Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
imsttfb.c
Go to the documentation of this file.
1 /*
2  * drivers/video/imsttfb.c -- frame buffer device for IMS TwinTurbo
3  *
4  * This file is derived from the powermac console "imstt" driver:
5  * Copyright (C) 1997 Sigurdur Asgeirsson
6  * With additional hacking by Jeffrey Kuskin ([email protected])
7  * Modified by Danilo Beuche 1998
8  * Some register values added by Damien Doligez, INRIA Rocquencourt
9  * Various cleanups by Paul Mundt ([email protected])
10  *
11  * This file was written by Ryan Nielsen ([email protected])
12  * Most of the frame buffer device stuff was copied from atyfb.c
13  *
14  * This file is subject to the terms and conditions of the GNU General Public
15  * License. See the file COPYING in the main directory of this archive for
16  * more details.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/string.h>
23 #include <linux/mm.h>
24 #include <linux/vmalloc.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/fb.h>
28 #include <linux/init.h>
29 #include <linux/pci.h>
30 #include <asm/io.h>
31 #include <linux/uaccess.h>
32 
33 #if defined(CONFIG_PPC)
34 #include <linux/nvram.h>
35 #include <asm/prom.h>
36 #include <asm/pci-bridge.h>
37 #include "macmodes.h"
38 #endif
39 
40 #ifndef __powerpc__
41 #define eieio() /* Enforce In-order Execution of I/O */
42 #endif
43 
44 /* TwinTurbo (Cosmo) registers */
45 enum {
46  S1SA = 0, /* 0x00 */
47  S2SA = 1, /* 0x04 */
48  SP = 2, /* 0x08 */
49  DSA = 3, /* 0x0C */
50  CNT = 4, /* 0x10 */
51  DP_OCTL = 5, /* 0x14 */
52  CLR = 6, /* 0x18 */
53  BI = 8, /* 0x20 */
54  MBC = 9, /* 0x24 */
55  BLTCTL = 10, /* 0x28 */
56 
57  /* Scan Timing Generator Registers */
58  HES = 12, /* 0x30 */
59  HEB = 13, /* 0x34 */
60  HSB = 14, /* 0x38 */
61  HT = 15, /* 0x3C */
62  VES = 16, /* 0x40 */
63  VEB = 17, /* 0x44 */
64  VSB = 18, /* 0x48 */
65  VT = 19, /* 0x4C */
66  HCIV = 20, /* 0x50 */
67  VCIV = 21, /* 0x54 */
68  TCDR = 22, /* 0x58 */
69  VIL = 23, /* 0x5C */
70  STGCTL = 24, /* 0x60 */
71 
72  /* Screen Refresh Generator Registers */
73  SSR = 25, /* 0x64 */
74  HRIR = 26, /* 0x68 */
75  SPR = 27, /* 0x6C */
76  CMR = 28, /* 0x70 */
77  SRGCTL = 29, /* 0x74 */
78 
79  /* RAM Refresh Generator Registers */
80  RRCIV = 30, /* 0x78 */
81  RRSC = 31, /* 0x7C */
82  RRCR = 34, /* 0x88 */
83 
84  /* System Registers */
85  GIOE = 32, /* 0x80 */
86  GIO = 33, /* 0x84 */
87  SCR = 35, /* 0x8C */
88  SSTATUS = 36, /* 0x90 */
89  PRC = 37, /* 0x94 */
90 
91 #if 0
92  /* PCI Registers */
93  DVID = 0x00000000L,
94  SC = 0x00000004L,
95  CCR = 0x00000008L,
96  OG = 0x0000000CL,
97  BARM = 0x00000010L,
98  BARER = 0x00000030L,
99 #endif
100 };
101 
102 /* IBM 624 RAMDAC Direct Registers */
103 enum {
104  PADDRW = 0x00,
105  PDATA = 0x04,
106  PPMASK = 0x08,
107  PADDRR = 0x0c,
108  PIDXLO = 0x10,
109  PIDXHI = 0x14,
110  PIDXDATA= 0x18,
111  PIDXCTL = 0x1c
112 };
113 
114 /* IBM 624 RAMDAC Indirect Registers */
115 enum {
116  CLKCTL = 0x02, /* (0x01) Miscellaneous Clock Control */
117  SYNCCTL = 0x03, /* (0x00) Sync Control */
118  HSYNCPOS = 0x04, /* (0x00) Horizontal Sync Position */
119  PWRMNGMT = 0x05, /* (0x00) Power Management */
120  DACOP = 0x06, /* (0x02) DAC Operation */
121  PALETCTL = 0x07, /* (0x00) Palette Control */
122  SYSCLKCTL = 0x08, /* (0x01) System Clock Control */
123  PIXFMT = 0x0a, /* () Pixel Format [bpp >> 3 + 2] */
124  BPP8 = 0x0b, /* () 8 Bits/Pixel Control */
125  BPP16 = 0x0c, /* () 16 Bits/Pixel Control [bit 1=1 for 565] */
126  BPP24 = 0x0d, /* () 24 Bits/Pixel Control */
127  BPP32 = 0x0e, /* () 32 Bits/Pixel Control */
128  PIXCTL1 = 0x10, /* (0x05) Pixel PLL Control 1 */
129  PIXCTL2 = 0x11, /* (0x00) Pixel PLL Control 2 */
130  SYSCLKN = 0x15, /* () System Clock N (System PLL Reference Divider) */
131  SYSCLKM = 0x16, /* () System Clock M (System PLL VCO Divider) */
132  SYSCLKP = 0x17, /* () System Clock P */
133  SYSCLKC = 0x18, /* () System Clock C */
134  /*
135  * Dot clock rate is 20MHz * (m + 1) / ((n + 1) * (p ? 2 * p : 1)
136  * c is charge pump bias which depends on the VCO frequency
137  */
138  PIXM0 = 0x20, /* () Pixel M 0 */
139  PIXN0 = 0x21, /* () Pixel N 0 */
140  PIXP0 = 0x22, /* () Pixel P 0 */
141  PIXC0 = 0x23, /* () Pixel C 0 */
142  CURSCTL = 0x30, /* (0x00) Cursor Control */
143  CURSXLO = 0x31, /* () Cursor X position, low 8 bits */
144  CURSXHI = 0x32, /* () Cursor X position, high 8 bits */
145  CURSYLO = 0x33, /* () Cursor Y position, low 8 bits */
146  CURSYHI = 0x34, /* () Cursor Y position, high 8 bits */
147  CURSHOTX = 0x35, /* () Cursor Hot Spot X */
148  CURSHOTY = 0x36, /* () Cursor Hot Spot Y */
149  CURSACCTL = 0x37, /* () Advanced Cursor Control Enable */
150  CURSACATTR = 0x38, /* () Advanced Cursor Attribute */
151  CURS1R = 0x40, /* () Cursor 1 Red */
152  CURS1G = 0x41, /* () Cursor 1 Green */
153  CURS1B = 0x42, /* () Cursor 1 Blue */
154  CURS2R = 0x43, /* () Cursor 2 Red */
155  CURS2G = 0x44, /* () Cursor 2 Green */
156  CURS2B = 0x45, /* () Cursor 2 Blue */
157  CURS3R = 0x46, /* () Cursor 3 Red */
158  CURS3G = 0x47, /* () Cursor 3 Green */
159  CURS3B = 0x48, /* () Cursor 3 Blue */
160  BORDR = 0x60, /* () Border Color Red */
161  BORDG = 0x61, /* () Border Color Green */
162  BORDB = 0x62, /* () Border Color Blue */
163  MISCTL1 = 0x70, /* (0x00) Miscellaneous Control 1 */
164  MISCTL2 = 0x71, /* (0x00) Miscellaneous Control 2 */
165  MISCTL3 = 0x72, /* (0x00) Miscellaneous Control 3 */
166  KEYCTL = 0x78 /* (0x00) Key Control/DB Operation */
167 };
168 
169 /* TI TVP 3030 RAMDAC Direct Registers */
170 enum {
171  TVPADDRW = 0x00, /* 0 Palette/Cursor RAM Write Address/Index */
172  TVPPDATA = 0x04, /* 1 Palette Data RAM Data */
173  TVPPMASK = 0x08, /* 2 Pixel Read-Mask */
174  TVPPADRR = 0x0c, /* 3 Palette/Cursor RAM Read Address */
175  TVPCADRW = 0x10, /* 4 Cursor/Overscan Color Write Address */
176  TVPCDATA = 0x14, /* 5 Cursor/Overscan Color Data */
177  /* 6 reserved */
178  TVPCADRR = 0x1c, /* 7 Cursor/Overscan Color Read Address */
179  /* 8 reserved */
180  TVPDCCTL = 0x24, /* 9 Direct Cursor Control */
