Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
iw_rdma.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2006 Oracle. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses. You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  * Redistribution and use in source and binary forms, with or
11  * without modification, are permitted provided that the following
12  * conditions are met:
13  *
14  * - Redistributions of source code must retain the above
15  * copyright notice, this list of conditions and the following
16  * disclaimer.
17  *
18  * - Redistributions in binary form must reproduce the above
19  * copyright notice, this list of conditions and the following
20  * disclaimer in the documentation and/or other materials
21  * provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/ratelimit.h>
36 
37 #include "rds.h"
38 #include "iw.h"
39 
40 
41 /*
42  * This is stored as mr->r_trans_private.
43  */
44 struct rds_iw_mr {
47  struct rdma_cm_id *cm_id;
48 
49  struct ib_mr *mr;
51 
53  unsigned char remap_count;
54 };
55 
56 /*
57  * Our own little MR pool
58  */
60  struct rds_iw_device *device; /* back ptr to the device that owns us */
61 
62  struct mutex flush_lock; /* serialize fmr invalidate */
63  struct work_struct flush_worker; /* flush worker */
64 
65  spinlock_t list_lock; /* protect variables below */
66  atomic_t item_count; /* total # of MRs */
67  atomic_t dirty_count; /* # dirty of MRs */
68  struct list_head dirty_list; /* dirty mappings */
69  struct list_head clean_list; /* unused & unamapped MRs */
70  atomic_t free_pinned; /* memory pinned by free MRs */
71  unsigned long max_message_size; /* in pages */
72  unsigned long max_items;
73  unsigned long max_items_soft;
74  unsigned long max_free_pinned;
75  int max_pages;
76 };
77 
78 static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all);
79 static void rds_iw_mr_pool_flush_worker(struct work_struct *work);
80 static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
81 static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
82  struct rds_iw_mr *ibmr,
83  struct scatterlist *sg, unsigned int nents);
84 static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
85 static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
86  struct list_head *unmap_list,
87  struct list_head *kill_list,
88  int *unpinned);
89 static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
90 
91 static int rds_iw_get_device(struct rds_sock *rs, struct rds_iw_device **rds_iwdev, struct rdma_cm_id **cm_id)
92 {
93  struct rds_iw_device *iwdev;
94  struct rds_iw_cm_id *i_cm_id;
95 
96  *rds_iwdev = NULL;
97  *cm_id = NULL;
98 
100  spin_lock_irq(&iwdev->spinlock);
101  list_for_each_entry(i_cm_id, &iwdev->cm_id_list, list) {
102  struct sockaddr_in *src_addr, *dst_addr;
103 
104  src_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.src_addr;
105  dst_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.dst_addr;
106 
107  rdsdebug("local ipaddr = %x port %d, "
108  "remote ipaddr = %x port %d"
109  "..looking for %x port %d, "
110  "remote ipaddr = %x port %d\n",
111  src_addr->sin_addr.s_addr,
112  src_addr->sin_port,
113  dst_addr->sin_addr.s_addr,
114  dst_addr->sin_port,
115  rs->rs_bound_addr,
116  rs->rs_bound_port,
117  rs->rs_conn_addr,
118  rs->rs_conn_port);
119 #ifdef WORKING_TUPLE_DETECTION
120  if (src_addr->sin_addr.s_addr == rs->rs_bound_addr &&
121  src_addr->sin_port == rs->rs_bound_port &&
122  dst_addr->sin_addr.s_addr == rs->rs_conn_addr &&
123  dst_addr->sin_port == rs->rs_conn_port) {
124 #else
125  /* FIXME - needs to compare the local and remote
126  * ipaddr/port tuple, but the ipaddr is the only
127  * available information in the rds_sock (as the rest are
128  * zero'ed. It doesn't appear to be properly populated
129  * during connection setup...
