pages = nr_pages / nr_channels;
415  dimm->grain = I3000_DEAP_GRAIN;
416  dimm->mtype = MEM_DDR2;
417  dimm->dtype = DEV_UNKNOWN;
418  dimm->edac_mode = EDAC_UNKNOWN;
419  }
420  }
421 
422  /*
423  * Clear any error bits.
424  * (Yes, we really clear bits by writing 1 to them.)
425  */
426  pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
428 
429  rc = -ENODEV;
430  if (edac_mc_add_mc(mci)) {
431  edac_dbg(3, "MC: failed edac_mc_add_mc()\n");
432  goto fail;
433  }
434 
435  /* allocating generic PCI control info */
436  i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
437  if (!i3000_pci) {
439  "%s(): Unable to create PCI control\n",
440  __func__);
442  "%s(): PCI error report via EDAC not setup\n",
443  __func__);
444  }
445 
446  /* get this far and it's successful */
447  edac_dbg(3, "MC: success\n");
448  return 0;
449 
450 fail:
451  if (mci)
452  edac_mc_free(mci);
453 
454  return rc;
455 }
456 
457 /* returns count (>= 0), or negative on error */
458 static int __devinit i3000_init_one(struct pci_dev *pdev,
459  const struct pci_device_id *ent)
460 {
461  int rc;
462 
463  edac_dbg(0, "MC:\n");
464 
465  if (pci_enable_device(pdev) < 0)
466  return -EIO;
467 
468  rc = i3000_probe1(pdev, ent->driver_data);
469  if (!mci_pdev)
470  mci_pdev = pci_dev_get(pdev);
471 
472  return rc;
473 }
474 
475 static void __devexit i3000_remove_one(struct pci_dev *pdev)
476 {
477  struct mem_ctl_info *mci;
478 
479  edac_dbg(0, "\n");
480 
481  if (i3000_pci)
482  edac_pci_release_generic_ctl(i3000_pci);
483 
484  mci = edac_mc_del_mc(&pdev->dev);
485  if (!mci)
486  return;
487 
488  edac_mc_free(mci);
489 }
490 
491 static DEFINE_PCI_DEVICE_TABLE(i3000_pci_tbl) = {
492  {
493  PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
494  I3000},
495  {
496  0,
497  } /* 0 terminated list. */
498 };
499 
500 MODULE_DEVICE_TABLE(pci, i3000_pci_tbl);
501 
502 static struct pci_driver i3000_driver = {
503  .name = EDAC_MOD_STR,
504  .probe = i3000_init_one,
505  .remove = __devexit_p(i3000_remove_one),
506  .id_table = i3000_pci_tbl,
507 };
508 
509 static int __init i3000_init(void)
510 {
511  int pci_rc;
512 
513  edac_dbg(3, "MC:\n");
514 
515  /* Ensure that the OPSTATE is set correctly for POLL or NMI */
516  opstate_init();
517 
518  pci_rc = pci_register_driver(&i3000_driver);
519  if (pci_rc < 0)
520  goto fail0;
521 
522  if (!mci_pdev) {
523  i3000_registered = 0;
526  if (!mci_pdev) {
527  edac_dbg(0, "i3000 pci_get_device fail\n");
528  pci_rc = -ENODEV;
529  goto fail1;
530  }
531 
532  pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl);
533  if (pci_rc < 0) {
534  edac_dbg(0, "i3000 init fail\n");
535  pci_rc = -ENODEV;
536  goto fail1;
537  }
538  }
539 
540  return 0;
541 
542 fail1:
543  pci_unregister_driver(&i3000_driver);
544 
545 fail0:
546  if (mci_pdev)
547  pci_dev_put(mci_pdev);
548 
549  return pci_rc;
550 }
551 
552 static void __exit i3000_exit(void)
553 {
554  edac_dbg(3, "MC:\n");
555 
556  pci_unregister_driver(&i3000_driver);
557  if (!i3000_registered) {
558  i3000_remove_one(mci_pdev);
559  pci_dev_put(mci_pdev);
560  }
561 }
562 
563 module_init(i3000_init);
564 module_exit(i3000_exit);
565 
566 MODULE_LICENSE("GPL");
567 MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott");
568 MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers");
569 
570 module_param(edac_op_state, int, 0444);
571 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");