181  TVPIDATA = 0x28, /* 10 Index Data */
182  TVPCRDAT = 0x2c, /* 11 Cursor RAM Data */
183  TVPCXPOL = 0x30, /* 12 Cursor-Position X LSB */
184  TVPCXPOH = 0x34, /* 13 Cursor-Position X MSB */
185  TVPCYPOL = 0x38, /* 14 Cursor-Position Y LSB */
186  TVPCYPOH = 0x3c, /* 15 Cursor-Position Y MSB */
187 };
188 
189 /* TI TVP 3030 RAMDAC Indirect Registers */
190 enum {
191  TVPIRREV = 0x01, /* Silicon Revision [RO] */
192  TVPIRICC = 0x06, /* Indirect Cursor Control (0x00) */
193  TVPIRBRC = 0x07, /* Byte Router Control (0xe4) */
194  TVPIRLAC = 0x0f, /* Latch Control (0x06) */
195  TVPIRTCC = 0x18, /* True Color Control (0x80) */
196  TVPIRMXC = 0x19, /* Multiplex Control (0x98) */
197  TVPIRCLS = 0x1a, /* Clock Selection (0x07) */
198  TVPIRPPG = 0x1c, /* Palette Page (0x00) */
199  TVPIRGEC = 0x1d, /* General Control (0x00) */
200  TVPIRMIC = 0x1e, /* Miscellaneous Control (0x00) */
201  TVPIRPLA = 0x2c, /* PLL Address */
202  TVPIRPPD = 0x2d, /* Pixel Clock PLL Data */
203  TVPIRMPD = 0x2e, /* Memory Clock PLL Data */
204  TVPIRLPD = 0x2f, /* Loop Clock PLL Data */
205  TVPIRCKL = 0x30, /* Color-Key Overlay Low */
206  TVPIRCKH = 0x31, /* Color-Key Overlay High */
207  TVPIRCRL = 0x32, /* Color-Key Red Low */
208  TVPIRCRH = 0x33, /* Color-Key Red High */
209  TVPIRCGL = 0x34, /* Color-Key Green Low */
210  TVPIRCGH = 0x35, /* Color-Key Green High */
211  TVPIRCBL = 0x36, /* Color-Key Blue Low */
212  TVPIRCBH = 0x37, /* Color-Key Blue High */
213  TVPIRCKC = 0x38, /* Color-Key Control (0x00) */
214  TVPIRMLC = 0x39, /* MCLK/Loop Clock Control (0x18) */
215  TVPIRSEN = 0x3a, /* Sense Test (0x00) */
216  TVPIRTMD = 0x3b, /* Test Mode Data */
217  TVPIRRML = 0x3c, /* CRC Remainder LSB [RO] */
218  TVPIRRMM = 0x3d, /* CRC Remainder MSB [RO] */
219  TVPIRRMS = 0x3e, /* CRC Bit Select [WO] */
220  TVPIRDID = 0x3f, /* Device ID [RO] (0x30) */
221  TVPIRRES = 0xff /* Software Reset [WO] */
222 };
223 
224 struct initvalues {
226 };
227 
228 static struct initvalues ibm_initregs[] __devinitdata = {
229  { CLKCTL, 0x21 },
230  { SYNCCTL, 0x00 },
231  { HSYNCPOS, 0x00 },
232  { PWRMNGMT, 0x00 },
233  { DACOP, 0x02 },
234  { PALETCTL, 0x00 },
235  { SYSCLKCTL, 0x01 },
236 
237  /*
238  * Note that colors in X are correct only if all video data is
239  * passed through the palette in the DAC. That is, "indirect
240  * color" must be configured. This is the case for the IBM DAC
241  * used in the 2MB and 4MB cards, at least.
242  */
243  { BPP8, 0x00 },
244  { BPP16, 0x01 },
245  { BPP24, 0x00 },
246  { BPP32, 0x00 },
247 
248  { PIXCTL1, 0x05 },
249  { PIXCTL2, 0x00 },
250  { SYSCLKN, 0x08 },
251  { SYSCLKM, 0x4f },
252  { SYSCLKP, 0x00 },
253  { SYSCLKC, 0x00 },
254  { CURSCTL, 0x00 },
255  { CURSACCTL, 0x01 },
256  { CURSACATTR, 0xa8 },
257  { CURS1R, 0xff },
258  { CURS1G, 0xff },
259  { CURS1B, 0xff },
260  { CURS2R, 0xff },
261  { CURS2G, 0xff },
262  { CURS2B, 0xff },
263  { CURS3R, 0xff },
264  { CURS3G, 0xff },
265  { CURS3B, 0xff },
266  { BORDR, 0xff },
267  { BORDG, 0xff },
268  { BORDB, 0xff },
269  { MISCTL1, 0x01 },
270  { MISCTL2, 0x45 },
271  { MISCTL3, 0x00 },
272  { KEYCTL, 0x00 }
273 };
274 
275 static struct initvalues tvp_initregs[] __devinitdata = {
276  { TVPIRICC, 0x00 },
277  { TVPIRBRC, 0xe4 },
278  { TVPIRLAC, 0x06 },
279  { TVPIRTCC, 0x80 },
280  { TVPIRMXC, 0x4d },
281  { TVPIRCLS, 0x05 },
282  { TVPIRPPG, 0x00 },
283  { TVPIRGEC, 0x00 },
284  { TVPIRMIC, 0x08 },
285  { TVPIRCKL, 0xff },
286  { TVPIRCKH, 0xff },
287  { TVPIRCRL, 0xff },
288  { TVPIRCRH, 0xff },
289  { TVPIRCGL, 0xff },
290  { TVPIRCGH, 0xff },
291  { TVPIRCBL, 0xff },
292  { TVPIRCBH, 0xff },
293  { TVPIRCKC, 0x00 },
294  { TVPIRPLA, 0x00 },
295  { TVPIRPPD, 0xc0 },
296  { TVPIRPPD, 0xd5 },
297  { TVPIRPPD, 0xea },
298  { TVPIRPLA, 0x00 },
299  { TVPIRMPD, 0xb9 },
300  { TVPIRMPD, 0x3a },
301  { TVPIRMPD, 0xb1 },
302  { TVPIRPLA, 0x00 },
303  { TVPIRLPD, 0xc1 },
304  { TVPIRLPD, 0x3d },
305  { TVPIRLPD, 0xf3 },
306 };
307 
312  /* Values of the tvp which change depending on colormode x resolution */
313  __u8 mlc[3]; /* Memory Loop Config 0x39 */
314  __u8 lckl_p[3]; /* P value of LCKL PLL */
315 };
316 
317 struct imstt_par {
320  unsigned long cmap_regs_phys;
324 };
325 
326 enum {
327  IBM = 0,
328  TVP = 1
329 };
330 
331 #define USE_NV_MODES 1
332 #define INIT_BPP 8
333 #define INIT_XRES 640
334 #define INIT_YRES 480
335 
336 static int inverse = 0;
337 static char fontname[40] __initdata = { 0 };
338 #if defined(CONFIG_PPC)
339 static signed char init_vmode __devinitdata = -1, init_cmode __devinitdata = -1;
340 #endif
341 
342 static struct imstt_regvals tvp_reg_init_2 = {
343  512,
344  0x0002, 0x0006, 0x0026, 0x0028, 0x0003, 0x0016, 0x0196, 0x0197, 0x0196,
345  0xec, 0x2a, 0xf3,
346  { 0x3c, 0x3b, 0x39 }, { 0xf3, 0xf3, 0xf3 }
347 };
348 
349 static struct imstt_regvals tvp_reg_init_6 = {
350  640,
351  0x0004, 0x0009, 0x0031, 0x0036, 0x0003, 0x002a, 0x020a, 0x020d, 0x020a,
352  0xef, 0x2e, 0xb2,
353  { 0x39, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 }
354 };
355 
356 static struct imstt_regvals tvp_reg_init_12 = {
357  800,
358  0x0005, 0x000e, 0x0040, 0x0042, 0x0003, 0x018, 0x270, 0x271, 0x270,
359  0xf6, 0x2e, 0xf2,
360  { 0x3a, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 }
361 };
362 
363 static struct imstt_regvals tvp_reg_init_13 = {
364  832,
365  0x0004, 0x0011, 0x0045, 0x0048, 0x0003, 0x002a, 0x029a, 0x029b, 0x0000,
366  0xfe, 0x3e, 0xf1,
367  { 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
368 };
369 
370 static struct imstt_regvals tvp_reg_init_17 = {
371  1024,
372  0x0006, 0x0210, 0x0250, 0x0053, 0x1003, 0x0021, 0x0321, 0x0324, 0x0000,
373  0xfc, 0x3a, 0xf1,
374  { 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
375 };
376 
377 static struct imstt_regvals tvp_reg_init_18 = {
378  1152,
379  0x0009, 0x0011, 0x059, 0x5b, 0x0003, 0x0031, 0x0397, 0x039a, 0x0000,
380  0xfd, 0x3a, 0xf1,
381  { 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
382 };
383 
384 static struct imstt_regvals tvp_reg_init_19 = {
385  1280,
386  0x0009, 0x0016, 0x0066, 0x0069, 0x0003, 0x0027, 0x03e7, 0x03e8, 0x03e7,