130  */
131  if (src_addr->sin_addr.s_addr == rs->rs_bound_addr) {
132 #endif
133  spin_unlock_irq(&iwdev->spinlock);
134  *rds_iwdev = iwdev;
135  *cm_id = i_cm_id->cm_id;
136  return 0;
137  }
138  }
139  spin_unlock_irq(&iwdev->spinlock);
140  }
141 
142  return 1;
143 }
144 
145 static int rds_iw_add_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
146 {
147  struct rds_iw_cm_id *i_cm_id;
148 
149  i_cm_id = kmalloc(sizeof *i_cm_id, GFP_KERNEL);
150  if (!i_cm_id)
151  return -ENOMEM;
152 
153  i_cm_id->cm_id = cm_id;
154 
155  spin_lock_irq(&rds_iwdev->spinlock);
156  list_add_tail(&i_cm_id->list, &rds_iwdev->cm_id_list);
157  spin_unlock_irq(&rds_iwdev->spinlock);
158 
159  return 0;
160 }
161 
162 static void rds_iw_remove_cm_id(struct rds_iw_device *rds_iwdev,
163  struct rdma_cm_id *cm_id)
164 {
165  struct rds_iw_cm_id *i_cm_id;
166 
167  spin_lock_irq(&rds_iwdev->spinlock);
168  list_for_each_entry(i_cm_id, &rds_iwdev->cm_id_list, list) {
169  if (i_cm_id->cm_id == cm_id) {
170  list_del(&i_cm_id->list);
171  kfree(i_cm_id);
172  break;
173  }
174  }
175  spin_unlock_irq(&rds_iwdev->spinlock);
176 }
177 
178 
179 int rds_iw_update_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
180 {
181  struct sockaddr_in *src_addr, *dst_addr;
182  struct rds_iw_device *rds_iwdev_old;
183  struct rds_sock rs;
184  struct rdma_cm_id *pcm_id;
185  int rc;
186 
187  src_addr = (struct sockaddr_in *)&cm_id->route.addr.src_addr;
188  dst_addr = (struct sockaddr_in *)&cm_id->route.addr.dst_addr;
189 
190  rs.rs_bound_addr = src_addr->sin_addr.s_addr;
191  rs.rs_bound_port = src_addr->sin_port;
192  rs.rs_conn_addr = dst_addr->sin_addr.s_addr;
193  rs.rs_conn_port = dst_addr->sin_port;
194 
195  rc = rds_iw_get_device(&rs, &rds_iwdev_old, &pcm_id);
196  if (rc)
197  rds_iw_remove_cm_id(rds_iwdev, cm_id);
198 
199  return rds_iw_add_cm_id(rds_iwdev, cm_id);
200 }
201 
202 void rds_iw_add_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
203 {
204  struct rds_iw_connection *ic = conn->c_transport_data;
205 
206  /* conn was previously on the nodev_conns_list */
207  spin_lock_irq(&iw_nodev_conns_lock);
208  BUG_ON(list_empty(&iw_nodev_conns));
209  BUG_ON(list_empty(&ic->iw_node));
210  list_del(&ic->iw_node);
211 
212  spin_lock(&rds_iwdev->spinlock);
213  list_add_tail(&ic->iw_node, &rds_iwdev->conn_list);
214  spin_unlock(&rds_iwdev->spinlock);
215  spin_unlock_irq(&iw_nodev_conns_lock);
216 
217  ic->rds_iwdev = rds_iwdev;
218 }
219 
220 void rds_iw_remove_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
221 {
222  struct rds_iw_connection *ic = conn->c_transport_data;
223 
224  /* place conn on nodev_conns_list */
225  spin_lock(&iw_nodev_conns_lock);
226 
227  spin_lock_irq(&rds_iwdev->spinlock);
228  BUG_ON(list_empty(&ic->iw_node));
229  list_del(&ic->iw_node);
230  spin_unlock_irq(&rds_iwdev->spinlock);
231 
233 
234  spin_unlock(&iw_nodev_conns_lock);
235 
236  rds_iw_remove_cm_id(ic->rds_iwdev, ic->i_cm_id);
237  ic->rds_iwdev = NULL;
238 }
239 
241 {
242  struct rds_iw_connection *ic, *_ic;
243  LIST_HEAD(tmp_list);
244 
