Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
hrtimer.c
Go to the documentation of this file.
1 /*
2  * linux/kernel/hrtimer.c
3  *
4  * Copyright(C) 2005-2006, Thomas Gleixner <[email protected]>
5  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7  *
8  * High-resolution kernel timers
9  *
10  * In contrast to the low-resolution timeout API implemented in
11  * kernel/timer.c, hrtimers provide finer resolution and accuracy
12  * depending on system configuration and capabilities.
13  *
14  * These timers are currently used for:
15  * - itimers
16  * - POSIX timers
17  * - nanosleep
18  * - precise in-kernel timing
19  *
20  * Started by: Thomas Gleixner and Ingo Molnar
21  *
22  * Credits:
23  * based on kernel/timer.c
24  *
25  * Help, testing, suggestions, bugfixes, improvements were
26  * provided by:
27  *
28  * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29  * et. al.
30  *
31  * For licencing details see kernel-base/COPYING
32  */
33 
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
48 
49 #include <asm/uaccess.h>
50 
51 #include <trace/events/timer.h>
52 
53 /*
54  * The timer bases:
55  *
56  * There are more clockids then hrtimer bases. Thus, we index
57  * into the timer bases by the hrtimer_base_type enum. When trying
58  * to reach a base using a clockid, hrtimer_clockid_to_base()
59  * is used to convert from clockid to the proper hrtimer_base_type.
60  */
61 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
62 {
63 
64  .clock_base =
65  {
66  {
67  .index = HRTIMER_BASE_MONOTONIC,
68  .clockid = CLOCK_MONOTONIC,
69  .get_time = &ktime_get,
70  .resolution = KTIME_LOW_RES,
71  },
72  {
73  .index = HRTIMER_BASE_REALTIME,
74  .clockid = CLOCK_REALTIME,
75  .get_time = &ktime_get_real,
76  .resolution = KTIME_LOW_RES,
77  },
78  {
79  .index = HRTIMER_BASE_BOOTTIME,
80  .clockid = CLOCK_BOOTTIME,
81  .get_time = &ktime_get_boottime,
82  .resolution = KTIME_LOW_RES,
83  },
84  }
85 };
86 
87 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
91 };
92 
93 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
94 {
95  return hrtimer_clock_to_base_table[clock_id];
96 }
97 
98 
99 /*
100  * Get the coarse grained time at the softirq based on xtime and
101  * wall_to_monotonic.
102  */
103 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
104 {
105  ktime_t xtim, mono, boot;
106  struct timespec xts, tom, slp;
107 
109 
110  xtim = timespec_to_ktime(xts);
111  mono = ktime_add(xtim, timespec_to_ktime(tom));
112  boot = ktime_add(mono, timespec_to_ktime(slp));
113  base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
114  base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
115  base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
116 }
117 
118 /*
119  * Functions and macros which are different for UP/SMP systems are kept in a
120  * single place
121  */
122 #ifdef CONFIG_SMP
123 
124 /*
125  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
126  * means that all timers which are tied to this base via timer->base are
127  * locked, and the base itself is locked too.
128  *
129  * So __run_timers/migrate_timers can safely modify all timers which could
130  * be found on the lists/queues.
131  *
132  * When the timer's base is locked, and the timer removed from list, it is
133  * possible to set timer->base = NULL and drop the lock: the timer remains
134  * locked.
135  */
136 static
137 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
138  unsigned long *flags)
139 {
140  struct hrtimer_clock_base *base;
141 
142  for (;;) {
143  base = timer->base;
144  if (likely(base != NULL)) {
145  raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
146  if (likely(base == timer->base))
147  return base;
148  /* The timer has migrated to another CPU: */
149  raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
150  }
151  cpu_relax();
152  }
153 }
154 
155 
156 /*
157  * Get the preferred target CPU for NOHZ
158  */
159 static int hrtimer_get_target(int this_cpu, int pinned)
160 {
161 #ifdef CONFIG_NO_HZ
162  if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
163  return get_nohz_timer_target();
164 #endif
165  return this_cpu;
166 }
167 
168 /*
169  * With HIGHRES=y we do not migrate the timer when it is expiring
170  * before the next event on the target cpu because we cannot reprogram
171  * the target cpu hardware and we would cause it to fire late.
172  *
173  * Called with cpu_base->lock of target cpu held.
174  */
175 static int
176 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
177 {
178 #ifdef CONFIG_HIGH_RES_TIMERS
179  ktime_t expires;
180 
181  if (!new_base->cpu_base->hres_active)
182  return 0;
183 
184  expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
185  return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
186 #else
187  return 0;
188 #endif
189 }
190 
191 /*
192  * Switch the timer base to the current CPU when possible.