387  0xf7, 0x36, 0xf0,
388  { 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 }
389 };
390 
391 static struct imstt_regvals tvp_reg_init_20 = {
392  1280,
393  0x0009, 0x0018, 0x0068, 0x006a, 0x0003, 0x0029, 0x0429, 0x042a, 0x0000,
394  0xf0, 0x2d, 0xf0,
395  { 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 }
396 };
397 
398 /*
399  * PCI driver prototypes
400  */
401 static int imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
402 static void imsttfb_remove(struct pci_dev *pdev);
403 
404 /*
405  * Register access
406  */
407 static inline u32 read_reg_le32(volatile u32 __iomem *base, int regindex)
408 {
409 #ifdef __powerpc__
410  return in_le32(base + regindex);
411 #else
412  return readl(base + regindex);
413 #endif
414 }
415 
416 static inline void write_reg_le32(volatile u32 __iomem *base, int regindex, u32 val)
417 {
418 #ifdef __powerpc__
419  out_le32(base + regindex, val);
420 #else
421  writel(val, base + regindex);
422 #endif
423 }
424 
425 static __u32
426 getclkMHz(struct imstt_par *par)
427 {
428  __u32 clk_m, clk_n, clk_p;
429 
430  clk_m = par->init.pclk_m;
431  clk_n = par->init.pclk_n;
432  clk_p = par->init.pclk_p;
433 
434  return 20 * (clk_m + 1) / ((clk_n + 1) * (clk_p ? 2 * clk_p : 1));
435 }
436 
437 static void
438 setclkMHz(struct imstt_par *par, __u32 MHz)
439 {
440  __u32 clk_m, clk_n, x, stage, spilled;
441 
442  clk_m = clk_n = 0;
443  stage = spilled = 0;
444  for (;;) {
445  switch (stage) {
446  case 0:
447  clk_m++;
448  break;
449  case 1:
450  clk_n++;
451  break;
452  }
453  x = 20 * (clk_m + 1) / (clk_n + 1);
454  if (x == MHz)
455  break;
456  if (x > MHz) {
457  spilled = 1;
458  stage = 1;
459  } else if (spilled && x < MHz) {
460  stage = 0;
461  }
462  }
463 
464  par->init.pclk_m = clk_m;
465  par->init.pclk_n = clk_n;
466  par->init.pclk_p = 0;
467 }
468 
469 static struct imstt_regvals *
470 compute_imstt_regvals_ibm(struct imstt_par *par, int xres, int yres)
471 {
472  struct imstt_regvals *init = &par->init;
473  __u32 MHz, hes, heb, veb, htp, vtp;
474 
475  switch (xres) {
476  case 640:
477  hes = 0x0008; heb = 0x0012; veb = 0x002a; htp = 10; vtp = 2;
478  MHz = 30 /* .25 */ ;
479  break;
480  case 832:
481  hes = 0x0005; heb = 0x0020; veb = 0x0028; htp = 8; vtp = 3;
482  MHz = 57 /* .27_ */ ;
483  break;
484  case 1024:
485  hes = 0x000a; heb = 0x001c; veb = 0x0020; htp = 8; vtp = 3;
486  MHz = 80;
487  break;
488  case 1152:
489  hes = 0x0012; heb = 0x0022; veb = 0x0031; htp = 4; vtp = 3;
490  MHz = 101 /* .6_ */ ;
491  break;
492  case 1280:
493  hes = 0x0012; heb = 0x002f; veb = 0x0029; htp = 4; vtp = 1;
494  MHz = yres == 960 ? 126 : 135;
495  break;
496  case 1600:
497  hes = 0x0018; heb = 0x0040; veb = 0x002a; htp = 4; vtp = 3;
498  MHz = 200;
499  break;
500  default:
501  return NULL;
502  }
503 
504  setclkMHz(par, MHz);
505 
506  init->hes = hes;
507  init->heb = heb;
508  init->hsb = init->heb + (xres >> 3);
509  init->ht = init->hsb + htp;
510  init->ves = 0x0003;
511  init->veb = veb;
512  init->vsb = init->veb + yres;
513  init->vt = init->vsb + vtp;
514  init->vil = init->vsb;
515 
516  init->pitch = xres;
517  return init;
518 }
519 
520 static struct imstt_regvals *
521 compute_imstt_regvals_tvp(struct imstt_par *par, int xres, int yres)
522 {
523  struct imstt_regvals *init;
524 
525  switch (xres) {
526  case 512:
527  init = &tvp_reg_init_2;
528  break;
529  case 640:
530  init = &tvp_reg_init_6;
531  break;
532  case 800:
533  init = &tvp_reg_init_12;
534  break;
535  case 832:
536  init = &tvp_reg_init_13;
537  break;
538  case 1024:
539  init = &tvp_reg_init_17;
540  break;
541  case 1152:
542  init = &tvp_reg_init_18;
543  break;
544  case 1280:
545  init = yres == 960 ? &tvp_reg_init_19 : &tvp_reg_init_20;
546  break;
547  default:
548  return NULL;
549  }
550  par->init = *init;
551  return init;
552 }
553 
554 static struct imstt_regvals *
555 compute_imstt_regvals (struct imstt_par *par, u_int xres, u_int yres)
556 {
557  if (par->ramdac == IBM)
558  return compute_imstt_regvals_ibm(par, xres, yres);
559  else
560  return compute_imstt_regvals_tvp(par, xres, yres);
561 }
562 
563 static void
564 set_imstt_regvals_ibm (struct imstt_par *par, u_int bpp)
565 {
566  struct imstt_regvals *init = &par->init;
567  __u8 pformat = (bpp >> 3) + 2;
568 
569  par->cmap_regs[PIDXHI] = 0; eieio();
570  par->cmap_regs[PIDXLO] = PIXM0; eieio();
571  par->cmap_regs[PIDXDATA] = init->pclk_m;eieio();
572  par->cmap_regs[PIDXLO] = PIXN0; eieio();
573  par->cmap_regs[PIDXDATA] = init->pclk_n;eieio();
574  par->cmap_regs[PIDXLO] = PIXP0; eieio();
575  par->cmap_regs[PIDXDATA] = init->pclk_p;eieio();
576  par->cmap_regs[PIDXLO] = PIXC0; eieio();
577  par->cmap_regs[PIDXDATA] = 0x02; eieio();
578 
579  par->cmap_regs[PIDXLO] = PIXFMT; eieio();
580  par->cmap_regs[PIDXDATA] = pformat; eieio();
581 }
582 
583 static void
584 set_imstt_regvals_tvp (struct imstt_par *par, u_int bpp)
585 {
586  struct imstt_regvals *init = &par->init;
587  __u8 tcc, mxc, lckl_n, mic;
588  __u8 mlc, lckl_p;
589 
590  switch (bpp) {
591  default:
592  case 8:
593  tcc = 0x80;
594  mxc = 0x4d;
595  lckl_n = 0xc1;
596  mlc = init->mlc[0];
597  lckl_p = init->lckl_p[0];
598  break;
599  case 16:
600  tcc = 0x44;
601  mxc = 0x55;
602  lckl_n = 0xe1;
603  mlc = init->mlc[1];
604  lckl_p = init->lckl_p[1];
605  break;
606  case 24:
607  tcc = 0x5e;
608  mxc = 0x5d;
609  lckl_n = 0xf1;
610  mlc = init->mlc[2];
611  lckl_p = init->lckl_p[2];
612  break;
613  case 32:
614  tcc = 0x46;
615  mxc = 0x5d;
616  lckl_n = 0xf1;
617  mlc = init->mlc[2];
618  lckl_p = init->lckl_p[2];
619  break;
620  }
621  mic = 0x08;
622 
623  par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio();
624  par->cmap_regs[TVPIDATA] = 0x00; eieio();
625  par->cmap_regs[TVPADDRW] = TVPIRPPD; eieio();
626  par->cmap_regs[TVPIDATA] = init->pclk_m; eieio();
627  par->cmap_regs[TVPADDRW] = TVPIRPPD; eieio();
628  par->cmap_regs[TVPIDATA] = init->pclk_n; eieio();
629  par->cmap_regs[TVPADDRW] = TVPIRPPD; eieio();
630  par->cmap_regs[TVPIDATA] = init->pclk_p; eieio();