245  /* avoid calling conn_destroy with irqs off */
246  spin_lock_irq(list_lock);
247  list_splice(list, &tmp_list);
248  INIT_LIST_HEAD(list);
249  spin_unlock_irq(list_lock);
250 
251  list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node)
252  rds_conn_destroy(ic->conn);
253 }
254 
255 static void rds_iw_set_scatterlist(struct rds_iw_scatterlist *sg,
256  struct scatterlist *list, unsigned int sg_len)
257 {
258  sg->list = list;
259  sg->len = sg_len;
260  sg->dma_len = 0;
261  sg->dma_npages = 0;
262  sg->bytes = 0;
263 }
264 
265 static u64 *rds_iw_map_scatterlist(struct rds_iw_device *rds_iwdev,
266  struct rds_iw_scatterlist *sg)
267 {
268  struct ib_device *dev = rds_iwdev->dev;
269  u64 *dma_pages = NULL;
270  int i, j, ret;
271 
272  WARN_ON(sg->dma_len);
273 
274  sg->dma_len = ib_dma_map_sg(dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
275  if (unlikely(!sg->dma_len)) {
276  printk(KERN_WARNING "RDS/IW: dma_map_sg failed!\n");
277  return ERR_PTR(-EBUSY);
278  }
279 
280  sg->bytes = 0;
281  sg->dma_npages = 0;
282 
283  ret = -EINVAL;
284  for (i = 0; i < sg->dma_len; ++i) {
285  unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
286  u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
287  u64 end_addr;
288 
289  sg->bytes += dma_len;
290 
291  end_addr = dma_addr + dma_len;
292  if (dma_addr & PAGE_MASK) {
293  if (i > 0)
294  goto out_unmap;
295  dma_addr &= ~PAGE_MASK;
296  }
297  if (end_addr & PAGE_MASK) {
298  if (i < sg->dma_len - 1)
299  goto out_unmap;
300  end_addr = (end_addr + PAGE_MASK) & ~PAGE_MASK;
301  }
302 
303  sg->dma_npages += (end_addr - dma_addr) >> PAGE_SHIFT;
304  }
305 
306  /* Now gather the dma addrs into one list */
308  goto out_unmap;
309 
310  dma_pages = kmalloc(sizeof(u64) * sg->dma_npages, GFP_ATOMIC);
311  if (!dma_pages) {
312  ret = -ENOMEM;
313  goto out_unmap;
314  }
315 
316  for (i = j = 0; i < sg->dma_len; ++i) {
317  unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
318  u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
319  u64 end_addr;
320 
321  end_addr = dma_addr + dma_len;
322  dma_addr &= ~PAGE_MASK;
323  for (; dma_addr < end_addr; dma_addr += PAGE_SIZE)
324  dma_pages[j++] = dma_addr;
325  BUG_ON(j > sg->dma_npages);
326  }
327 
328  return dma_pages;
329 
330 out_unmap:
331  ib_dma_unmap_sg(rds_iwdev->dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
332  sg->dma_len = 0;
333  kfree(dma_pages);
334  return ERR_PTR(ret);
335 }
336 
337 
339 {
340  struct rds_iw_mr_pool *pool;
341 
342  pool = kzalloc(sizeof(*pool), GFP_KERNEL);
343  if (!pool) {
344  printk(KERN_WARNING "RDS/IW: rds_iw_create_mr_pool alloc error\n");
345  return ERR_PTR(-ENOMEM);
346  }
347 
348  pool->device = rds_iwdev;
349  INIT_LIST_HEAD(&pool->dirty_list);
350  INIT_LIST_HEAD(&pool->clean_list);
351  mutex_init(&pool->flush_lock);
352  spin_lock_init(&pool->list_lock);
353  INIT_WORK(&pool->flush_worker, rds_iw_mr_pool_flush_worker);
354 
357  pool->max_free_pinned = pool->max_items * pool->max_message_size / 4;
359 
360  /* We never allow more than max_items MRs to be allocated.