193  */
194 static inline struct hrtimer_clock_base *
195 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
196  int pinned)
197 {
198  struct hrtimer_clock_base *new_base;
199  struct hrtimer_cpu_base *new_cpu_base;
200  int this_cpu = smp_processor_id();
201  int cpu = hrtimer_get_target(this_cpu, pinned);
202  int basenum = base->index;
203 
204 again:
205  new_cpu_base = &per_cpu(hrtimer_bases, cpu);
206  new_base = &new_cpu_base->clock_base[basenum];
207 
208  if (base != new_base) {
209  /*
210  * We are trying to move timer to new_base.
211  * However we can't change timer's base while it is running,
212  * so we keep it on the same CPU. No hassle vs. reprogramming
213  * the event source in the high resolution case. The softirq
214  * code will take care of this when the timer function has
215  * completed. There is no conflict as we hold the lock until
216  * the timer is enqueued.
217  */
218  if (unlikely(hrtimer_callback_running(timer)))
219  return base;
220 
221  /* See the comment in lock_timer_base() */
222  timer->base = NULL;
223  raw_spin_unlock(&base->cpu_base->lock);
224  raw_spin_lock(&new_base->cpu_base->lock);
225 
226  if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
227  cpu = this_cpu;
228  raw_spin_unlock(&new_base->cpu_base->lock);
229  raw_spin_lock(&base->cpu_base->lock);
230  timer->base = base;
231  goto again;
232  }
233  timer->base = new_base;
234  }
235  return new_base;
236 }
237 
238 #else /* CONFIG_SMP */
239 
240 static inline struct hrtimer_clock_base *
241 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
242 {
243  struct hrtimer_clock_base *base = timer->base;
244 
245  raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
246 
247  return base;
248 }
249 
250 # define switch_hrtimer_base(t, b, p) (b)
251 
252 #endif /* !CONFIG_SMP */
253 
254 /*
255  * Functions for the union type storage format of ktime_t which are
256  * too large for inlining:
257  */
258 #if BITS_PER_LONG < 64
259 # ifndef CONFIG_KTIME_SCALAR
260 
268 {
269  ktime_t tmp;
270 
271  if (likely(nsec < NSEC_PER_SEC)) {
272  tmp.tv64 = nsec;
273  } else {
274  unsigned long rem = do_div(nsec, NSEC_PER_SEC);
275 
276  tmp = ktime_set((long)nsec, rem);
277  }
278 
279  return ktime_add(kt, tmp);
280 }
281 
283 
292 {
293  ktime_t tmp;
294 
295  if (likely(nsec < NSEC_PER_SEC)) {
296  tmp.tv64 = nsec;
297  } else {
298  unsigned long rem = do_div(nsec, NSEC_PER_SEC);
299 
300  tmp = ktime_set((long)nsec, rem);
301  }
302 
303  return ktime_sub(kt, tmp);
304 }
305 
307 # endif /* !CONFIG_KTIME_SCALAR */
308 
309 /*
310  * Divide a ktime value by a nanosecond value
311  */
313 {
314  u64 dclc;
315  int sft = 0;
316 
317  dclc = ktime_to_ns(kt);
318  /* Make sure the divisor is less than 2^32: */
319  while (div >> 32) {
320  sft++;
321  div >>= 1;
322  }
323  dclc >>= sft;
324  do_div(dclc, (unsigned long) div);
325 
326  return dclc;
327 }
328 #endif /* BITS_PER_LONG >= 64 */
329 
330 /*
331  * Add two ktime values and do a safety check for overflow:
332  */
333 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
334 {
335  ktime_t res = ktime_add(lhs, rhs);
336 
337  /*
338  * We use KTIME_SEC_MAX here, the maximum timeout which we can
339  * return to user space in a timespec:
340  */
341  if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
342  res = ktime_set(KTIME_SEC_MAX, 0);
343 
344  return res;
345 }
346 
348 
349 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
350 
351 static struct debug_obj_descr hrtimer_debug_descr;
352 
353 static void *hrtimer_debug_hint(void *addr)
354 {
355  return ((struct hrtimer *) addr)->function;
356 }
357 
358 /*
359  * fixup_init is called when:
360  * - an active object is initialized
361  */
362 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
363 {
364  struct hrtimer *timer = addr;
365 
366  switch (state) {
367  case ODEBUG_STATE_ACTIVE:
368  hrtimer_cancel(timer);
369  debug_object_init(timer, &hrtimer_debug_descr);
370  return 1;
371  default:
372  return 0;
373  }
374 }
375 
376 /*
377  * fixup_activate is called when:
378  * - an active object is activated
379  * - an unknown object is activated (might be a statically initialized object)
380  */
381 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
382 {
383  switch (state) {
384 
386  WARN_ON_ONCE(1);
387  return 0;
388 
389  case ODEBUG_STATE_ACTIVE:
390  WARN_ON(1);
391 
392  default:
393  return 0;
394  }
395 }
396 
397 /*
398  * fixup_free is called when:
399  * - an active object is freed
400  */
401 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
402 {
403  struct hrtimer *timer = addr;
404 
405  switch (state) {
