Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ixp4xx_crypto.c
Go to the documentation of this file.
1 /*
2  * Intel IXP4xx NPE-C crypto driver
3  *
4  * Copyright (C) 2008 Christian Hohnstaedt <[email protected]>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of version 2 of the GNU General Public License
8  * as published by the Free Software Foundation.
9  *
10  */
11 
12 #include <linux/platform_device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmapool.h>
15 #include <linux/crypto.h>
16 #include <linux/kernel.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/gfp.h>
21 #include <linux/module.h>
22 
23 #include <crypto/ctr.h>
24 #include <crypto/des.h>
25 #include <crypto/aes.h>
26 #include <crypto/sha.h>
27 #include <crypto/algapi.h>
28 #include <crypto/aead.h>
29 #include <crypto/authenc.h>
30 #include <crypto/scatterwalk.h>
31 
32 #include <mach/npe.h>
33 #include <mach/qmgr.h>
34 
35 #define MAX_KEYLEN 32
36 
37 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
38 #define NPE_CTX_LEN 80
39 #define AES_BLOCK128 16
40 
41 #define NPE_OP_HASH_VERIFY 0x01
42 #define NPE_OP_CCM_ENABLE 0x04
43 #define NPE_OP_CRYPT_ENABLE 0x08
44 #define NPE_OP_HASH_ENABLE 0x10
45 #define NPE_OP_NOT_IN_PLACE 0x20
46 #define NPE_OP_HMAC_DISABLE 0x40
47 #define NPE_OP_CRYPT_ENCRYPT 0x80
48 
49 #define NPE_OP_CCM_GEN_MIC 0xcc
50 #define NPE_OP_HASH_GEN_ICV 0x50
51 #define NPE_OP_ENC_GEN_KEY 0xc9
52 
53 #define MOD_ECB 0x0000
54 #define MOD_CTR 0x1000
55 #define MOD_CBC_ENC 0x2000
56 #define MOD_CBC_DEC 0x3000
57 #define MOD_CCM_ENC 0x4000
58 #define MOD_CCM_DEC 0x5000
59 
60 #define KEYLEN_128 4
61 #define KEYLEN_192 6
62 #define KEYLEN_256 8
63 
64 #define CIPH_DECR 0x0000
65 #define CIPH_ENCR 0x0400
66 
67 #define MOD_DES 0x0000
68 #define MOD_TDEA2 0x0100
69 #define MOD_3DES 0x0200
70 #define MOD_AES 0x0800
71 #define MOD_AES128 (0x0800 | KEYLEN_128)
72 #define MOD_AES192 (0x0900 | KEYLEN_192)
73 #define MOD_AES256 (0x0a00 | KEYLEN_256)
74 
75 #define MAX_IVLEN 16
76 #define NPE_ID 2 /* NPE C */
77 #define NPE_QLEN 16
78 /* Space for registering when the first
79  * NPE_QLEN crypt_ctl are busy */
80 #define NPE_QLEN_TOTAL 64
81 
82 #define SEND_QID 29
83 #define RECV_QID 30
84 
85 #define CTL_FLAG_UNUSED 0x0000
86 #define CTL_FLAG_USED 0x1000
87 #define CTL_FLAG_PERFORM_ABLK 0x0001
88 #define CTL_FLAG_GEN_ICV 0x0002
89 #define CTL_FLAG_GEN_REVAES 0x0004
90 #define CTL_FLAG_PERFORM_AEAD 0x0008
91 #define CTL_FLAG_MASK 0x000f
92 
93 #define HMAC_IPAD_VALUE 0x36
94 #define HMAC_OPAD_VALUE 0x5C
95 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
96 
97 #define MD5_DIGEST_SIZE 16
98 
99 struct buffer_desc {
101 #ifdef __ARMEB__
102  u16 buf_len;
103  u16 pkt_len;
104 #else
107 #endif
110  struct buffer_desc *next;
112 };
113 
114 struct crypt_ctl {
115 #ifdef __ARMEB__
116  u8 mode; /* NPE_OP_* operation mode */
117  u8 init_len;
118  u16 reserved;
119 #else
122  u8 mode; /* NPE_OP_* operation mode */
123 #endif
124  u8 iv[MAX_IVLEN]; /* IV for CBC mode or CTR IV for CTR mode */
125  u32 icv_rev_aes; /* icv or rev aes */
128 #ifdef __ARMEB__
129  u16 auth_offs; /* Authentication start offset */
130  u16 auth_len; /* Authentication data length */
131  u16 crypt_offs; /* Cryption start offset */
132  u16 crypt_len; /* Cryption data length */
133 #else
134  u16 auth_len; /* Authentication data length */
135  u16 auth_offs; /* Authentication start offset */
136  u16 crypt_len; /* Cryption data length */
137  u16 crypt_offs; /* Cryption start offset */
138 #endif
139  u32 aadAddr; /* Additional Auth Data Addr for CCM mode */
140  u32 crypto_ctx; /* NPE Crypto Param structure address */
141 
142  /* Used by Host: 4*4 bytes*/
143  unsigned ctl_flags;
144  union {
147  struct crypto_tfm *tfm;
148  } data;
151 };
152 
153 struct ablk_ctx {
154  struct buffer_desc *src;
155  struct buffer_desc *dst;
156 };
157 
158 struct aead_ctx {
161  /* used when the hmac is not on one sg entry */
163  int encrypt;
164 };
165 
166 struct ix_hash_algo {
168  unsigned char *icv;
169 };
170 
171 struct ix_sa_dir {
172  unsigned char *npe_ctx;
176 };
177 
178 struct ixp_ctx {
187  unsigned salted;
190 };
191 
192 struct ixp_alg {
194  const struct ix_hash_algo *hash;
197 
199 };
200 
201 static const struct ix_hash_algo hash_alg_md5 = {
202  .cfgword = 0xAA010004,
203  .icv = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
204  "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
205 };
206 static const struct ix_hash_algo hash_alg_sha1 = {
207  .cfgword = 0x00000005,
208  .icv = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
209  "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
210 };
211 
212 static struct npe *npe_c;
213 static struct dma_pool *buffer_pool = NULL;
214 static struct dma_pool *ctx_pool = NULL;
215 
216 static struct crypt_ctl *crypt_virt = NULL;
217 static dma_addr_t crypt_phys;
218 
219 static int support_aes = 1;
220 
221 static void dev_release(struct device *dev)
222 {
223  return;
224 }
225 
226 #define DRIVER_NAME "ixp4xx_crypto"
227 static struct platform_device pseudo_dev = {
228  .name = DRIVER_NAME,
229  .id = 0,