361  * When we exceed more than max_items_soft, we start freeing
362  * items more aggressively.
363  * Make sure that max_items > max_items_soft > max_items / 2
364  */
365  pool->max_items_soft = pool->max_items * 3 / 4;
366 
367  return pool;
368 }
369 
370 void rds_iw_get_mr_info(struct rds_iw_device *rds_iwdev, struct rds_info_rdma_connection *iinfo)
371 {
372  struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
373 
374  iinfo->rdma_mr_max = pool->max_items;
375  iinfo->rdma_mr_size = pool->max_pages;
376 }
377 
379 {
381  rds_iw_flush_mr_pool(pool, 1);
382  BUG_ON(atomic_read(&pool->item_count));
383  BUG_ON(atomic_read(&pool->free_pinned));
384  kfree(pool);
385 }
386 
387 static inline struct rds_iw_mr *rds_iw_reuse_fmr(struct rds_iw_mr_pool *pool)
388 {
389  struct rds_iw_mr *ibmr = NULL;
390  unsigned long flags;
391 
392  spin_lock_irqsave(&pool->list_lock, flags);
393  if (!list_empty(&pool->clean_list)) {
394  ibmr = list_entry(pool->clean_list.next, struct rds_iw_mr, mapping.m_list);
395  list_del_init(&ibmr->mapping.m_list);
396  }
397  spin_unlock_irqrestore(&pool->list_lock, flags);
398 
399  return ibmr;
400 }
401 
402 static struct rds_iw_mr *rds_iw_alloc_mr(struct rds_iw_device *rds_iwdev)
403 {
404  struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
405  struct rds_iw_mr *ibmr = NULL;
406  int err = 0, iter = 0;
407 
408  while (1) {
409  ibmr = rds_iw_reuse_fmr(pool);
410  if (ibmr)
411  return ibmr;
412 
413  /* No clean MRs - now we have the choice of either
414  * allocating a fresh MR up to the limit imposed by the
415  * driver, or flush any dirty unused MRs.
416  * We try to avoid stalling in the send path if possible,
417  * so we allocate as long as we're allowed to.
418  *
419  * We're fussy with enforcing the FMR limit, though. If the driver
420  * tells us we can't use more than N fmrs, we shouldn't start
421  * arguing with it */
422  if (atomic_inc_return(&pool->item_count) <= pool->max_items)
423  break;
424 
425  atomic_dec(&pool->item_count);
426 
427  if (++iter > 2) {
428  rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted);
429  return ERR_PTR(-EAGAIN);
430  }
431 
432  /* We do have some empty MRs. Flush them out. */
433  rds_iw_stats_inc(s_iw_rdma_mr_pool_wait);
434  rds_iw_flush_mr_pool(pool, 0);
435  }
436 
437  ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL);
438  if (!ibmr) {
439  err = -ENOMEM;
440  goto out_no_cigar;
441  }
442 
443  spin_lock_init(&ibmr->mapping.m_lock);
444  INIT_LIST_HEAD(&ibmr->mapping.m_list);
445  ibmr->mapping.m_mr = ibmr;
446 
447  err = rds_iw_init_fastreg(pool, ibmr);
448  if (err)
449  goto out_no_cigar;
450 
451  rds_iw_stats_inc(s_iw_rdma_mr_alloc);
452  return ibmr;
453 
454 out_no_cigar:
455  if (ibmr) {
456  rds_iw_destroy_fastreg(pool, ibmr);
457  kfree(ibmr);
458  }
459  atomic_dec(&pool->item_count);
460  return ERR_PTR(err);
461 }
462 
463 void rds_iw_sync_mr(void *trans_private, int direction)
464 {
465  struct rds_iw_mr *ibmr = trans_private;
466  struct rds_iw_device *rds_iwdev = ibmr->device;
467 
468  switch (direction) {
469  case DMA_FROM_DEVICE:
470  ib_dma_sync_sg_for_cpu(rds_iwdev->dev, ibmr->mapping.m_sg.list,
471  ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
472  break;
473  case DMA_TO_DEVICE:
474  ib_dma_sync_sg_for_device(rds_iwdev->dev, ibmr->mapping.m_sg.list,
475  ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
476  break;
477  }
478 }
479 
480 /*
481  * Flush our pool of MRs.