406  case ODEBUG_STATE_ACTIVE:
407  hrtimer_cancel(timer);
408  debug_object_free(timer, &hrtimer_debug_descr);
409  return 1;
410  default:
411  return 0;
412  }
413 }
414 
415 static struct debug_obj_descr hrtimer_debug_descr = {
416  .name = "hrtimer",
417  .debug_hint = hrtimer_debug_hint,
418  .fixup_init = hrtimer_fixup_init,
419  .fixup_activate = hrtimer_fixup_activate,
420  .fixup_free = hrtimer_fixup_free,
421 };
422 
423 static inline void debug_hrtimer_init(struct hrtimer *timer)
424 {
425  debug_object_init(timer, &hrtimer_debug_descr);
426 }
427 
428 static inline void debug_hrtimer_activate(struct hrtimer *timer)
429 {
430  debug_object_activate(timer, &hrtimer_debug_descr);
431 }
432 
433 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
434 {
435  debug_object_deactivate(timer, &hrtimer_debug_descr);
436 }
437 
438 static inline void debug_hrtimer_free(struct hrtimer *timer)
439 {
440  debug_object_free(timer, &hrtimer_debug_descr);
441 }
442 
443 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
444  enum hrtimer_mode mode);
445 
446 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
447  enum hrtimer_mode mode)
448 {
449  debug_object_init_on_stack(timer, &hrtimer_debug_descr);
450  __hrtimer_init(timer, clock_id, mode);
451 }
452 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
453 
454 void destroy_hrtimer_on_stack(struct hrtimer *timer)
455 {
456  debug_object_free(timer, &hrtimer_debug_descr);
457 }
458 
459 #else
460 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
461 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
462 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
463 #endif
464 
465 static inline void
466 debug_init(struct hrtimer *timer, clockid_t clockid,
467  enum hrtimer_mode mode)
468 {
469  debug_hrtimer_init(timer);
470  trace_hrtimer_init(timer, clockid, mode);
471 }
472 
473 static inline void debug_activate(struct hrtimer *timer)
474 {
475  debug_hrtimer_activate(timer);
476  trace_hrtimer_start(timer);
477 }
478 
479 static inline void debug_deactivate(struct hrtimer *timer)
480 {
481  debug_hrtimer_deactivate(timer);
482  trace_hrtimer_cancel(timer);
483 }
484 
485 /* High resolution timer related functions */
486 #ifdef CONFIG_HIGH_RES_TIMERS
487 
488 /*
489  * High resolution timer enabled ?
490  */
491 static int hrtimer_hres_enabled __read_mostly = 1;
492 
493 /*
494  * Enable / Disable high resolution mode
495  */
496 static int __init setup_hrtimer_hres(char *str)
497 {
498  if (!strcmp(str, "off"))
499  hrtimer_hres_enabled = 0;
500  else if (!strcmp(str, "on"))
501  hrtimer_hres_enabled = 1;
502  else
503  return 0;
504  return 1;
505 }
506 
507 __setup("highres=", setup_hrtimer_hres);
508 
509 /*
510  * hrtimer_high_res_enabled - query, if the highres mode is enabled
511  */
512 static inline int hrtimer_is_hres_enabled(void)
513 {
514  return hrtimer_hres_enabled;
515 }
516 
517 /*
518  * Is the high resolution mode active ?
519  */
520 static inline int hrtimer_hres_active(void)
521 {
522  return __this_cpu_read(hrtimer_bases.hres_active);
523 }
524 
525 /*
526  * Reprogram the event source with checking both queues for the
527  * next event
528  * Called with interrupts disabled and base->lock held
529  */
530 static void
531 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
532 {
533  int i;
534  struct hrtimer_clock_base *base = cpu_base->clock_base;
535  ktime_t expires, expires_next;
536 
537  expires_next.tv64 = KTIME_MAX;
538 
539  for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
540  struct hrtimer *timer;
541  struct timerqueue_node *next;
542 
543  next = timerqueue_getnext(&base->active);
544  if (!next)
545  continue;
546  timer = container_of(next, struct hrtimer, node);
547 
548  expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
549  /*
550  * clock_was_set() has changed base->offset so the
551  * result might be negative. Fix it up to prevent a
552  * false positive in clockevents_program_event()
553  */
554  if (expires.tv64 < 0)
555  expires.tv64 = 0;
556  if (expires.tv64 < expires_next.tv64)
557  expires_next = expires;
558  }
559 
560  if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
561  return;
562 
563  cpu_base->expires_next.tv64 = expires_next.tv64;
564 
565  if (cpu_base->expires_next.tv64 != KTIME_MAX)
566  tick_program_event(cpu_base->expires_next, 1);
567 }
568 
569 /*
570  * Shared reprogramming for clock_realtime and clock_monotonic
571  *
572  * When a timer is enqueued and expires earlier than the already enqueued
573  * timers, we have to check, whether it expires earlier than the timer for
574  * which the clock event device was armed.