631 
632  par->cmap_regs[TVPADDRW] = TVPIRTCC; eieio();
633  par->cmap_regs[TVPIDATA] = tcc; eieio();
634  par->cmap_regs[TVPADDRW] = TVPIRMXC; eieio();
635  par->cmap_regs[TVPIDATA] = mxc; eieio();
636  par->cmap_regs[TVPADDRW] = TVPIRMIC; eieio();
637  par->cmap_regs[TVPIDATA] = mic; eieio();
638 
639  par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio();
640  par->cmap_regs[TVPIDATA] = 0x00; eieio();
641  par->cmap_regs[TVPADDRW] = TVPIRLPD; eieio();
642  par->cmap_regs[TVPIDATA] = lckl_n; eieio();
643 
644  par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio();
645  par->cmap_regs[TVPIDATA] = 0x15; eieio();
646  par->cmap_regs[TVPADDRW] = TVPIRMLC; eieio();
647  par->cmap_regs[TVPIDATA] = mlc; eieio();
648 
649  par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio();
650  par->cmap_regs[TVPIDATA] = 0x2a; eieio();
651  par->cmap_regs[TVPADDRW] = TVPIRLPD; eieio();
652  par->cmap_regs[TVPIDATA] = lckl_p; eieio();
653 }
654 
655 static void
656 set_imstt_regvals (struct fb_info *info, u_int bpp)
657 {
658  struct imstt_par *par = info->par;
659  struct imstt_regvals *init = &par->init;
660  __u32 ctl, pitch, byteswap, scr;
661 
662  if (par->ramdac == IBM)
663  set_imstt_regvals_ibm(par, bpp);
664  else
665  set_imstt_regvals_tvp(par, bpp);
666 
667  /*
668  * From what I (jsk) can gather poking around with MacsBug,
669  * bits 8 and 9 in the SCR register control endianness
670  * correction (byte swapping). These bits must be set according
671  * to the color depth as follows:
672  * Color depth Bit 9 Bit 8
673  * ========== ===== =====
674  * 8bpp 0 0
675  * 16bpp 0 1
676  * 32bpp 1 1
677  */
678  switch (bpp) {
679  default:
680  case 8:
681  ctl = 0x17b1;
682  pitch = init->pitch >> 2;
683  byteswap = 0x000;
684  break;
685  case 16:
686  ctl = 0x17b3;
687  pitch = init->pitch >> 1;
688  byteswap = 0x100;
689  break;
690  case 24:
691  ctl = 0x17b9;
692  pitch = init->pitch - (init->pitch >> 2);
693  byteswap = 0x200;
694  break;
695  case 32:
696  ctl = 0x17b5;
697  pitch = init->pitch;
698  byteswap = 0x300;
699  break;
700  }
701  if (par->ramdac == TVP)
702  ctl -= 0x30;
703 
704  write_reg_le32(par->dc_regs, HES, init->hes);
705  write_reg_le32(par->dc_regs, HEB, init->heb);
706  write_reg_le32(par->dc_regs, HSB, init->hsb);
707  write_reg_le32(par->dc_regs, HT, init->ht);
708  write_reg_le32(par->dc_regs, VES, init->ves);
709  write_reg_le32(par->dc_regs, VEB, init->veb);
710  write_reg_le32(par->dc_regs, VSB, init->vsb);
711  write_reg_le32(par->dc_regs, VT, init->vt);
712  write_reg_le32(par->dc_regs, VIL, init->vil);
713  write_reg_le32(par->dc_regs, HCIV, 1);
714  write_reg_le32(par->dc_regs, VCIV, 1);
715  write_reg_le32(par->dc_regs, TCDR, 4);
716  write_reg_le32(par->dc_regs, RRCIV, 1);
717  write_reg_le32(par->dc_regs, RRSC, 0x980);
718  write_reg_le32(par->dc_regs, RRCR, 0x11);
719 
720  if (par->ramdac == IBM) {
721  write_reg_le32(par->dc_regs, HRIR, 0x0100);
722  write_reg_le32(par->dc_regs, CMR, 0x00ff);
723  write_reg_le32(par->dc_regs, SRGCTL, 0x0073);
724  } else {
725  write_reg_le32(par->dc_regs, HRIR, 0x0200);
726  write_reg_le32(par->dc_regs, CMR, 0x01ff);
727  write_reg_le32(par->dc_regs, SRGCTL, 0x0003);
728  }
729 
730  switch (info->fix.smem_len) {
731  case 0x200000:
732  scr = 0x059d | byteswap;
733  break;
734  /* case 0x400000:
735  case 0x800000: */
736  default:
737  pitch >>= 1;
738  scr = 0x150dd | byteswap;
739  break;
740  }
741 
742  write_reg_le32(par->dc_regs, SCR, scr);
743  write_reg_le32(par->dc_regs, SPR, pitch);
744  write_reg_le32(par->dc_regs, STGCTL, ctl);
745 }
746 
747 static inline void
748 set_offset (struct fb_var_screeninfo *var, struct fb_info *info)
749 {
750  struct imstt_par *par = info->par;
751  __u32 off = var->yoffset * (info->fix.line_length >> 3)
752  + ((var->xoffset * (info->var.bits_per_pixel >> 3)) >> 3);
753  write_reg_le32(par->dc_regs, SSR, off);
754 }
755 
756 static inline void
757 set_555 (struct imstt_par *par)
758 {
759  if (par->ramdac == IBM) {
760  par->cmap_regs[PIDXHI] = 0; eieio();
761  par->cmap_regs[PIDXLO] = BPP16; eieio();
762  par->cmap_regs[PIDXDATA] = 0x01; eieio();
763  } else {
764  par->cmap_regs[TVPADDRW] = TVPIRTCC; eieio();
765  par->cmap_regs[TVPIDATA] = 0x44; eieio();
766  }
767 }
768 
769 static inline void
770 set_565 (struct imstt_par *par)
771 {
772  if (par->ramdac == IBM) {
773  par->cmap_regs[PIDXHI] = 0; eieio();
774  par->cmap_regs[PIDXLO] = BPP16; eieio();
775  par->cmap_regs[PIDXDATA] = 0x03; eieio();
776  } else {
777  par->cmap_regs[TVPADDRW] = TVPIRTCC; eieio();
778  par->cmap_regs[TVPIDATA] = 0x45; eieio();
779  }
780 }
781 
782 static int
783 imsttfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
784 {
785  if ((var->bits_per_pixel != 8 && var->bits_per_pixel != 16
786  && var->bits_per_pixel != 24 && var->bits_per_pixel != 32)
787  || var->xres_virtual < var->xres || var->yres_virtual < var->yres
788  || var->nonstd
790  return -EINVAL;
791 
792  if ((var->xres * var->yres) * (var->bits_per_pixel >> 3) > info->fix.smem_len
793  || (var->xres_virtual * var->yres_virtual) * (var->bits_per_pixel >> 3) > info->fix.smem_len)
794  return -EINVAL;
795 
796  switch (var->bits_per_pixel) {
797  case 8:
798  var->red.offset = 0;
799  var->red.length = 8;
800  var->green.offset = 0;
801  var->green.length = 8;
802  var->blue.offset = 0;
803  var->blue.length = 8;
804  var->transp.offset = 0;
805  var->transp.length = 0;
806  break;
807  case 16: /* RGB 555 or 565 */
808  if (var->green.length != 6)
809  var->red.offset = 10;
810  var->red.length = 5;
811  var->green.offset = 5;
812  if (var->green.length != 6)
813  var->green.length = 5;
814  var->blue.offset = 0;
815  var->blue.length = 5;
816  var->transp.offset = 0;
817  var->transp.length = 0;
818  break;
819  case 24: /* RGB 888 */
820  var->red.offset = 16;
821  var->red.length = 8;
822  var->green.offset = 8;
823  var->green.length = 8;
824  var->blue.offset = 0;
825  var->blue.length = 8;
826  var->transp.offset = 0;
827  var->transp.length = 0;
828  break;
829  case 32: /* RGBA 8888 */
830  var->red.offset = 16;