482  * At a minimum, all currently unused MRs are unmapped.
483  * If the number of MRs allocated exceeds the limit, we also try
484  * to free as many MRs as needed to get back to this limit.
485  */
486 static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all)
487 {
488  struct rds_iw_mr *ibmr, *next;
489  LIST_HEAD(unmap_list);
490  LIST_HEAD(kill_list);
491  unsigned long flags;
492  unsigned int nfreed = 0, ncleaned = 0, unpinned = 0;
493  int ret = 0;
494 
495  rds_iw_stats_inc(s_iw_rdma_mr_pool_flush);
496 
497  mutex_lock(&pool->flush_lock);
498 
499  spin_lock_irqsave(&pool->list_lock, flags);
500  /* Get the list of all mappings to be destroyed */
501  list_splice_init(&pool->dirty_list, &unmap_list);
502  if (free_all)
503  list_splice_init(&pool->clean_list, &kill_list);
504  spin_unlock_irqrestore(&pool->list_lock, flags);
505 
506  /* Batched invalidate of dirty MRs.
507  * For FMR based MRs, the mappings on the unmap list are
508  * actually members of an ibmr (ibmr->mapping). They either
509  * migrate to the kill_list, or have been cleaned and should be
510  * moved to the clean_list.
511  * For fastregs, they will be dynamically allocated, and
512  * will be destroyed by the unmap function.
513  */
514  if (!list_empty(&unmap_list)) {
515  ncleaned = rds_iw_unmap_fastreg_list(pool, &unmap_list,
516  &kill_list, &unpinned);
517  /* If we've been asked to destroy all MRs, move those
518  * that were simply cleaned to the kill list */
519  if (free_all)
520  list_splice_init(&unmap_list, &kill_list);
521  }
522 
523  /* Destroy any MRs that are past their best before date */
524  list_for_each_entry_safe(ibmr, next, &kill_list, mapping.m_list) {
525  rds_iw_stats_inc(s_iw_rdma_mr_free);
526  list_del(&ibmr->mapping.m_list);
527  rds_iw_destroy_fastreg(pool, ibmr);
528  kfree(ibmr);
529  nfreed++;
530  }
531 
532  /* Anything that remains are laundered ibmrs, which we can add
533  * back to the clean list. */
534  if (!list_empty(&unmap_list)) {
535  spin_lock_irqsave(&pool->list_lock, flags);
536  list_splice(&unmap_list, &pool->clean_list);
537  spin_unlock_irqrestore(&pool->list_lock, flags);
538  }
539 
540  atomic_sub(unpinned, &pool->free_pinned);
541  atomic_sub(ncleaned, &pool->dirty_count);
542  atomic_sub(nfreed, &pool->item_count);
543 
544  mutex_unlock(&pool->flush_lock);
545  return ret;
546 }
547 
548 static void rds_iw_mr_pool_flush_worker(struct work_struct *work)
549 {
550  struct rds_iw_mr_pool *pool = container_of(work, struct rds_iw_mr_pool, flush_worker);
551 
552  rds_iw_flush_mr_pool(pool, 0);
553 }
554 
555 void rds_iw_free_mr(void *trans_private, int invalidate)
556 {
557  struct rds_iw_mr *ibmr = trans_private;
558  struct rds_iw_mr_pool *pool = ibmr->device->mr_pool;
559 
560  rdsdebug("RDS/IW: free_mr nents %u\n", ibmr->mapping.m_sg.len);
561  if (!pool)
562  return;
563 
564  /* Return it to the pool's free list */