575  *
576  * Called with interrupts disabled and base->cpu_base.lock held
577  */
578 static int hrtimer_reprogram(struct hrtimer *timer,
579  struct hrtimer_clock_base *base)
580 {
581  struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
582  ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
583  int res;
584 
585  WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
586 
587  /*
588  * When the callback is running, we do not reprogram the clock event
589  * device. The timer callback is either running on a different CPU or
590  * the callback is executed in the hrtimer_interrupt context. The
591  * reprogramming is handled either by the softirq, which called the
592  * callback or at the end of the hrtimer_interrupt.
593  */
594  if (hrtimer_callback_running(timer))
595  return 0;
596 
597  /*
598  * CLOCK_REALTIME timer might be requested with an absolute
599  * expiry time which is less than base->offset. Nothing wrong
600  * about that, just avoid to call into the tick code, which
601  * has now objections against negative expiry values.
602  */
603  if (expires.tv64 < 0)
604  return -ETIME;
605 
606  if (expires.tv64 >= cpu_base->expires_next.tv64)
607  return 0;
608 
609  /*
610  * If a hang was detected in the last timer interrupt then we
611  * do not schedule a timer which is earlier than the expiry
612  * which we enforced in the hang detection. We want the system
613  * to make progress.
614  */
615  if (cpu_base->hang_detected)
616  return 0;
617 
618  /*
619  * Clockevents returns -ETIME, when the event was in the past.
620  */
621  res = tick_program_event(expires, 0);
622  if (!IS_ERR_VALUE(res))
623  cpu_base->expires_next = expires;
624  return res;
625 }
626 
627 /*
628  * Initialize the high resolution related parts of cpu_base
629  */
630 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
631 {
632  base->expires_next.tv64 = KTIME_MAX;
633  base->hres_active = 0;
634 }
635 
636 /*
637  * When High resolution timers are active, try to reprogram. Note, that in case
638  * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
639  * check happens. The timer gets enqueued into the rbtree. The reprogramming
640  * and expiry check is done in the hrtimer_interrupt or in the softirq.
641  */
642 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
643  struct hrtimer_clock_base *base,
644  int wakeup)
645 {
646  if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
647  if (wakeup) {
648  raw_spin_unlock(&base->cpu_base->lock);
650  raw_spin_lock(&base->cpu_base->lock);
651  } else
653 
654  return 1;
655  }
656 
657  return 0;
658 }
659 
660 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
661 {
662  ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
663  ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
664 
665  return ktime_get_update_offsets(offs_real, offs_boot);
666 }
667 
668 /*
669  * Retrigger next event is called after clock was set
670  *
671  * Called with interrupts disabled via on_each_cpu()
672  */
673 static void retrigger_next_event(void *arg)
674 {
675  struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
676 
677  if (!hrtimer_hres_active())
678  return;
679 
680  raw_spin_lock(&base->lock);
681  hrtimer_update_base(base);
682  hrtimer_force_reprogram(base, 0);
683  raw_spin_unlock(&base->lock);
684 }
685 
686 /*
687  * Switch to high resolution mode
688  */
689 static int hrtimer_switch_to_hres(void)
690 {
691  int i, cpu = smp_processor_id();
692  struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
693  unsigned long flags;
694 
695  if (base->hres_active)
696  return 1;
697 
698  local_irq_save(flags);
699 
700  if (tick_init_highres()) {
701  local_irq_restore(flags);
702  printk(KERN_WARNING "Could not switch to high resolution "
703  "mode on CPU %d\n", cpu);
704  return 0;
705  }
706  base->hres_active = 1;
707  for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
708  base->clock_base[i].resolution = KTIME_HIGH_RES;
709 
710  tick_setup_sched_timer();
711  /* "Retrigger" the interrupt to get things going */
712  retrigger_next_event(NULL);
713  local_irq_restore(flags);
714  return 1;
715 }
716 
717 /*
718  * Called from timekeeping code to reprogramm the hrtimer interrupt
719  * device. If called from the timer interrupt context we defer it to
720  * softirq context.