230  .num_resources = 0,
231  .dev = {
232  .coherent_dma_mask = DMA_BIT_MASK(32),
233  .release = dev_release,
234  }
235 };
236 
237 static struct device *dev = &pseudo_dev.dev;
238 
239 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
240 {
241  return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
242 }
243 
244 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
245 {
246  return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
247 }
248 
249 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
250 {
251  return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc;
252 }
253 
254 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
255 {
256  return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec;
257 }
258 
259 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
260 {
261  return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash;
262 }
263 
264 static int setup_crypt_desc(void)
265 {
266  BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
267  crypt_virt = dma_alloc_coherent(dev,
268  NPE_QLEN * sizeof(struct crypt_ctl),
269  &crypt_phys, GFP_ATOMIC);
270  if (!crypt_virt)
271  return -ENOMEM;
272  memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl));
273  return 0;
274 }
275 
276 static spinlock_t desc_lock;
277 static struct crypt_ctl *get_crypt_desc(void)
278 {
279  int i;
280  static int idx = 0;
281  unsigned long flags;
282 
283  spin_lock_irqsave(&desc_lock, flags);
284 
285  if (unlikely(!crypt_virt))
286  setup_crypt_desc();
287  if (unlikely(!crypt_virt)) {
288  spin_unlock_irqrestore(&desc_lock, flags);
289  return NULL;
290  }
291  i = idx;
292  if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
293  if (++idx >= NPE_QLEN)
294  idx = 0;
295  crypt_virt[i].ctl_flags = CTL_FLAG_USED;
296  spin_unlock_irqrestore(&desc_lock, flags);
297  return crypt_virt +i;
298  } else {
299  spin_unlock_irqrestore(&desc_lock, flags);
300  return NULL;
301  }
302 }
303 
304 static spinlock_t emerg_lock;
305 static struct crypt_ctl *get_crypt_desc_emerg(void)
306 {
307  int i;
308  static int idx = NPE_QLEN;
309  struct crypt_ctl *desc;
310  unsigned long flags;
311 
312  desc = get_crypt_desc();
313  if (desc)
314  return desc;
315  if (unlikely(!crypt_virt))
316  return NULL;
317 
318  spin_lock_irqsave(&emerg_lock, flags);
319  i = idx;
320  if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
321  if (++idx >= NPE_QLEN_TOTAL)
322  idx = NPE_QLEN;
323  crypt_virt[i].ctl_flags = CTL_FLAG_USED;
324  spin_unlock_irqrestore(&emerg_lock, flags);
325  return crypt_virt +i;
326  } else {
327  spin_unlock_irqrestore(&emerg_lock, flags);
328  return NULL;
329  }
330 }
331 
332 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,u32 phys)
333 {
334  while (buf) {
335  struct buffer_desc *buf1;
336  u32 phys1;
337 
338  buf1 = buf->next;
339  phys1 = buf->phys_next;
340  dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir);
341  dma_pool_free(buffer_pool, buf, phys);
342  buf = buf1;
343  phys = phys1;
344  }
345 }
346 
347 static struct tasklet_struct crypto_done_tasklet;
348 
349 static void finish_scattered_hmac(struct crypt_ctl *crypt)
350 {
351  struct aead_request *req = crypt->data.aead_req;
352  struct aead_ctx *req_ctx = aead_request_ctx(req);
353  struct crypto_aead *tfm = crypto_aead_reqtfm(req);
354  int authsize = crypto_aead_authsize(tfm);
355  int decryptlen = req->cryptlen - authsize;
356 
357  if (req_ctx->encrypt) {
359  req->src, decryptlen, authsize, 1);
360  }
361  dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
362 }
363 
364 static void one_packet(dma_addr_t phys)
365 {
366  struct crypt_ctl *crypt;
367  struct ixp_ctx *ctx;
368  int failed;
369 
370  failed = phys & 0x1 ? -EBADMSG : 0;
371  phys &= ~0x3;
372  crypt = crypt_phys2virt(phys);
373 
374  switch (crypt->ctl_flags & CTL_FLAG_MASK) {
375  case CTL_FLAG_PERFORM_AEAD: {
376  struct aead_request *req = crypt->data.aead_req;
377  struct aead_ctx *req_ctx = aead_request_ctx(req);
378 
379  free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
380  if (req_ctx->hmac_virt) {
381  finish_scattered_hmac(crypt);
382  }
383  req->base.complete(&req->base, failed);
384  break;
385  }
386  case CTL_FLAG_PERFORM_ABLK: {
387  struct ablkcipher_request *req = crypt->data.ablk_req;
388  struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
389 
390  if (req_ctx->dst) {
391  free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
392  }
393  free_buf_chain(dev, req_ctx->src, crypt->src_buf);
394  req->base.complete(&req->base, failed);
395  break;
396  }
397  case CTL_FLAG_GEN_ICV:
398  ctx = crypto_tfm_ctx(crypt->data.tfm);
399  dma_pool_free(ctx_pool, crypt->regist_ptr,
400  crypt->regist_buf->phys_addr);
401  dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
402  if (atomic_dec_and_test(&ctx->configuring))
403  complete(&ctx->completion);
404  break;
405  case CTL_FLAG_GEN_REVAES:
406  ctx = crypto_tfm_ctx(crypt->data.tfm);
407  *(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
408  if (atomic_dec_and_test(&ctx->configuring))
409  complete(&ctx->completion);
410  break;
411  default:
412  BUG();