831  var->red.length = 8;
832  var->green.offset = 8;
833  var->green.length = 8;
834  var->blue.offset = 0;
835  var->blue.length = 8;
836  var->transp.offset = 24;
837  var->transp.length = 8;
838  break;
839  }
840 
841  if (var->yres == var->yres_virtual) {
842  __u32 vram = (info->fix.smem_len - (PAGE_SIZE << 2));
843  var->yres_virtual = ((vram << 3) / var->bits_per_pixel) / var->xres_virtual;
844  if (var->yres_virtual < var->yres)
845  var->yres_virtual = var->yres;
846  }
847 
848  var->red.msb_right = 0;
849  var->green.msb_right = 0;
850  var->blue.msb_right = 0;
851  var->transp.msb_right = 0;
852  var->height = -1;
853  var->width = -1;
855  var->left_margin = var->right_margin = 16;
856  var->upper_margin = var->lower_margin = 16;
857  var->hsync_len = var->vsync_len = 8;
858  return 0;
859 }
860 
861 static int
862 imsttfb_set_par(struct fb_info *info)
863 {
864  struct imstt_par *par = info->par;
865 
866  if (!compute_imstt_regvals(par, info->var.xres, info->var.yres))
867  return -EINVAL;
868 
869  if (info->var.green.length == 6)
870  set_565(par);
871  else
872  set_555(par);
873  set_imstt_regvals(info, info->var.bits_per_pixel);
874  info->var.pixclock = 1000000 / getclkMHz(par);
875  return 0;
876 }
877 
878 static int
879 imsttfb_setcolreg (u_int regno, u_int red, u_int green, u_int blue,
880  u_int transp, struct fb_info *info)
881 {
882  struct imstt_par *par = info->par;
883  u_int bpp = info->var.bits_per_pixel;
884 
885  if (regno > 255)
886  return 1;
887 
888  red >>= 8;
889  green >>= 8;
890  blue >>= 8;
891 
892  /* PADDRW/PDATA are the same as TVPPADDRW/TVPPDATA */
893  if (0 && bpp == 16) /* screws up X */
894  par->cmap_regs[PADDRW] = regno << 3;
895  else
896  par->cmap_regs[PADDRW] = regno;
897  eieio();
898 
899  par->cmap_regs[PDATA] = red; eieio();
900  par->cmap_regs[PDATA] = green; eieio();
901  par->cmap_regs[PDATA] = blue; eieio();
902 
903  if (regno < 16)
904  switch (bpp) {
905  case 16:
906  par->palette[regno] =
907  (regno << (info->var.green.length ==
908  5 ? 10 : 11)) | (regno << 5) | regno;
909  break;
910  case 24:
911  par->palette[regno] =
912  (regno << 16) | (regno << 8) | regno;
913  break;
914  case 32: {
915  int i = (regno << 8) | regno;
916  par->palette[regno] = (i << 16) |i;
917  break;
918  }
919  }
920  return 0;
921 }
922 
923 static int
924 imsttfb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
925 {
926  if (var->xoffset + info->var.xres > info->var.xres_virtual
927  || var->yoffset + info->var.yres > info->var.yres_virtual)
928  return -EINVAL;
929 
930  info->var.xoffset = var->xoffset;
931  info->var.yoffset = var->yoffset;
932  set_offset(var, info);
933  return 0;
934 }
935 
936 static int
937 imsttfb_blank(int blank, struct fb_info *info)
938 {
939  struct imstt_par *par = info->par;
940  __u32 ctrl;
941 
942  ctrl = read_reg_le32(par->dc_regs, STGCTL);
943  if (blank > 0) {
944  switch (blank) {
945  case FB_BLANK_NORMAL:
946  case FB_BLANK_POWERDOWN:
947  ctrl &= ~0x00000380;
948  if (par->ramdac == IBM) {
949  par->cmap_regs[PIDXHI] = 0; eieio();
950  par->cmap_regs[PIDXLO] = MISCTL2; eieio();
951  par->cmap_regs[PIDXDATA] = 0x55; eieio();
952  par->cmap_regs[PIDXLO] = MISCTL1; eieio();
953  par->cmap_regs[PIDXDATA] = 0x11; eieio();
954  par->cmap_regs[PIDXLO] = SYNCCTL; eieio();
955  par->cmap_regs[PIDXDATA] = 0x0f; eieio();
956  par->cmap_regs[PIDXLO] = PWRMNGMT; eieio();
957  par->cmap_regs[PIDXDATA] = 0x1f; eieio();
958  par->cmap_regs[PIDXLO] = CLKCTL; eieio();
959  par->cmap_regs[PIDXDATA] = 0xc0;
960  }
961  break;
963  ctrl &= ~0x00000020;
964  break;
966  ctrl &= ~0x00000010;
967  break;
968  }
969  } else {
970  if (par->ramdac == IBM) {
971  ctrl |= 0x000017b0;
972  par->cmap_regs[PIDXHI] = 0; eieio();
973  par->cmap_regs[PIDXLO] = CLKCTL; eieio();
974  par->cmap_regs[PIDXDATA] = 0x01; eieio();
975  par->cmap_regs[PIDXLO] = PWRMNGMT; eieio();
976  par->cmap_regs[PIDXDATA] = 0x00; eieio();
977  par->cmap_regs[PIDXLO] = SYNCCTL; eieio();
978  par->cmap_regs[PIDXDATA] = 0x00; eieio();
979  par->cmap_regs[PIDXLO] = MISCTL1; eieio();
980  par->cmap_regs[PIDXDATA] = 0x01; eieio();
981  par->cmap_regs[PIDXLO] = MISCTL2; eieio();
982  par->cmap_regs[PIDXDATA] = 0x45; eieio();
983  } else
984  ctrl |= 0x00001780;
985  }
986  write_reg_le32(par->dc_regs, STGCTL, ctrl);
987  return 0;
988 }
989 
990 static void
991 imsttfb_fillrect(struct fb_info *info, const struct fb_fillrect *rect)
992 {
993  struct imstt_par *par = info->par;
994  __u32 Bpp, line_pitch, bgc, dx, dy, width, height;
995 
996  bgc = rect->color;
997  bgc |= (bgc << 8);
998  bgc |= (bgc << 16);
999 
1000  Bpp = info->var.bits_per_pixel >> 3,
1001  line_pitch = info->fix.line_length;
1002 
1003  dy = rect->dy * line_pitch;
1004  dx = rect->dx * Bpp;
1005  height = rect->height;
1006  height--;
1007  width = rect->width * Bpp;
1008  width--;
1009 
1010  if (rect->rop == ROP_COPY) {
1011  while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1012  write_reg_le32(par->dc_regs, DSA, dy + dx);
1013  write_reg_le32(par->dc_regs, CNT, (height << 16) | width);
1014  write_reg_le32(par->dc_regs, DP_OCTL, line_pitch);
1015  write_reg_le32(par->dc_regs, BI, 0xffffffff);
1016  write_reg_le32(par->dc_regs, MBC, 0xffffffff);
1017  write_reg_le32(par->dc_regs, CLR, bgc);
1018  write_reg_le32(par->dc_regs, BLTCTL, 0x840); /* 0x200000 */
1019  while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1020  while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1021  } else {
1022  while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1023  write_reg_le32(par->dc_regs, DSA, dy + dx);
1024  write_reg_le32(par->dc_regs, S1SA, dy + dx);
1025  write_reg_le32(par->dc_regs, CNT, (height << 16) | width);
1026  write_reg_le32(par->dc_regs, DP_OCTL, line_pitch);
1027  write_reg_le32(par->dc_regs, SP, line_pitch);
1028  write_reg_le32(par->dc_regs, BLTCTL, 0x40005);
1029  while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1030  while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1031  }
1032 }
1033 
1034 static void