565  rds_iw_free_fastreg(pool, ibmr);
566 
567  /* If we've pinned too many pages, request a flush */
568  if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
569  atomic_read(&pool->dirty_count) >= pool->max_items / 10)
570  queue_work(rds_wq, &pool->flush_worker);
571 
572  if (invalidate) {
573  if (likely(!in_interrupt())) {
574  rds_iw_flush_mr_pool(pool, 0);
575  } else {
576  /* We get here if the user created a MR marked
577  * as use_once and invalidate at the same time. */
578  queue_work(rds_wq, &pool->flush_worker);
579  }
580  }
581 }
582 
584 {
585  struct rds_iw_device *rds_iwdev;
586 
587  list_for_each_entry(rds_iwdev, &rds_iw_devices, list) {
588  struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
589 
590  if (pool)
591  rds_iw_flush_mr_pool(pool, 0);
592  }
593 }
594 
595 void *rds_iw_get_mr(struct scatterlist *sg, unsigned long nents,
596  struct rds_sock *rs, u32 *key_ret)
597 {
598  struct rds_iw_device *rds_iwdev;
599  struct rds_iw_mr *ibmr = NULL;
600  struct rdma_cm_id *cm_id;
601  int ret;
602 
603  ret = rds_iw_get_device(rs, &rds_iwdev, &cm_id);
604  if (ret || !cm_id) {
605  ret = -ENODEV;
606  goto out;
607  }
608 
609  if (!rds_iwdev->mr_pool) {
610  ret = -ENODEV;
611  goto out;
612  }
613 
614  ibmr = rds_iw_alloc_mr(rds_iwdev);
615  if (IS_ERR(ibmr))
616  return ibmr;
617 
618  ibmr->cm_id = cm_id;
619  ibmr->device = rds_iwdev;
620 
621  ret = rds_iw_map_fastreg(rds_iwdev->mr_pool, ibmr, sg, nents);
622  if (ret == 0)
623  *key_ret = ibmr->mr->rkey;
624  else
625  printk(KERN_WARNING "RDS/IW: failed to map mr (errno=%d)\n", ret);
626 
627 out:
628  if (ret) {
629  if (ibmr)
630  rds_iw_free_mr(ibmr, 0);
631  ibmr = ERR_PTR(ret);
632  }
633  return ibmr;
634 }
635 
636 /*
637  * iWARP fastreg handling
638  *
639  * The life cycle of a fastreg registration is a bit different from
640  * FMRs.
641  * The idea behind fastreg is to have one MR, to which we bind different
642  * mappings over time. To avoid stalling on the expensive map and invalidate
643  * operations, these operations are pipelined on the same send queue on
644  * which we want to send the message containing the r_key.
645  *
646  * This creates a bit of a problem for us, as we do not have the destination
647  * IP in GET_MR, so the connection must be setup prior to the GET_MR call for
648  * RDMA to be correctly setup. If a fastreg request is present, rds_iw_xmit
649  * will try to queue a LOCAL_INV (if needed) and a FAST_REG_MR work request
650  * before queuing the SEND. When completions for these arrive, they are
651  * dispatched to the MR has a bit set showing that RDMa can be performed.
652  *
653  * There is another interesting aspect that's related to invalidation.
654  * The application can request that a mapping is invalidated in FREE_MR.
655  * The expectation there is that this invalidation step includes ALL
656  * PREVIOUSLY FREED MRs.