413  }
414  crypt->ctl_flags = CTL_FLAG_UNUSED;
415 }
416 
417 static void irqhandler(void *_unused)
418 {
419  tasklet_schedule(&crypto_done_tasklet);
420 }
421 
422 static void crypto_done_action(unsigned long arg)
423 {
424  int i;
425 
426  for(i=0; i<4; i++) {
427  dma_addr_t phys = qmgr_get_entry(RECV_QID);
428  if (!phys)
429  return;
430  one_packet(phys);
431  }
432  tasklet_schedule(&crypto_done_tasklet);
433 }
434 
435 static int init_ixp_crypto(void)
436 {
437  int ret = -ENODEV;
438  u32 msg[2] = { 0, 0 };
439 
440  if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
442  printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
443  return ret;
444  }
445  npe_c = npe_request(NPE_ID);
446  if (!npe_c)
447  return ret;
448 
449  if (!npe_running(npe_c)) {
450  ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
451  if (ret) {
452  return ret;
453  }
454  if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
455  goto npe_error;
456  } else {
457  if (npe_send_message(npe_c, msg, "STATUS_MSG"))
458  goto npe_error;
459 
460  if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
461  goto npe_error;
462  }
463 
464  switch ((msg[1]>>16) & 0xff) {
465  case 3:
466  printk(KERN_WARNING "Firmware of %s lacks AES support\n",
467  npe_name(npe_c));
468  support_aes = 0;
469  break;
470  case 4:
471  case 5:
472  support_aes = 1;
473  break;
474  default:
475  printk(KERN_ERR "Firmware of %s lacks crypto support\n",
476  npe_name(npe_c));
477  return -ENODEV;
478  }
479  /* buffer_pool will also be used to sometimes store the hmac,
480  * so assure it is large enough
481  */
482  BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
483  buffer_pool = dma_pool_create("buffer", dev,
484  sizeof(struct buffer_desc), 32, 0);
485  ret = -ENOMEM;
486  if (!buffer_pool) {
487  goto err;
488  }
489  ctx_pool = dma_pool_create("context", dev,
490  NPE_CTX_LEN, 16, 0);
491  if (!ctx_pool) {
492  goto err;
493  }
495  "ixp_crypto:out", NULL);
496  if (ret)
497  goto err;
498  ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0,
499  "ixp_crypto:in", NULL);
500  if (ret) {
502  goto err;
503  }
505  tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
506 
508  return 0;
509 
510 npe_error:
511  printk(KERN_ERR "%s not responding\n", npe_name(npe_c));
512  ret = -EIO;
513 err:
514  if (ctx_pool)
515  dma_pool_destroy(ctx_pool);
516  if (buffer_pool)
517  dma_pool_destroy(buffer_pool);
518  npe_release(npe_c);
519  return ret;
520 }
521 
522 static void release_ixp_crypto(void)
523 {
525  tasklet_kill(&crypto_done_tasklet);
526 
529 
530  dma_pool_destroy(ctx_pool);
531  dma_pool_destroy(buffer_pool);
532 
533  npe_release(npe_c);
534 
535  if (crypt_virt) {
536  dma_free_coherent(dev,
537  NPE_QLEN_TOTAL * sizeof( struct crypt_ctl),
538  crypt_virt, crypt_phys);
539  }
540  return;
541 }
542 
543 static void reset_sa_dir(struct ix_sa_dir *dir)
544 {
545  memset(dir->npe_ctx, 0, NPE_CTX_LEN);
546  dir->npe_ctx_idx = 0;
547  dir->npe_mode = 0;
548 }
549 
550 static int init_sa_dir(struct ix_sa_dir *dir)
551 {
552  dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
553  if (!dir->npe_ctx) {
554  return -ENOMEM;
555  }
556  reset_sa_dir(dir);
557  return 0;
558 }
559 
560 static void free_sa_dir(struct ix_sa_dir *dir)
561 {
562  memset(dir->npe_ctx, 0, NPE_CTX_LEN);
563  dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
564 }
565 
566 static int init_tfm(struct crypto_tfm *tfm)
567 {
568  struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
569  int ret;
570 
571  atomic_set(&ctx->configuring, 0);
572  ret = init_sa_dir(&ctx->encrypt);
573  if (ret)
574  return ret;
575  ret = init_sa_dir(&ctx->decrypt);
576  if (ret) {
577  free_sa_dir(&ctx->encrypt);
578  }
579  return ret;
580 }
581 
582 static int init_tfm_ablk(struct crypto_tfm *tfm)
583 {
584  tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx);
585  return init_tfm(tfm);
586 }
587 
588 static int init_tfm_aead(struct crypto_tfm *tfm)
589 {
590  tfm->crt_aead.reqsize = sizeof(struct aead_ctx);
591  return init_tfm(tfm);
592 }
593 
594 static void exit_tfm(struct crypto_tfm *tfm)
595 {
596  struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
597  free_sa_dir(&ctx->encrypt);
598  free_sa_dir(&ctx->decrypt);
599 }
600 
601 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
602  int init_len, u32 ctx_addr, const u8 *key, int key_len)
603 {
604  struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
605  struct crypt_ctl *crypt;
606  struct buffer_desc *buf;
607  int i;
608  u8 *pad;
609  u32 pad_phys, buf_phys;
610 
612  pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
613  if (!pad)
614  return -ENOMEM;
615  buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
616  if (!buf) {
617  dma_pool_free(ctx_pool, pad, pad_phys);
618  return -ENOMEM;
619  }
620  crypt = get_crypt_desc_emerg();
621  if (!crypt) {
622  dma_pool_free(ctx_pool, pad, pad_phys);
623  dma_pool_free(buffer_pool, buf, buf_phys);
624  return -EAGAIN;
625  }
626 
627  memcpy(pad, key, key_len);
628  memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