1035 imsttfb_copyarea(struct fb_info *info, const struct fb_copyarea *area)
1036 {
1037  struct imstt_par *par = info->par;
1038  __u32 Bpp, line_pitch, fb_offset_old, fb_offset_new, sp, dp_octl;
1039  __u32 cnt, bltctl, sx, sy, dx, dy, height, width;
1040 
1041  Bpp = info->var.bits_per_pixel >> 3,
1042 
1043  sx = area->sx * Bpp;
1044  sy = area->sy;
1045  dx = area->dx * Bpp;
1046  dy = area->dy;
1047  height = area->height;
1048  height--;
1049  width = area->width * Bpp;
1050  width--;
1051 
1052  line_pitch = info->fix.line_length;
1053  bltctl = 0x05;
1054  sp = line_pitch << 16;
1055  cnt = height << 16;
1056 
1057  if (sy < dy) {
1058  sy += height;
1059  dy += height;
1060  sp |= -(line_pitch) & 0xffff;
1061  dp_octl = -(line_pitch) & 0xffff;
1062  } else {
1063  sp |= line_pitch;
1064  dp_octl = line_pitch;
1065  }
1066  if (sx < dx) {
1067  sx += width;
1068  dx += width;
1069  bltctl |= 0x80;
1070  cnt |= -(width) & 0xffff;
1071  } else {
1072  cnt |= width;
1073  }
1074  fb_offset_old = sy * line_pitch + sx;
1075  fb_offset_new = dy * line_pitch + dx;
1076 
1077  while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1078  write_reg_le32(par->dc_regs, S1SA, fb_offset_old);
1079  write_reg_le32(par->dc_regs, SP, sp);
1080  write_reg_le32(par->dc_regs, DSA, fb_offset_new);
1081  write_reg_le32(par->dc_regs, CNT, cnt);
1082  write_reg_le32(par->dc_regs, DP_OCTL, dp_octl);
1083  write_reg_le32(par->dc_regs, BLTCTL, bltctl);
1084  while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1085  while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1086 }
1087 
1088 #if 0
1089 static int
1090 imsttfb_load_cursor_image(struct imstt_par *par, int width, int height, __u8 fgc)
1091 {
1092  u_int x, y;
1093 
1094  if (width > 32 || height > 32)
1095  return -EINVAL;
1096 
1097  if (par->ramdac == IBM) {
1098  par->cmap_regs[PIDXHI] = 1; eieio();
1099  for (x = 0; x < 0x100; x++) {
1100  par->cmap_regs[PIDXLO] = x; eieio();
1101  par->cmap_regs[PIDXDATA] = 0x00; eieio();
1102  }
1103  par->cmap_regs[PIDXHI] = 1; eieio();
1104  for (y = 0; y < height; y++)
1105  for (x = 0; x < width >> 2; x++) {
1106  par->cmap_regs[PIDXLO] = x + y * 8; eieio();
1107  par->cmap_regs[PIDXDATA] = 0xff; eieio();
1108  }
1109  par->cmap_regs[PIDXHI] = 0; eieio();
1110  par->cmap_regs[PIDXLO] = CURS1R; eieio();
1111  par->cmap_regs[PIDXDATA] = fgc; eieio();
1112  par->cmap_regs[PIDXLO] = CURS1G; eieio();
1113  par->cmap_regs[PIDXDATA] = fgc; eieio();
1114  par->cmap_regs[PIDXLO] = CURS1B; eieio();
1115  par->cmap_regs[PIDXDATA] = fgc; eieio();
1116  par->cmap_regs[PIDXLO] = CURS2R; eieio();
1117  par->cmap_regs[PIDXDATA] = fgc; eieio();
1118  par->cmap_regs[PIDXLO] = CURS2G; eieio();
1119  par->cmap_regs[PIDXDATA] = fgc; eieio();
1120  par->cmap_regs[PIDXLO] = CURS2B; eieio();
1121  par->cmap_regs[PIDXDATA] = fgc; eieio();
1122  par->cmap_regs[PIDXLO] = CURS3R; eieio();
1123  par->cmap_regs[PIDXDATA] = fgc; eieio();
1124  par->cmap_regs[PIDXLO] = CURS3G; eieio();
1125  par->cmap_regs[PIDXDATA] = fgc; eieio();
1126  par->cmap_regs[PIDXLO] = CURS3B; eieio();
1127  par->cmap_regs[PIDXDATA] = fgc; eieio();
1128  } else {
1129  par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
1130  par->cmap_regs[TVPIDATA] &= 0x03; eieio();
1131  par->cmap_regs[TVPADDRW] = 0; eieio();
1132  for (x = 0; x < 0x200; x++) {
1133  par->cmap_regs[TVPCRDAT] = 0x00; eieio();
1134  }
1135  for (x = 0; x < 0x200; x++) {
1136  par->cmap_regs[TVPCRDAT] = 0xff; eieio();
1137  }
1138  par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
1139  par->cmap_regs[TVPIDATA] &= 0x03; eieio();
1140  for (y = 0; y < height; y++)
1141  for (x = 0; x < width >> 3; x++) {
1142  par->cmap_regs[TVPADDRW] = x + y * 8; eieio();
1143  par->cmap_regs[TVPCRDAT] = 0xff; eieio();
1144  }
1145  par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
1146  par->cmap_regs[TVPIDATA] |= 0x08; eieio();
1147  for (y = 0; y < height; y++)
1148  for (x = 0; x < width >> 3; x++) {
1149  par->cmap_regs[TVPADDRW] = x + y * 8; eieio();
1150  par->cmap_regs[TVPCRDAT] = 0xff; eieio();
1151  }
1152  par->cmap_regs[TVPCADRW] = 0x00; eieio();
1153  for (x = 0; x < 12; x++) {
1154  par->cmap_regs[TVPCDATA] = fgc;
1155  eieio();
1156  }
1157  }
1158  return 1;
1159 }
1160 
1161 static void
1162 imstt_set_cursor(struct imstt_par *par, struct fb_image *d, int on)
1163 {
1164  if (par->ramdac == IBM) {
1165  par->cmap_regs[PIDXHI] = 0; eieio();
1166  if (!on) {
1167  par->cmap_regs[PIDXLO] = CURSCTL; eieio();
1168  par->cmap_regs[PIDXDATA] = 0x00; eieio();
1169  } else {
1170  par->cmap_regs[PIDXLO] = CURSXHI; eieio();
1171  par->cmap_regs[PIDXDATA] = d->dx >> 8; eieio();
1172  par->cmap_regs[PIDXLO] = CURSXLO; eieio();
1173  par->cmap_regs[PIDXDATA] = d->dx & 0xff;eieio();
1174  par->cmap_regs[PIDXLO] = CURSYHI; eieio();
1175  par->cmap_regs[PIDXDATA] = d->dy >> 8; eieio();
1176  par->cmap_regs[PIDXLO] = CURSYLO; eieio();
1177  par->cmap_regs[PIDXDATA] = d->dy & 0xff;eieio();
1178  par->cmap_regs[PIDXLO] = CURSCTL; eieio();
1179  par->cmap_regs[PIDXDATA] = 0x02; eieio();
1180  }
1181  } else {
1182  if (!on) {
1183  par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
1184  par->cmap_regs[TVPIDATA] = 0x00; eieio();
1185  } else {
1186  __u16 x = d->dx + 0x40, y = d->dy + 0x40;
1187 
1188  par->cmap_regs[TVPCXPOH] = x >> 8; eieio();
1189  par->cmap_regs[TVPCXPOL] = x & 0xff; eieio();
1190  par->cmap_regs[TVPCYPOH] = y >> 8; eieio();
1191  par->cmap_regs[TVPCYPOL] = y & 0xff; eieio();
1192  par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
1193  par->cmap_regs[TVPIDATA] = 0x02; eieio();
1194  }
1195  }
1196 }
1197 
1198 static int
1199 imsttfb_cursor(struct fb_info *info, struct fb_cursor *cursor)
1200 {
1201  struct imstt_par *par = info->par;
1202  u32 flags = cursor->set, fg, bg, xx, yy;
1203 
1204  if (cursor->dest == NULL && cursor->rop == ROP_XOR)
1205  return 1;
1206 
1207  imstt_set_cursor(info, cursor, 0);
1208 
1209  if (flags & FB_CUR_SETPOS) {
1210  xx = cursor->image.dx - info->var.xoffset;
1211  yy = cursor->image.dy - info->var.yoffset;
1212  }
1213 
1214  if (flags & FB_CUR_SETSIZE) {
1215  }
1216 