721  */
722 void clock_was_set_delayed(void)
723 {
724  struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
725 
726  cpu_base->clock_was_set = 1;
728 }
729 
730 #else
731 
732 static inline int hrtimer_hres_active(void) { return 0; }
733 static inline int hrtimer_is_hres_enabled(void) { return 0; }
734 static inline int hrtimer_switch_to_hres(void) { return 0; }
735 static inline void
736 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
737 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
738  struct hrtimer_clock_base *base,
739  int wakeup)
740 {
741  return 0;
742 }
743 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
744 static inline void retrigger_next_event(void *arg) { }
745 
746 #endif /* CONFIG_HIGH_RES_TIMERS */
747 
748 /*
749  * Clock realtime was set
750  *
751  * Change the offset of the realtime clock vs. the monotonic
752  * clock.
753  *
754  * We might have to reprogram the high resolution timer interrupt. On
755  * SMP we call the architecture specific code to retrigger _all_ high
756  * resolution timer interrupts. On UP we just disable interrupts and
757  * call the high resolution interrupt code.
758  */
759 void clock_was_set(void)
760 {
761 #ifdef CONFIG_HIGH_RES_TIMERS
762  /* Retrigger the CPU local events everywhere */
763  on_each_cpu(retrigger_next_event, NULL, 1);
764 #endif
766 }
767 
768 /*
769  * During resume we might have to reprogram the high resolution timer
770  * interrupt (on the local CPU):
771  */
772 void hrtimers_resume(void)
773 {
775  KERN_INFO "hrtimers_resume() called with IRQs enabled!");
776 
777  retrigger_next_event(NULL);
779 }
780 
781 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
782 {
783 #ifdef CONFIG_TIMER_STATS
784  if (timer->start_site)
785  return;
786  timer->start_site = __builtin_return_address(0);
787  memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
788  timer->start_pid = current->pid;
789 #endif
790 }
791 
792 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
793 {
794 #ifdef CONFIG_TIMER_STATS
795  timer->start_site = NULL;
796 #endif
797 }
798 
799 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
800 {
801 #ifdef CONFIG_TIMER_STATS
803  return;
804  timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
805  timer->function, timer->start_comm, 0);
806 #endif
807 }
808 
809 /*
810  * Counterpart to lock_hrtimer_base above:
811  */
812 static inline
813 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
814 {
815  raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
816 }
817 
828 {
829  u64 orun = 1;
830  ktime_t delta;
831 
832  delta = ktime_sub(now, hrtimer_get_expires(timer));
833 
834  if (delta.tv64 < 0)
835  return 0;
836 
837  if (interval.tv64 < timer->base->resolution.tv64)
838  interval.tv64 = timer->base->resolution.tv64;
839 
840  if (unlikely(delta.tv64 >= interval.tv64)) {
841  s64 incr = ktime_to_ns(interval);
842 
843  orun = ktime_divns(delta, incr);
844  hrtimer_add_expires_ns(timer, incr * orun);
845  if (hrtimer_get_expires_tv64(timer) > now.tv64)
846  return orun;
847  /*
848  * This (and the ktime_add() below) is the
849  * correction for exact:
850  */
851  orun++;
852  }
853  hrtimer_add_expires(timer, interval);
854 
855  return orun;
856 }
858 
859 /*
860  * enqueue_hrtimer - internal function to (re)start a timer
861  *
862  * The timer is inserted in expiry order. Insertion into the
863  * red black tree is O(log(n)). Must hold the base lock.
864  *
865  * Returns 1 when the new timer is the leftmost timer in the tree.
866  */
867 static int enqueue_hrtimer(struct hrtimer *timer,
868  struct hrtimer_clock_base *base)
869 {
870  debug_activate(timer);
871 
872  timerqueue_add(&base->active, &timer->node);
873  base->cpu_base->active_bases |= 1 << base->index;
874 
875  /*
876  * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
877  * state of a possibly running callback.
878  */
879  timer->state |= HRTIMER_STATE_ENQUEUED;
880 
881  return (&timer->node == base->active.next);
882 }
883 
884 /*
885  * __remove_hrtimer - internal function to remove a timer
886  *
887  * Caller must hold the base lock.