629  for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
630  pad[i] ^= xpad;
631  }
632 
633  crypt->data.tfm = tfm;
634  crypt->regist_ptr = pad;
635  crypt->regist_buf = buf;
636 
637  crypt->auth_offs = 0;
638  crypt->auth_len = HMAC_PAD_BLOCKLEN;
639  crypt->crypto_ctx = ctx_addr;
640  crypt->src_buf = buf_phys;
641  crypt->icv_rev_aes = target;
642  crypt->mode = NPE_OP_HASH_GEN_ICV;
643  crypt->init_len = init_len;
644  crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
645 
646  buf->next = 0;
647  buf->buf_len = HMAC_PAD_BLOCKLEN;
648  buf->pkt_len = 0;
649  buf->phys_addr = pad_phys;
650 
651  atomic_inc(&ctx->configuring);
652  qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
653  BUG_ON(qmgr_stat_overflow(SEND_QID));
654  return 0;
655 }
656 
657 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
658  const u8 *key, int key_len, unsigned digest_len)
659 {
660  u32 itarget, otarget, npe_ctx_addr;
661  unsigned char *cinfo;
662  int init_len, ret = 0;
663  u32 cfgword;
664  struct ix_sa_dir *dir;
665  struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
666  const struct ix_hash_algo *algo;
667 
668  dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
669  cinfo = dir->npe_ctx + dir->npe_ctx_idx;
670  algo = ix_hash(tfm);
671 
672  /* write cfg word to cryptinfo */
673  cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
674 #ifndef __ARMEB__
675  cfgword ^= 0xAA000000; /* change the "byte swap" flags */
676 #endif
677  *(u32*)cinfo = cpu_to_be32(cfgword);
678  cinfo += sizeof(cfgword);
679 
680  /* write ICV to cryptinfo */
681  memcpy(cinfo, algo->icv, digest_len);
682  cinfo += digest_len;
683 
684  itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
685  + sizeof(algo->cfgword);
686  otarget = itarget + digest_len;
687  init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
688  npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
689 
690  dir->npe_ctx_idx += init_len;
692 
693  if (!encrypt)
695 
696  ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
697  init_len, npe_ctx_addr, key, key_len);
698  if (ret)
699  return ret;
700  return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
701  init_len, npe_ctx_addr, key, key_len);
702 }
703 
704 static int gen_rev_aes_key(struct crypto_tfm *tfm)
705 {
706  struct crypt_ctl *crypt;
707  struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
708  struct ix_sa_dir *dir = &ctx->decrypt;
709 
710  crypt = get_crypt_desc_emerg();
711  if (!crypt) {
712  return -EAGAIN;
713  }
714  *(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
715 
716  crypt->data.tfm = tfm;
717  crypt->crypt_offs = 0;
718  crypt->crypt_len = AES_BLOCK128;
719  crypt->src_buf = 0;
720  crypt->crypto_ctx = dir->npe_ctx_phys;
721  crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
722  crypt->mode = NPE_OP_ENC_GEN_KEY;
723  crypt->init_len = dir->npe_ctx_idx;
724  crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
725 
726  atomic_inc(&ctx->configuring);
727  qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
728  BUG_ON(qmgr_stat_overflow(SEND_QID));
729  return 0;
730 }
731 
732 static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
733  const u8 *key, int key_len)
734 {
735  u8 *cinfo;
736  u32 cipher_cfg;
737  u32 keylen_cfg = 0;
738  struct ix_sa_dir *dir;
739  struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
740  u32 *flags = &tfm->crt_flags;
741 
742  dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
743  cinfo = dir->npe_ctx;
744 
745  if (encrypt) {
746  cipher_cfg = cipher_cfg_enc(tfm);
748  } else {
749  cipher_cfg = cipher_cfg_dec(tfm);
750  }
751  if (cipher_cfg & MOD_AES) {
752  switch (key_len) {
753  case 16: keylen_cfg = MOD_AES128; break;
754  case 24: keylen_cfg = MOD_AES192; break;
755  case 32: keylen_cfg = MOD_AES256; break;
756  default:
757  *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
758  return -EINVAL;
759  }
760  cipher_cfg |= keylen_cfg;
761  } else if (cipher_cfg & MOD_3DES) {
762  const u32 *K = (const u32 *)key;
763  if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
764  !((K[2] ^ K[4]) | (K[3] ^ K[5]))))
765  {
767  return -EINVAL;
768  }
769  } else {
771  if (des_ekey(tmp, key) == 0) {
772  *flags |= CRYPTO_TFM_RES_WEAK_KEY;
773  }
774  }
775  /* write cfg word to cryptinfo */
776  *(u32*)cinfo = cpu_to_be32(cipher_cfg);
777  cinfo += sizeof(cipher_cfg);
778 
779  /* write cipher key to cryptinfo */
780  memcpy(cinfo, key, key_len);
781  /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
782  if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
783  memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
784  key_len = DES3_EDE_KEY_SIZE;
785  }
786  dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
788  if ((cipher_cfg & MOD_AES) && !encrypt) {
789  return gen_rev_aes_key(tfm);
790  }
791  return 0;
792 }
793 
794 static struct buffer_desc *chainup_buffers(struct device *dev,
795  struct scatterlist *sg, unsigned nbytes,
796  struct buffer_desc *buf, gfp_t flags,
797  enum dma_data_direction dir)
798 {
799  for (;nbytes > 0; sg = scatterwalk_sg_next(sg)) {
800  unsigned len = min(nbytes, sg->length);