1217  if (flags & (FB_CUR_SETSHAPE | FB_CUR_SETCMAP)) {
1218  int fg_idx = cursor->image.fg_color;
1219  int width = (cursor->image.width+7)/8;
1220  u8 *dat = (u8 *) cursor->image.data;
1221  u8 *dst = (u8 *) cursor->dest;
1222  u8 *msk = (u8 *) cursor->mask;
1223 
1224  switch (cursor->rop) {
1225  case ROP_XOR:
1226  for (i = 0; i < cursor->image.height; i++) {
1227  for (j = 0; j < width; j++) {
1228  d_idx = i * MAX_CURS/8 + j;
1229  data[d_idx] = byte_rev[dat[s_idx] ^
1230  dst[s_idx]];
1231  mask[d_idx] = byte_rev[msk[s_idx]];
1232  s_idx++;
1233  }
1234  }
1235  break;
1236  case ROP_COPY:
1237  default:
1238  for (i = 0; i < cursor->image.height; i++) {
1239  for (j = 0; j < width; j++) {
1240  d_idx = i * MAX_CURS/8 + j;
1241  data[d_idx] = byte_rev[dat[s_idx]];
1242  mask[d_idx] = byte_rev[msk[s_idx]];
1243  s_idx++;
1244  }
1245  }
1246  break;
1247  }
1248 
1249  fg = ((info->cmap.red[fg_idx] & 0xf8) << 7) |
1250  ((info->cmap.green[fg_idx] & 0xf8) << 2) |
1251  ((info->cmap.blue[fg_idx] & 0xf8) >> 3) | 1 << 15;
1252 
1253  imsttfb_load_cursor_image(par, xx, yy, fgc);
1254  }
1255  if (cursor->enable)
1256  imstt_set_cursor(info, cursor, 1);
1257  return 0;
1258 }
1259 #endif
1260 
1261 #define FBIMSTT_SETREG 0x545401
1262 #define FBIMSTT_GETREG 0x545402
1263 #define FBIMSTT_SETCMAPREG 0x545403
1264 #define FBIMSTT_GETCMAPREG 0x545404
1265 #define FBIMSTT_SETIDXREG 0x545405
1266 #define FBIMSTT_GETIDXREG 0x545406
1267 
1268 static int
1269 imsttfb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
1270 {
1271  struct imstt_par *par = info->par;
1272  void __user *argp = (void __user *)arg;
1273  __u32 reg[2];
1274  __u8 idx[2];
1275 
1276  switch (cmd) {
1277  case FBIMSTT_SETREG:
1278  if (copy_from_user(reg, argp, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1279  return -EFAULT;
1280  write_reg_le32(par->dc_regs, reg[0], reg[1]);
1281  return 0;
1282  case FBIMSTT_GETREG:
1283  if (copy_from_user(reg, argp, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1284  return -EFAULT;
1285  reg[1] = read_reg_le32(par->dc_regs, reg[0]);
1286  if (copy_to_user((void __user *)(arg + 4), &reg[1], 4))
1287  return -EFAULT;
1288  return 0;
1289  case FBIMSTT_SETCMAPREG:
1290  if (copy_from_user(reg, argp, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1291  return -EFAULT;
1292  write_reg_le32(((u_int __iomem *)par->cmap_regs), reg[0], reg[1]);
1293  return 0;
1294  case FBIMSTT_GETCMAPREG:
1295  if (copy_from_user(reg, argp, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1296  return -EFAULT;
1297  reg[1] = read_reg_le32(((u_int __iomem *)par->cmap_regs), reg[0]);
1298  if (copy_to_user((void __user *)(arg + 4), &reg[1], 4))
1299  return -EFAULT;
1300  return 0;
1301  case FBIMSTT_SETIDXREG:
1302  if (copy_from_user(idx, argp, 2))
1303  return -EFAULT;
1304  par->cmap_regs[PIDXHI] = 0; eieio();
1305  par->cmap_regs[PIDXLO] = idx[0]; eieio();
1306  par->cmap_regs[PIDXDATA] = idx[1]; eieio();
1307  return 0;
1308  case FBIMSTT_GETIDXREG:
1309  if (copy_from_user(idx, argp, 1))
1310  return -EFAULT;
1311  par->cmap_regs[PIDXHI] = 0; eieio();
1312  par->cmap_regs[PIDXLO] = idx[0]; eieio();
1313  idx[1] = par->cmap_regs[PIDXDATA];
1314  if (copy_to_user((void __user *)(arg + 1), &idx[1], 1))
1315  return -EFAULT;
1316  return 0;
1317  default:
1318  return -ENOIOCTLCMD;
1319  }
1320 }
1321 
1322 static struct pci_device_id imsttfb_pci_tbl[] = {
1324  PCI_ANY_ID, PCI_ANY_ID, 0, 0, IBM },
1326  PCI_ANY_ID, PCI_ANY_ID, 0, 0, TVP },
1327  { 0, }
1328 };
1329 
1330 MODULE_DEVICE_TABLE(pci, imsttfb_pci_tbl);
1331 
1332 static struct pci_driver imsttfb_pci_driver = {
1333  .name = "imsttfb",
1334  .id_table = imsttfb_pci_tbl,
1335  .probe = imsttfb_probe,
1336  .remove = __devexit_p(imsttfb_remove),
1337 };
1338 
1339 static struct fb_ops imsttfb_ops = {
1340  .owner = THIS_MODULE,
1341  .fb_check_var = imsttfb_check_var,
1342  .fb_set_par = imsttfb_set_par,
1343  .fb_setcolreg = imsttfb_setcolreg,
1344  .fb_pan_display = imsttfb_pan_display,
1345  .fb_blank = imsttfb_blank,
1346  .fb_fillrect = imsttfb_fillrect,
1347  .fb_copyarea = imsttfb_copyarea,
1348  .fb_imageblit = cfb_imageblit,
1349  .fb_ioctl = imsttfb_ioctl,
1350 };
1351 
1352 static void __devinit
1353 init_imstt(struct fb_info *info)
1354 {
1355  struct imstt_par *par = info->par;
1356  __u32 i, tmp, *ip, *end;
1357 
1358  tmp = read_reg_le32(par->dc_regs, PRC);
1359  if (par->ramdac == IBM)
1360  info->fix.smem_len = (tmp & 0x0004) ? 0x400000 : 0x200000;
1361  else
1362  info->fix.smem_len = 0x800000;
1363 
1364  ip = (__u32 *)info->screen_base;
1365  end = (__u32 *)(info->screen_base + info->fix.smem_len);
1366  while (ip < end)
1367  *ip++ = 0;
1368 
1369  /* initialize the card */
1370  tmp = read_reg_le32(par->dc_regs, STGCTL);
1371  write_reg_le32(par->dc_regs, STGCTL, tmp & ~0x1);
1372  write_reg_le32(par->dc_regs, SSR, 0);
1373 
1374  /* set default values for DAC registers */
1375  if (par->ramdac == IBM) {
1376  par->cmap_regs[PPMASK] = 0xff;
1377  eieio();
1378  par->cmap_regs[PIDXHI] = 0;
1379  eieio();
1380  for (i = 0; i < ARRAY_SIZE(ibm_initregs); i++) {
1381  par->cmap_regs[PIDXLO] = ibm_initregs[i].addr;
1382  eieio();
1383  par->cmap_regs[PIDXDATA] = ibm_initregs[i].value;
1384  eieio();
1385  }
1386  } else {
1387  for (i = 0; i < ARRAY_SIZE(tvp_initregs); i++) {
1388  par->cmap_regs[TVPADDRW] = tvp_initregs[i].addr;
1389  eieio();
1390  par->cmap_regs[TVPIDATA] = tvp_initregs[i].value;
1391  eieio();
1392  }
1393  }
1394 
1395 #if USE_NV_MODES && defined(CONFIG_PPC32)
1396  {
1397  int vmode = init_vmode, cmode = init_cmode;
1398 
1399  if (vmode == -1) {
1400  vmode = nvram_read_byte(NV_VMODE);
1401  if (vmode <= 0 || vmode > VMODE_MAX)
1402  vmode = VMODE_640_480_67;
1403  }
1404  if (cmode == -1) {
1405  cmode = nvram_read_byte(NV_CMODE);
1406  if (cmode < CMODE_8 || cmode > CMODE_32)
1407  cmode = CMODE_8;
1408  }
1409  if (mac_vmode_to_var(vmode, cmode, &info->var)) {
1410  info->var.xres = info->var.xres_virtual = INIT_XRES;
1411  info->var.yres = info->var.yres_virtual = INIT_YRES;