888  *
889  * High resolution timer mode reprograms the clock event device when the
890  * timer is the one which expires next. The caller can disable this by setting
891  * reprogram to zero. This is useful, when the context does a reprogramming
892  * anyway (e.g. timer interrupt)
893  */
894 static void __remove_hrtimer(struct hrtimer *timer,
895  struct hrtimer_clock_base *base,
896  unsigned long newstate, int reprogram)
897 {
898  struct timerqueue_node *next_timer;
899  if (!(timer->state & HRTIMER_STATE_ENQUEUED))
900  goto out;
901 
902  next_timer = timerqueue_getnext(&base->active);
903  timerqueue_del(&base->active, &timer->node);
904  if (&timer->node == next_timer) {
905 #ifdef CONFIG_HIGH_RES_TIMERS
906  /* Reprogram the clock event device. if enabled */
907  if (reprogram && hrtimer_hres_active()) {
909 
910  expires = ktime_sub(hrtimer_get_expires(timer),
911  base->offset);
912  if (base->cpu_base->expires_next.tv64 == expires.tv64)
913  hrtimer_force_reprogram(base->cpu_base, 1);
914  }
915 #endif
916  }
917  if (!timerqueue_getnext(&base->active))
918  base->cpu_base->active_bases &= ~(1 << base->index);
919 out:
920  timer->state = newstate;
921 }
922 
923 /*
924  * remove hrtimer, called with base lock held
925  */
926 static inline int
927 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
928 {
929  if (hrtimer_is_queued(timer)) {
930  unsigned long state;
931  int reprogram;
932 
933  /*
934  * Remove the timer and force reprogramming when high
935  * resolution mode is active and the timer is on the current
936  * CPU. If we remove a timer on another CPU, reprogramming is
937  * skipped. The interrupt event on this CPU is fired and
938  * reprogramming happens in the interrupt handler. This is a
939  * rare case and less expensive than a smp call.
940  */
941  debug_deactivate(timer);
942  timer_stats_hrtimer_clear_start_info(timer);
943  reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
944  /*
945  * We must preserve the CALLBACK state flag here,
946  * otherwise we could move the timer base in
947  * switch_hrtimer_base.
948  */
949  state = timer->state & HRTIMER_STATE_CALLBACK;
950  __remove_hrtimer(timer, base, state, reprogram);
951  return 1;
952  }
953  return 0;
954 }
955 
956 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
957  unsigned long delta_ns, const enum hrtimer_mode mode,
958  int wakeup)
959 {
960  struct hrtimer_clock_base *base, *new_base;
961  unsigned long flags;
962  int ret, leftmost;
963 
964  base = lock_hrtimer_base(timer, &flags);
965 
966  /* Remove an active timer from the queue: */
967  ret = remove_hrtimer(timer, base);
968 
969  /* Switch the timer base, if necessary: */
970  new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
971 
972  if (mode & HRTIMER_MODE_REL) {
973  tim = ktime_add_safe(tim, new_base->get_time());
974  /*
975  * CONFIG_TIME_LOW_RES is a temporary way for architectures
976  * to signal that they simply return xtime in
977  * do_gettimeoffset(). In this case we want to round up by
978  * resolution when starting a relative timer, to avoid short
979  * timeouts. This will go away with the GTOD framework.
980  */
981 #ifdef CONFIG_TIME_LOW_RES
982  tim = ktime_add_safe(tim, base->resolution);
983 #endif
984  }
985 
986  hrtimer_set_expires_range_ns(timer, tim, delta_ns);
987 
988  timer_stats_hrtimer_set_start_info(timer);
989 
990  leftmost = enqueue_hrtimer(timer, new_base);
991 
992  /*
993  * Only allow reprogramming if the new base is on this CPU.
994  * (it might still be on another CPU if the timer was pending)
995  *
996  * XXX send_remote_softirq() ?