801  struct buffer_desc *next_buf;
802  u32 next_buf_phys;
803  void *ptr;
804 
805  nbytes -= len;
806  ptr = page_address(sg_page(sg)) + sg->offset;
807  next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
808  if (!next_buf) {
809  buf = NULL;
810  break;
811  }
812  sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
813  buf->next = next_buf;
814  buf->phys_next = next_buf_phys;
815  buf = next_buf;
816 
817  buf->phys_addr = sg_dma_address(sg);
818  buf->buf_len = len;
819  buf->dir = dir;
820  }
821  buf->next = NULL;
822  buf->phys_next = 0;
823  return buf;
824 }
825 
826 static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
827  unsigned int key_len)
828 {
829  struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
830  u32 *flags = &tfm->base.crt_flags;
831  int ret;
832 
833  init_completion(&ctx->completion);
834  atomic_inc(&ctx->configuring);
835 
836  reset_sa_dir(&ctx->encrypt);
837  reset_sa_dir(&ctx->decrypt);
838 
839  ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
840  ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
841 
842  ret = setup_cipher(&tfm->base, 0, key, key_len);
843  if (ret)
844  goto out;
845  ret = setup_cipher(&tfm->base, 1, key, key_len);
846  if (ret)
847  goto out;
848 
849  if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
850  if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
851  ret = -EINVAL;
852  } else {
853  *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
854  }
855  }
856 out:
857  if (!atomic_dec_and_test(&ctx->configuring))
859  return ret;
860 }
861 
862 static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
863  unsigned int key_len)
864 {
865  struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
866 
867  /* the nonce is stored in bytes at end of key */
868  if (key_len < CTR_RFC3686_NONCE_SIZE)
869  return -EINVAL;
870 
871  memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
873 
874  key_len -= CTR_RFC3686_NONCE_SIZE;
875  return ablk_setkey(tfm, key, key_len);
876 }
877 
878 static int ablk_perform(struct ablkcipher_request *req, int encrypt)
879 {
880  struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
881  struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
882  unsigned ivsize = crypto_ablkcipher_ivsize(tfm);
883  struct ix_sa_dir *dir;
884  struct crypt_ctl *crypt;
885  unsigned int nbytes = req->nbytes;
886  enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
887  struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
888  struct buffer_desc src_hook;
889  gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
891 
892  if (qmgr_stat_full(SEND_QID))
893  return -EAGAIN;
894  if (atomic_read(&ctx->configuring))
895  return -EAGAIN;
896 
897  dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
898 
899  crypt = get_crypt_desc();
900  if (!crypt)
901  return -ENOMEM;
902 
903  crypt->data.ablk_req = req;
904  crypt->crypto_ctx = dir->npe_ctx_phys;
905  crypt->mode = dir->npe_mode;
906  crypt->init_len = dir->npe_ctx_idx;
907 
908  crypt->crypt_offs = 0;
909  crypt->crypt_len = nbytes;
910 
911  BUG_ON(ivsize && !req->info);
912  memcpy(crypt->iv, req->info, ivsize);
913  if (req->src != req->dst) {
914  struct buffer_desc dst_hook;
915  crypt->mode |= NPE_OP_NOT_IN_PLACE;
916  /* This was never tested by Intel
917  * for more than one dst buffer, I think. */
918  BUG_ON(req->dst->length < nbytes);
919  req_ctx->dst = NULL;
920  if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
921  flags, DMA_FROM_DEVICE))
922  goto free_buf_dest;
923  src_direction = DMA_TO_DEVICE;
924  req_ctx->dst = dst_hook.next;
925  crypt->dst_buf = dst_hook.phys_next;
926  } else {
927  req_ctx->dst = NULL;
928  }
929  req_ctx->src = NULL;
930  if (!chainup_buffers(dev, req->src, nbytes, &src_hook,
931  flags, src_direction))
932  goto free_buf_src;
933 
934  req_ctx->src = src_hook.next;
935  crypt->src_buf = src_hook.phys_next;
937  qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
938  BUG_ON(qmgr_stat_overflow(SEND_QID));
939  return -EINPROGRESS;
940 
941 free_buf_src:
942  free_buf_chain(dev, req_ctx->src, crypt->src_buf);
943 free_buf_dest:
944  if (req->src != req->dst) {
945  free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
946  }
947  crypt->ctl_flags = CTL_FLAG_UNUSED;
948  return -ENOMEM;
949 }
950 
951 static int ablk_encrypt(struct ablkcipher_request *req)
952 {
953  return ablk_perform(req, 1);
954 }
955 
956 static int ablk_decrypt(struct ablkcipher_request *req)
957 {
958  return ablk_perform(req, 0);
959 }
960 
961 static int ablk_rfc3686_crypt(struct ablkcipher_request *req)
962 {
963  struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
964  struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
966  u8 *info = req->info;
967  int ret;
968 
969  /* set up counter block */
972 
973  /* initialize counter portion of counter block */
975  cpu_to_be32(1);
976 
977  req->info = iv;
978  ret = ablk_perform(req, 1);
979  req->info = info;
980  return ret;
981 }
982 
983 static int hmac_inconsistent(struct scatterlist *sg, unsigned start,
984  unsigned int nbytes)