657  */
658 static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool,
659  struct rds_iw_mr *ibmr)
660 {
661  struct rds_iw_device *rds_iwdev = pool->device;
663  struct ib_mr *mr;
664  int err;
665 
666  mr = ib_alloc_fast_reg_mr(rds_iwdev->pd, pool->max_message_size);
667  if (IS_ERR(mr)) {
668  err = PTR_ERR(mr);
669 
670  printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed (err=%d)\n", err);
671  return err;
672  }
673 
674  /* FIXME - this is overkill, but mapping->m_sg.dma_len/mapping->m_sg.dma_npages
675  * is not filled in.
676  */
677  page_list = ib_alloc_fast_reg_page_list(rds_iwdev->dev, pool->max_message_size);
678  if (IS_ERR(page_list)) {
679  err = PTR_ERR(page_list);
680 
681  printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed (err=%d)\n", err);
682  ib_dereg_mr(mr);
683  return err;
684  }
685 
686  ibmr->page_list = page_list;
687  ibmr->mr = mr;
688  return 0;
689 }
690 
691 static int rds_iw_rdma_build_fastreg(struct rds_iw_mapping *mapping)
692 {
693  struct rds_iw_mr *ibmr = mapping->m_mr;
694  struct ib_send_wr f_wr, *failed_wr;
695  int ret;
696 
697  /*
698  * Perform a WR for the fast_reg_mr. Each individual page
699  * in the sg list is added to the fast reg page list and placed
700  * inside the fast_reg_mr WR. The key used is a rolling 8bit
701  * counter, which should guarantee uniqueness.
702  */
703  ib_update_fast_reg_key(ibmr->mr, ibmr->remap_count++);
704  mapping->m_rkey = ibmr->mr->rkey;
705 
706  memset(&f_wr, 0, sizeof(f_wr));
707  f_wr.wr_id = RDS_IW_FAST_REG_WR_ID;
708  f_wr.opcode = IB_WR_FAST_REG_MR;
709  f_wr.wr.fast_reg.length = mapping->m_sg.bytes;
710  f_wr.wr.fast_reg.rkey = mapping->m_rkey;
711  f_wr.wr.fast_reg.page_list = ibmr->page_list;
712  f_wr.wr.fast_reg.page_list_len = mapping->m_sg.dma_len;
713  f_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
714  f_wr.wr.fast_reg.access_flags = IB_ACCESS_LOCAL_WRITE |
717  f_wr.wr.fast_reg.iova_start = 0;
718  f_wr.send_flags = IB_SEND_SIGNALED;
719 
720  failed_wr = &f_wr;
721  ret = ib_post_send(ibmr->cm_id->qp, &f_wr, &failed_wr);
722  BUG_ON(failed_wr != &f_wr);
723  if (ret)
724  printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
725  __func__, __LINE__, ret);
726  return ret;
727 }
728 
729 static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr *ibmr)
730 {
731  struct ib_send_wr s_wr, *failed_wr;
732  int ret = 0;
733 
734  if (!ibmr->cm_id->qp || !ibmr->mr)
735  goto out;
736 
737  memset(&s_wr, 0, sizeof(s_wr));
738  s_wr.wr_id = RDS_IW_LOCAL_INV_WR_ID;
739  s_wr.opcode = IB_WR_LOCAL_INV;
740  s_wr.ex.invalidate_rkey = ibmr->mr->rkey;
741  s_wr.send_flags = IB_SEND_SIGNALED;
742 
743  failed_wr = &s_wr;
744  ret = ib_post_send(ibmr->cm_id->qp, &s_wr, &failed_wr);
745  if (ret) {
746  printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
747  __func__, __LINE__, ret);
748  goto out;
749  }
750 out:
751  return ret;
752 }
753 
754 static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
755  struct rds_iw_mr *ibmr,
756  struct scatterlist *sg,
757  unsigned int sg_len)
758 {
759  struct rds_iw_device *rds_iwdev = pool->device;
760  struct rds_iw_mapping *mapping = &ibmr->mapping;
761  u64 *dma_pages;