997  */
998  if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
999  hrtimer_enqueue_reprogram(timer, new_base, wakeup);
1000 
1001  unlock_hrtimer_base(timer, &flags);
1002 
1003  return ret;
1004 }
1005 
1017 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1018  unsigned long delta_ns, const enum hrtimer_mode mode)
1019 {
1020  return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1021 }
1023 
1034 int
1035 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1036 {
1037  return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1038 }
1040 
1041 
1052 int hrtimer_try_to_cancel(struct hrtimer *timer)
1053 {
1054  struct hrtimer_clock_base *base;
1055  unsigned long flags;
1056  int ret = -1;
1057 
1058  base = lock_hrtimer_base(timer, &flags);
1059 
1060  if (!hrtimer_callback_running(timer))
1061  ret = remove_hrtimer(timer, base);
1062 
1063  unlock_hrtimer_base(timer, &flags);
1064 
1065  return ret;
1066 
1067 }
1069 
1078 int hrtimer_cancel(struct hrtimer *timer)
1079 {
1080  for (;;) {
1081  int ret = hrtimer_try_to_cancel(timer);
1082 
1083  if (ret >= 0)
1084  return ret;
1085  cpu_relax();
1086  }
1087 }
1089 
1095 {
1096  unsigned long flags;
1097  ktime_t rem;
1098 
1099  lock_hrtimer_base(timer, &flags);
1100  rem = hrtimer_expires_remaining(timer);
1101  unlock_hrtimer_base(timer, &flags);
1102 
1103  return rem;
1104 }
1106 
1107 #ifdef CONFIG_NO_HZ
1108 
1115 {
1116  struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1117  struct hrtimer_clock_base *base = cpu_base->clock_base;
1118  ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1119  unsigned long flags;
1120  int i;
1121 
1122  raw_spin_lock_irqsave(&cpu_base->lock, flags);
1123 
1124  if (!hrtimer_hres_active()) {
1125  for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1126  struct hrtimer *timer;
1127  struct timerqueue_node *next;
1128 
1129  next = timerqueue_getnext(&base->active);
1130  if (!next)
1131  continue;
1132 
1133  timer = container_of(next, struct hrtimer, node);
1134  delta.tv64 = hrtimer_get_expires_tv64(timer);
1135  delta = ktime_sub(delta, base->get_time());
1136  if (delta.tv64 < mindelta.tv64)
1137  mindelta.tv64 = delta.tv64;
1138  }
1139  }
1140 
1141  raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1142 
1143  if (mindelta.tv64 < 0)
1144  mindelta.tv64 = 0;
1145  return mindelta;
1146 }
1147 #endif
1148 
1149 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1150  enum hrtimer_mode mode)
1151 {
1152  struct hrtimer_cpu_base *cpu_base;
1153  int base;
1154 
1155  memset(timer, 0, sizeof(struct hrtimer));
1156 
1157  cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1158 
1159  if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1160  clock_id = CLOCK_MONOTONIC;
1161 
1162  base = hrtimer_clockid_to_base(clock_id);
1163  timer->base = &cpu_base->clock_base[base];
1164  timerqueue_init(&timer->node);
1165 
1166 #ifdef CONFIG_TIMER_STATS
1167  timer->start_site = NULL;
1168  timer->start_pid = -1;
1169  memset(timer->start_comm, 0, TASK_COMM_LEN);
1170 #endif
1171 }
1172 
1179 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1180  enum hrtimer_mode mode)
1181 {
1182  debug_init(timer, clock_id, mode);
1183  __hrtimer_init(timer, clock_id, mode);
1184 }
1186 
1195 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1196 {
1197  struct hrtimer_cpu_base *cpu_base;
1198  int base = hrtimer_clockid_to_base(which_clock);
1199 
1200  cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1201  *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1202 
1203  return 0;
1204 }
1206 
1207 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1208 {
1209  struct hrtimer_clock_base *base = timer->base;
1210  struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1211  enum hrtimer_restart (*fn)(struct hrtimer *);
1212  int restart;
1213 
1214  WARN_ON(!irqs_disabled());
1215 
1216  debug_deactivate(timer);
1217  __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1218  timer_stats_account_hrtimer(timer);
1219  fn = timer->function;
1220 
1221  /*
1222  * Because we run timers from hardirq context, there is no chance
1223  * they get migrated to another cpu, therefore its safe to unlock
1224  * the timer base.
1225  */
1226  raw_spin_unlock(&cpu_base->lock);
1227  trace_hrtimer_expire_entry(timer, now);
1228  restart = fn(timer);
1229  trace_hrtimer_expire_exit(timer);
1230  raw_spin_lock(&cpu_base->lock);
1231 
1232  /*
1233  * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1234  * we do not reprogramm the event hardware. Happens either in
1235  * hrtimer_start_range_ns() or in hrtimer_interrupt()
1236  */
1237  if (restart != HRTIMER_NORESTART) {
1238  BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1239  enqueue_hrtimer(timer, base);
1240  }
1241 
1243 
1244  timer->state &= ~HRTIMER_STATE_CALLBACK;
1245 }
1246 
1247 #ifdef CONFIG_HIGH_RES_TIMERS
1248 
1249 /*
1250  * High resolution timer interrupt
1251  * Called with interrupts disabled
1252  */
1253 void hrtimer_interrupt(struct clock_event_device *dev)
1254 {
1255  struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1256  ktime_t expires_next, now, entry_time, delta;
1257  int i, retries = 0;
1258 
1259  BUG_ON(!cpu_base->hres_active);
1260  cpu_base->nr_events++;
1261  dev->next_event.tv64 = KTIME_MAX;
1262 
1263  raw_spin_lock(&cpu_base->lock);
1264  entry_time = now = hrtimer_update_base(cpu_base);
1265 retry:
1266  expires_next.tv64 = KTIME_MAX;
1267  /*
1268  * We set expires_next to KTIME_MAX here with cpu_base->lock
1269  * held to prevent that a timer is enqueued in our queue via
1270  * the migration code. This does not affect enqueueing of
1271  * timers which run their callback and need to be requeued on
1272  * this CPU.