985 {
986  int offset = 0;
987 
988  if (!nbytes)
989  return 0;
990 
991  for (;;) {
992  if (start < offset + sg->length)
993  break;
994 
995  offset += sg->length;
996  sg = scatterwalk_sg_next(sg);
997  }
998  return (start + nbytes > offset + sg->length);
999 }
1000 
1001 static int aead_perform(struct aead_request *req, int encrypt,
1002  int cryptoffset, int eff_cryptlen, u8 *iv)
1003 {
1004  struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1005  struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1006  unsigned ivsize = crypto_aead_ivsize(tfm);
1007  unsigned authsize = crypto_aead_authsize(tfm);
1008  struct ix_sa_dir *dir;
1009  struct crypt_ctl *crypt;
1010  unsigned int cryptlen;
1011  struct buffer_desc *buf, src_hook;
1012  struct aead_ctx *req_ctx = aead_request_ctx(req);
1013  gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
1015 
1016  if (qmgr_stat_full(SEND_QID))
1017  return -EAGAIN;
1018  if (atomic_read(&ctx->configuring))
1019  return -EAGAIN;
1020 
1021  if (encrypt) {
1022  dir = &ctx->encrypt;
1023  cryptlen = req->cryptlen;
1024  } else {
1025  dir = &ctx->decrypt;
1026  /* req->cryptlen includes the authsize when decrypting */
1027  cryptlen = req->cryptlen -authsize;
1028  eff_cryptlen -= authsize;
1029  }
1030  crypt = get_crypt_desc();
1031  if (!crypt)
1032  return -ENOMEM;
1033 
1034  crypt->data.aead_req = req;
1035  crypt->crypto_ctx = dir->npe_ctx_phys;
1036  crypt->mode = dir->npe_mode;
1037  crypt->init_len = dir->npe_ctx_idx;
1038 
1039  crypt->crypt_offs = cryptoffset;
1040  crypt->crypt_len = eff_cryptlen;
1041 
1042  crypt->auth_offs = 0;
1043  crypt->auth_len = req->assoclen + ivsize + cryptlen;
1044  BUG_ON(ivsize && !req->iv);
1045  memcpy(crypt->iv, req->iv, ivsize);
1046 
1047  if (req->src != req->dst) {
1048  BUG(); /* -ENOTSUP because of my laziness */
1049  }
1050 
1051  /* ASSOC data */
1052  buf = chainup_buffers(dev, req->assoc, req->assoclen, &src_hook,
1053  flags, DMA_TO_DEVICE);
1054  req_ctx->buffer = src_hook.next;
1055  crypt->src_buf = src_hook.phys_next;
1056  if (!buf)
1057  goto out;
1058  /* IV */
1059  sg_init_table(&req_ctx->ivlist, 1);
1060  sg_set_buf(&req_ctx->ivlist, iv, ivsize);
1061  buf = chainup_buffers(dev, &req_ctx->ivlist, ivsize, buf, flags,
1063  if (!buf)
1064  goto free_chain;
1065  if (unlikely(hmac_inconsistent(req->src, cryptlen, authsize))) {
1066  /* The 12 hmac bytes are scattered,
1067  * we need to copy them into a safe buffer */
1068  req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1069  &crypt->icv_rev_aes);
1070  if (unlikely(!req_ctx->hmac_virt))
1071  goto free_chain;
1072  if (!encrypt) {
1074  req->src, cryptlen, authsize, 0);
1075  }
1076  req_ctx->encrypt = encrypt;
1077  } else {
1078  req_ctx->hmac_virt = NULL;
1079  }
1080  /* Crypt */
1081  buf = chainup_buffers(dev, req->src, cryptlen + authsize, buf, flags,
1083  if (!buf)
1084  goto free_hmac_virt;
1085  if (!req_ctx->hmac_virt) {
1086  crypt->icv_rev_aes = buf->phys_addr + buf->buf_len - authsize;
1087  }
1088 
1089  crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1090  qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
1091  BUG_ON(qmgr_stat_overflow(SEND_QID));
1092  return -EINPROGRESS;
1093 free_hmac_virt:
1094  if (req_ctx->hmac_virt) {
1095  dma_pool_free(buffer_pool, req_ctx->hmac_virt,
1096  crypt->icv_rev_aes);
1097  }
1098 free_chain:
1099  free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
1100 out:
1101  crypt->ctl_flags = CTL_FLAG_UNUSED;
1102  return -ENOMEM;
1103 }
1104 
1105 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1106 {
1107  struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1108  u32 *flags = &tfm->base.crt_flags;
1109  unsigned digest_len = crypto_aead_alg(tfm)->maxauthsize;
1110  int ret;
1111 
1112  if (!ctx->enckey_len && !ctx->authkey_len)
1113  return 0;
1114  init_completion(&ctx->completion);
1115  atomic_inc(&ctx->configuring);
1116 
1117  reset_sa_dir(&ctx->encrypt);
1118  reset_sa_dir(&ctx->decrypt);
1119 
1120  ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1121  if (ret)
1122  goto out;
1123  ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1124  if (ret)
1125  goto out;
1126  ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1127  ctx->authkey_len, digest_len);
1128  if (ret)
1129  goto out;
1130  ret = setup_auth(&tfm->base, 1, authsize, ctx->authkey,
1131  ctx->authkey_len, digest_len);
1132  if (ret)
1133  goto out;
1134 
1135  if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
1136  if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
1137  ret = -EINVAL;
1138  goto out;
1139  } else {
1140  *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
1141  }
1142  }
1143 out:
1144  if (!atomic_dec_and_test(&ctx->configuring))
1146  return ret;
1147 }
1148 
1149 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1150 {
1151  int max = crypto_aead_alg(tfm)->maxauthsize >> 2;
1152 
1153  if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
1154  return -EINVAL;
1155  return aead_setup(tfm, authsize);
1156 }
1157 
1158 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1159  unsigned int keylen)