762  int i, ret = 0;
763 
764  rds_iw_set_scatterlist(&mapping->m_sg, sg, sg_len);
765 
766  dma_pages = rds_iw_map_scatterlist(rds_iwdev, &mapping->m_sg);
767  if (IS_ERR(dma_pages)) {
768  ret = PTR_ERR(dma_pages);
769  dma_pages = NULL;
770  goto out;
771  }
772 
773  if (mapping->m_sg.dma_len > pool->max_message_size) {
774  ret = -EMSGSIZE;
775  goto out;
776  }
777 
778  for (i = 0; i < mapping->m_sg.dma_npages; ++i)
779  ibmr->page_list->page_list[i] = dma_pages[i];
780 
781  ret = rds_iw_rdma_build_fastreg(mapping);
782  if (ret)
783  goto out;
784 
785  rds_iw_stats_inc(s_iw_rdma_mr_used);
786 
787 out:
788  kfree(dma_pages);
789 
790  return ret;
791 }
792 
793 /*
794  * "Free" a fastreg MR.
795  */
796 static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool,
797  struct rds_iw_mr *ibmr)
798 {
799  unsigned long flags;
800  int ret;
801 
802  if (!ibmr->mapping.m_sg.dma_len)
803  return;
804 
805  ret = rds_iw_rdma_fastreg_inv(ibmr);
806  if (ret)
807  return;
808 
809  /* Try to post the LOCAL_INV WR to the queue. */
810  spin_lock_irqsave(&pool->list_lock, flags);
811 
812  list_add_tail(&ibmr->mapping.m_list, &pool->dirty_list);
813  atomic_add(ibmr->mapping.m_sg.len, &pool->free_pinned);
814  atomic_inc(&pool->dirty_count);
815 
816  spin_unlock_irqrestore(&pool->list_lock, flags);
817 }
818 
819 static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
820  struct list_head *unmap_list,
821  struct list_head *kill_list,
822  int *unpinned)
823 {
824  struct rds_iw_mapping *mapping, *next;
825  unsigned int ncleaned = 0;
826  LIST_HEAD(laundered);
827 
828  /* Batched invalidation of fastreg MRs.
829  * Why do we do it this way, even though we could pipeline unmap
830  * and remap? The reason is the application semantics - when the
831  * application requests an invalidation of MRs, it expects all
832  * previously released R_Keys to become invalid.
833  *
834  * If we implement MR reuse naively, we risk memory corruption
835  * (this has actually been observed). So the default behavior
836  * requires that a MR goes through an explicit unmap operation before
837  * we can reuse it again.
838  *
839  * We could probably improve on this a little, by allowing immediate
840  * reuse of a MR on the same socket (eg you could add small
841  * cache of unused MRs to strct rds_socket - GET_MR could grab one
842  * of these without requiring an explicit invalidate).
843  */
844  while (!list_empty(unmap_list)) {
845  unsigned long flags;
846 
847  spin_lock_irqsave(&pool->list_lock, flags);
848  list_for_each_entry_safe(mapping, next, unmap_list, m_list) {
849  *unpinned += mapping->m_sg.len;
850  list_move(&mapping->m_list, &laundered);
851  ncleaned++;
852  }
853  spin_unlock_irqrestore(&pool->list_lock, flags);
854  }
855 
856  /* Move all laundered mappings back to the unmap list.
857  * We do not kill any WRs right now - it doesn't seem the
858  * fastreg API has a max_remap limit. */
859  list_splice_init(&laundered, unmap_list);
860 
861  return ncleaned;
862 }
863 
864 static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool,
865  struct rds_iw_mr *ibmr)
866 {
867  if (ibmr->page_list)
869  if (ibmr->mr)
870  ib_dereg_mr(ibmr->mr);
871 }