1412  info->var.bits_per_pixel = INIT_BPP;
1413  }
1414  }
1415 #else
1416  info->var.xres = info->var.xres_virtual = INIT_XRES;
1417  info->var.yres = info->var.yres_virtual = INIT_YRES;
1418  info->var.bits_per_pixel = INIT_BPP;
1419 #endif
1420 
1421  if ((info->var.xres * info->var.yres) * (info->var.bits_per_pixel >> 3) > info->fix.smem_len
1422  || !(compute_imstt_regvals(par, info->var.xres, info->var.yres))) {
1423  printk("imsttfb: %ux%ux%u not supported\n", info->var.xres, info->var.yres, info->var.bits_per_pixel);
1424  framebuffer_release(info);
1425  return;
1426  }
1427 
1428  sprintf(info->fix.id, "IMS TT (%s)", par->ramdac == IBM ? "IBM" : "TVP");
1429  info->fix.mmio_len = 0x1000;
1430  info->fix.accel = FB_ACCEL_IMS_TWINTURBO;
1431  info->fix.type = FB_TYPE_PACKED_PIXELS;
1432  info->fix.visual = info->var.bits_per_pixel == 8 ? FB_VISUAL_PSEUDOCOLOR
1434  info->fix.line_length = info->var.xres * (info->var.bits_per_pixel >> 3);
1435  info->fix.xpanstep = 8;
1436  info->fix.ypanstep = 1;
1437  info->fix.ywrapstep = 0;
1438 
1439  info->var.accel_flags = FB_ACCELF_TEXT;
1440 
1441 // if (par->ramdac == IBM)
1442 // imstt_cursor_init(info);
1443  if (info->var.green.length == 6)
1444  set_565(par);
1445  else
1446  set_555(par);
1447  set_imstt_regvals(info, info->var.bits_per_pixel);
1448 
1449  info->var.pixclock = 1000000 / getclkMHz(par);
1450 
1451  info->fbops = &imsttfb_ops;
1452  info->flags = FBINFO_DEFAULT |
1456 
1457  fb_alloc_cmap(&info->cmap, 0, 0);
1458 
1459  if (register_framebuffer(info) < 0) {
1460  framebuffer_release(info);
1461  return;
1462  }
1463 
1464  tmp = (read_reg_le32(par->dc_regs, SSTATUS) & 0x0f00) >> 8;
1465  printk("fb%u: %s frame buffer; %uMB vram; chip version %u\n",
1466  info->node, info->fix.id, info->fix.smem_len >> 20, tmp);
1467 }
1468 
1469 static int __devinit
1470 imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1471 {
1472  unsigned long addr, size;
1473  struct imstt_par *par;
1474  struct fb_info *info;
1475 #ifdef CONFIG_PPC_OF
1476  struct device_node *dp;
1477 
1478  dp = pci_device_to_OF_node(pdev);
1479  if(dp)
1480  printk(KERN_INFO "%s: OF name %s\n",__func__, dp->name);
1481  else
1482  printk(KERN_ERR "imsttfb: no OF node for pci device\n");
1483 #endif /* CONFIG_PPC_OF */
1484 
1485  info = framebuffer_alloc(sizeof(struct imstt_par), &pdev->dev);
1486 
1487  if (!info) {
1488  printk(KERN_ERR "imsttfb: Can't allocate memory\n");
1489  return -ENOMEM;
1490  }
1491 
1492  par = info->par;
1493 
1494  addr = pci_resource_start (pdev, 0);
1495  size = pci_resource_len (pdev, 0);
1496 
1497  if (!request_mem_region(addr, size, "imsttfb")) {
1498  printk(KERN_ERR "imsttfb: Can't reserve memory region\n");
1499  framebuffer_release(info);
1500  return -ENODEV;
1501  }
1502 
1503  switch (pdev->device) {
1504  case PCI_DEVICE_ID_IMS_TT128: /* IMS,tt128mbA */
1505  par->ramdac = IBM;
1506 #ifdef CONFIG_PPC_OF
1507  if (dp && ((strcmp(dp->name, "IMS,tt128mb8") == 0) ||
1508  (strcmp(dp->name, "IMS,tt128mb8A") == 0)))
1509  par->ramdac = TVP;
1510 #endif /* CONFIG_PPC_OF */
1511  break;
1512  case PCI_DEVICE_ID_IMS_TT3D: /* IMS,tt3d */
1513  par->ramdac = TVP;
1514  break;
1515  default:
1516  printk(KERN_INFO "imsttfb: Device 0x%x unknown, "
1517  "contact maintainer.\n", pdev->device);
1518  release_mem_region(addr, size);
1519  framebuffer_release(info);
1520  return -ENODEV;
1521  }
1522 
1523  info->fix.smem_start = addr;
1524  info->screen_base = (__u8 *)ioremap(addr, par->ramdac == IBM ?
1525  0x400000 : 0x800000);
1526  info->fix.mmio_start = addr + 0x800000;
1527  par->dc_regs = ioremap(addr + 0x800000, 0x1000);
1528  par->cmap_regs_phys = addr + 0x840000;
1529  par->cmap_regs = (__u8 *)ioremap(addr + 0x840000, 0x1000);
1530  info->pseudo_palette = par->palette;
1531  init_imstt(info);
1532 
1533  pci_set_drvdata(pdev, info);
1534  return 0;
1535 }
1536 
1537 static void __devexit
1538 imsttfb_remove(struct pci_dev *pdev)
1539 {
1540  struct fb_info *info = pci_get_drvdata(pdev);
1541  struct imstt_par *par = info->par;
1542  int size = pci_resource_len(pdev, 0);
1543 
1544  unregister_framebuffer(info);
1545  iounmap(par->cmap_regs);
1546  iounmap(par->dc_regs);
1547  iounmap(info->screen_base);
1548  release_mem_region(info->fix.smem_start, size);
1549  framebuffer_release(info);
1550 }
1551 
1552 #ifndef MODULE
1553 static int __init
1554 imsttfb_setup(char *options)
1555 {
1556  char *this_opt;
1557 
1558  if (!options || !*options)
1559  return 0;
1560 
1561  while ((this_opt = strsep(&options, ",")) != NULL) {
1562  if (!strncmp(this_opt, "font:", 5)) {
1563  char *p;
1564  int i;
1565 
1566  p = this_opt + 5;
1567  for (i = 0; i < sizeof(fontname) - 1; i++)
1568  if (!*p || *p == ' ' || *p == ',')
1569  break;
1570  memcpy(fontname, this_opt + 5, i);
1571  fontname[i] = 0;
1572  } else if (!strncmp(this_opt, "inverse", 7)) {
1573  inverse = 1;
1574  fb_invert_cmaps();
1575  }
1576 #if defined(CONFIG_PPC)
1577  else if (!strncmp(this_opt, "vmode:", 6)) {
1578  int vmode = simple_strtoul(this_opt+6, NULL, 0);
1579  if (vmode > 0 && vmode <= VMODE_MAX)
1580  init_vmode = vmode;
1581  } else if (!strncmp(this_opt, "cmode:", 6)) {
1582  int cmode = simple_strtoul(this_opt+6, NULL, 0);
1583  switch (cmode) {
1584  case CMODE_8:
1585  case 8:
1586  init_cmode = CMODE_8;
1587  break;
1588  case CMODE_16:
1589  case 15:
1590  case 16:
1591  init_cmode = CMODE_16;
1592  break;
1593  case CMODE_32:
1594  case 24:
1595  case 32:
1596  init_cmode = CMODE_32;
1597  break;
1598  }
1599  }
1600 #endif
1601  }
1602  return 0;
1603 }
1604 
1605 #endif /* MODULE */
1606 
1607 static int __init imsttfb_init(void)
1608 {
1609 #ifndef MODULE
1610  char *option = NULL;
1611 
1612  if (fb_get_options("imsttfb", &option))
1613  return -ENODEV;
1614 
1615  imsttfb_setup(option);
1616 #endif
1617  return pci_register_driver(&imsttfb_pci_driver);
1618 }
1619 
1620 static void __exit imsttfb_exit(void)
1621 {
1622  pci_unregister_driver(&imsttfb_pci_driver);
1623 }
1624 
1625 MODULE_LICENSE("GPL");
1626 
1627 module_init(imsttfb_init);
1628 module_exit(imsttfb_exit);
1629