1160 {
1161  struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1162  struct rtattr *rta = (struct rtattr *)key;
1164 
1165  if (!RTA_OK(rta, keylen))
1166  goto badkey;
1167  if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
1168  goto badkey;
1169  if (RTA_PAYLOAD(rta) < sizeof(*param))
1170  goto badkey;
1171 
1172  param = RTA_DATA(rta);
1173  ctx->enckey_len = be32_to_cpu(param->enckeylen);
1174 
1175  key += RTA_ALIGN(rta->rta_len);
1176  keylen -= RTA_ALIGN(rta->rta_len);
1177 
1178  if (keylen < ctx->enckey_len)
1179  goto badkey;
1180 
1181  ctx->authkey_len = keylen - ctx->enckey_len;
1182  memcpy(ctx->enckey, key + ctx->authkey_len, ctx->enckey_len);
1183  memcpy(ctx->authkey, key, ctx->authkey_len);
1184 
1185  return aead_setup(tfm, crypto_aead_authsize(tfm));
1186 badkey:
1187  ctx->enckey_len = 0;
1188  crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1189  return -EINVAL;
1190 }
1191 
1192 static int aead_encrypt(struct aead_request *req)
1193 {
1194  unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1195  return aead_perform(req, 1, req->assoclen + ivsize,
1196  req->cryptlen, req->iv);
1197 }
1198 
1199 static int aead_decrypt(struct aead_request *req)
1200 {
1201  unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1202  return aead_perform(req, 0, req->assoclen + ivsize,
1203  req->cryptlen, req->iv);
1204 }
1205 
1206 static int aead_givencrypt(struct aead_givcrypt_request *req)
1207 {
1208  struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
1209  struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1210  unsigned len, ivsize = crypto_aead_ivsize(tfm);
1211  __be64 seq;
1212 
1213  /* copied from eseqiv.c */
1214  if (!ctx->salted) {
1215  get_random_bytes(ctx->salt, ivsize);
1216  ctx->salted = 1;
1217  }
1218  memcpy(req->areq.iv, ctx->salt, ivsize);
1219  len = ivsize;
1220  if (ivsize > sizeof(u64)) {
1221  memset(req->giv, 0, ivsize - sizeof(u64));
1222  len = sizeof(u64);
1223  }
1224  seq = cpu_to_be64(req->seq);
1225  memcpy(req->giv + ivsize - len, &seq, len);
1226  return aead_perform(&req->areq, 1, req->areq.assoclen,
1227  req->areq.cryptlen +ivsize, req->giv);
1228 }
1229 
1230 static struct ixp_alg ixp4xx_algos[] = {
1231 {
1232  .crypto = {
1233  .cra_name = "cbc(des)",
1234  .cra_blocksize = DES_BLOCK_SIZE,
1235  .cra_u = { .ablkcipher = {
1236  .min_keysize = DES_KEY_SIZE,
1237  .max_keysize = DES_KEY_SIZE,
1238  .ivsize = DES_BLOCK_SIZE,
1239  .geniv = "eseqiv",
1240  }
1241  }
1242  },
1243  .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1244  .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1245 
1246 }, {
1247  .crypto = {
1248  .cra_name = "ecb(des)",
1249  .cra_blocksize = DES_BLOCK_SIZE,
1250  .cra_u = { .ablkcipher = {
1251  .min_keysize = DES_KEY_SIZE,
1252  .max_keysize = DES_KEY_SIZE,
1253  }
1254  }
1255  },
1256  .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1257  .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1258 }, {
1259  .crypto = {
1260  .cra_name = "cbc(des3_ede)",
1261  .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1262  .cra_u = { .ablkcipher = {
1263  .min_keysize = DES3_EDE_KEY_SIZE,
1264  .max_keysize = DES3_EDE_KEY_SIZE,
1265  .ivsize = DES3_EDE_BLOCK_SIZE,
1266  .geniv = "eseqiv",
1267  }
1268  }
1269  },
1270  .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1271  .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1272 }, {
1273  .crypto = {
1274  .cra_name = "ecb(des3_ede)",
1275  .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1276  .cra_u = { .ablkcipher = {
1277  .min_keysize = DES3_EDE_KEY_SIZE,
1278  .max_keysize = DES3_EDE_KEY_SIZE,
1279  }
1280  }
1281  },
1282  .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1283  .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1284 }, {
1285  .crypto = {
1286  .cra_name = "cbc(aes)",
1287  .cra_blocksize = AES_BLOCK_SIZE,
1288  .cra_u = { .ablkcipher = {
1289  .min_keysize = AES_MIN_KEY_SIZE,
1290  .max_keysize = AES_MAX_KEY_SIZE,
1291  .ivsize = AES_BLOCK_SIZE,
1292  .geniv = "eseqiv",
1293  }
1294  }
1295  },
1296  .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1297  .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1298 }, {
1299  .crypto = {
1300  .cra_name = "ecb(aes)",
1301  .cra_blocksize = AES_BLOCK_SIZE,
1302  .cra_u = { .ablkcipher = {
1303  .min_keysize = AES_MIN_KEY_SIZE,
1304  .max_keysize = AES_MAX_KEY_SIZE,
1305  }
1306  }
1307  },
1308  .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1309  .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1310 }, {
1311  .crypto = {
1312  .cra_name = "ctr(aes)",
1313  .cra_blocksize = AES_BLOCK_SIZE,
1314  .cra_u = { .ablkcipher = {
1315  .min_keysize = AES_MIN_KEY_SIZE,
1316  .max_keysize = AES_MAX_KEY_SIZE,
1317  .ivsize = AES_BLOCK_SIZE,
1318  .geniv = "eseqiv",
1319  }
1320  }
1321  },
1322  .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1323  .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1324 }, {
1325  .crypto = {
1326  .cra_name = "rfc3686(ctr(aes))",
1327  .cra_blocksize = AES_BLOCK_SIZE,
1328  .cra_u = { .ablkcipher = {
1329  .min_keysize = AES_MIN_KEY_SIZE,
1330  .max_keysize = AES_MAX_KEY_SIZE,
1331  .ivsize = AES_BLOCK_SIZE,
1332  .geniv = "eseqiv",
1333  .setkey = ablk_rfc3686_setkey,
1334  .encrypt = ablk_rfc3686_crypt,
1335  .decrypt = ablk_rfc3686_crypt }
1336  }
1337  },
1338  .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1339  .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1340 }, {
1341  .crypto = {
1342  .cra_name = "authenc(hmac(md5),cbc(des))",
1343  .cra_blocksize = DES_BLOCK_SIZE,
1344  .cra_u = { .aead = {
1345  .ivsize = DES_BLOCK_SIZE,
1346  .maxauthsize = MD5_DIGEST_SIZE,
1347  }
1348  }
1349  },
1350  .hash = &hash_alg_md5,
1351  .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1352  .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1353 }, {
1354  .crypto = {
1355  .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
1356  .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1357  .cra_u = { .aead = {
1358  .ivsize = DES3_EDE_BLOCK_SIZE,
1359  .maxauthsize = MD5_DIGEST_SIZE,
1360  }
1361  }
1362  },
1363  .hash = &hash_alg_md5,
1364  .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1365  .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1366 }, {
1367  .crypto = {
1368  .cra_name = "authenc(hmac(sha1),cbc(des))",
1369  .cra_blocksize = DES_BLOCK_SIZE,
1370  .cra_u = { .aead = {
1371  .ivsize = DES_BLOCK_SIZE,
1372  .maxauthsize = SHA1_DIGEST_SIZE,
1373  }
1374  }
1375  },
1376  .hash = &hash_alg_sha1,
1377  .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1378  .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1379 }, {
1380  .crypto = {
1381  .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
1382  .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1383  .cra_u = { .aead = {
1384  .ivsize = DES3_EDE_BLOCK_SIZE,
1385  .maxauthsize = SHA1_DIGEST_SIZE,
1386  }
1387  }
1388  },
1389  .hash = &hash_alg_sha1,
1390  .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1391  .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1392 }, {
1393  .crypto = {
1394  .cra_name = "authenc(hmac(md5),cbc(aes))",
1395  .cra_blocksize = AES_BLOCK_SIZE,
1396  .cra_u = { .aead = {
1397  .ivsize = AES_BLOCK_SIZE,
1398  .maxauthsize = MD5_DIGEST_SIZE,
1399  }
1400  }
1401  },
1402  .hash = &hash_alg_md5,
1403  .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1404  .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1405 }, {
1406  .crypto = {
1407  .cra_name = "authenc(hmac(sha1),cbc(aes))",
1408  .cra_blocksize = AES_BLOCK_SIZE,
1409  .cra_u = { .aead = {
1410  .ivsize = AES_BLOCK_SIZE,
1411  .maxauthsize = SHA1_DIGEST_SIZE,
1412  }
1413  }
1414  },
1415  .hash = &hash_alg_sha1,
1416  .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1417  .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1418 } };
1419 
1420 #define IXP_POSTFIX "-ixp4xx"
1421 static int __init ixp_module_init(void)
1422 {
1423  int num = ARRAY_SIZE(ixp4xx_algos);
1424  int i,err ;
1425 
1426  if (platform_device_register(&pseudo_dev))
1427  return -ENODEV;
1428 
1429  spin_lock_init(&desc_lock);
1430  spin_lock_init(&emerg_lock);
1431 
1432  err = init_ixp_crypto();
1433  if (err) {
1434  platform_device_unregister(&pseudo_dev);
1435  return err;
1436  }
1437  for (i=0; i< num; i++) {
1438  struct crypto_alg *cra = &ixp4xx_algos[i].crypto;
1439 
1441  "%s"IXP_POSTFIX, cra->cra_name) >=
1443  {
1444  continue;
1445  }
1446  if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
1447  continue;
1448  }
1449  if (!ixp4xx_algos[i].hash) {
1450  /* block ciphers */
1455  if (!cra->cra_ablkcipher.setkey)
1456  cra->cra_ablkcipher.setkey = ablk_setkey;
1457  if (!cra->cra_ablkcipher.encrypt)
1458  cra->cra_ablkcipher.encrypt = ablk_encrypt;
1459  if (!cra->cra_ablkcipher.decrypt)
1460  cra->cra_ablkcipher.decrypt = ablk_decrypt;
1461  cra->cra_init = init_tfm_ablk;
1462  } else {
1463  /* authenc */
1464  cra->cra_type = &crypto_aead_type;
1468  cra->cra_aead.setkey = aead_setkey;
1469  cra->cra_aead.setauthsize = aead_setauthsize;
1470  cra->cra_aead.encrypt = aead_encrypt;
1471  cra->cra_aead.decrypt = aead_decrypt;
1472  cra->cra_aead.givencrypt = aead_givencrypt;
1473  cra->cra_init = init_tfm_aead;
1474  }
1475  cra->cra_ctxsize = sizeof(struct ixp_ctx);
1476  cra->cra_module = THIS_MODULE;
1477  cra->cra_alignmask = 3;
1478  cra->cra_priority = 300;
1479  cra->cra_exit = exit_tfm;
1480  if (crypto_register_alg(cra))
1481  printk(KERN_ERR "Failed to register '%s'\n",
1482  cra->cra_name);
1483  else
1484  ixp4xx_algos[i].registered = 1;
1485  }
1486  return 0;
1487 }
1488 
1489 static void __exit ixp_module_exit(void)
1490 {
1491  int num = ARRAY_SIZE(ixp4xx_algos);
1492  int i;
1493 
1494  for (i=0; i< num; i++) {
1495  if (ixp4xx_algos[i].registered)
1496  crypto_unregister_alg(&ixp4xx_algos[i].crypto);
1497  }
1498  release_ixp_crypto();
1499  platform_device_unregister(&pseudo_dev);
1500 }
1501 
1502 module_init(ixp_module_init);
1503 module_exit(ixp_module_exit);
1504 
1505 MODULE_LICENSE("GPL");
1506 MODULE_AUTHOR("Christian Hohnstaedt <[email protected]>");
1507 MODULE_DESCRIPTION("IXP4xx hardware crypto");
1508