1273  */
1274  cpu_base->expires_next.tv64 = KTIME_MAX;
1275 
1276  for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1277  struct hrtimer_clock_base *base;
1278  struct timerqueue_node *node;
1279  ktime_t basenow;
1280 
1281  if (!(cpu_base->active_bases & (1 << i)))
1282  continue;
1283 
1284  base = cpu_base->clock_base + i;
1285  basenow = ktime_add(now, base->offset);
1286 
1287  while ((node = timerqueue_getnext(&base->active))) {
1288  struct hrtimer *timer;
1289 
1290  timer = container_of(node, struct hrtimer, node);
1291 
1292  /*
1293  * The immediate goal for using the softexpires is
1294  * minimizing wakeups, not running timers at the
1295  * earliest interrupt after their soft expiration.
1296  * This allows us to avoid using a Priority Search
1297  * Tree, which can answer a stabbing querry for
1298  * overlapping intervals and instead use the simple
1299  * BST we already have.
1300  * We don't add extra wakeups by delaying timers that
1301  * are right-of a not yet expired timer, because that
1302  * timer will have to trigger a wakeup anyway.
1303  */
1304 
1305  if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1306  ktime_t expires;
1307 
1308  expires = ktime_sub(hrtimer_get_expires(timer),
1309  base->offset);
1310  if (expires.tv64 < expires_next.tv64)
1311  expires_next = expires;
1312  break;
1313  }
1314 
1315  __run_hrtimer(timer, &basenow);
1316  }
1317  }
1318 
1319  /*
1320  * Store the new expiry value so the migration code can verify
1321  * against it.
1322  */
1323  cpu_base->expires_next = expires_next;
1324  raw_spin_unlock(&cpu_base->lock);
1325 
1326  /* Reprogramming necessary ? */
1327  if (expires_next.tv64 == KTIME_MAX ||
1328  !tick_program_event(expires_next, 0)) {
1329  cpu_base->hang_detected = 0;
1330  return;
1331  }
1332 
1333  /*
1334  * The next timer was already expired due to:
1335  * - tracing
1336  * - long lasting callbacks
1337  * - being scheduled away when running in a VM
1338  *
1339  * We need to prevent that we loop forever in the hrtimer
1340  * interrupt routine. We give it 3 attempts to avoid
1341  * overreacting on some spurious event.
1342  *
1343  * Acquire base lock for updating the offsets and retrieving
1344  * the current time.
1345  */
1346  raw_spin_lock(&cpu_base->lock);
1347  now = hrtimer_update_base(cpu_base);
1348  cpu_base->nr_retries++;
1349  if (++retries < 3)
1350  goto retry;
1351  /*
1352  * Give the system a chance to do something else than looping
1353  * here. We stored the entry time, so we know exactly how long
1354  * we spent here. We schedule the next event this amount of
1355  * time away.
1356  */
1357  cpu_base->nr_hangs++;
1358  cpu_base->hang_detected = 1;
1359  raw_spin_unlock(&cpu_base->lock);
1360  delta = ktime_sub(now, entry_time);
1361  if (delta.tv64 > cpu_base->max_hang_time.tv64)
1362  cpu_base->max_hang_time = delta;
1363  /*
1364  * Limit it to a sensible value as we enforce a longer
1365  * delay. Give the CPU at least 100ms to catch up.
1366  */
1367  if (delta.tv64 > 100 * NSEC_PER_MSEC)
1368  expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1369  else
1370  expires_next = ktime_add(now, delta);
1371  tick_program_event(expires_next, 1);
1372  printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1373  ktime_to_ns(delta));
1374 }
1375 
1376 /*
1377  * local version of hrtimer_peek_ahead_timers() called with interrupts
1378  * disabled.
1379  */
1380 static void __hrtimer_peek_ahead_timers(void)
1381 {
1382  struct tick_device *td;
1383 
1384  if (!hrtimer_hres_active())
1385  return;
1386 
1387  td = &__get_cpu_var(tick_cpu_device);
1388  if (td && td->evtdev)
1389  hrtimer_interrupt(td->evtdev);
1390 }
1391 
1401 void hrtimer_peek_ahead_timers(void)
1402 {
1403  unsigned long flags;
1404 
1405  local_irq_save(flags);
1406  __hrtimer_peek_ahead_timers();
1407  local_irq_restore(flags);
1408 }
1409 
1410 static void run_hrtimer_softirq(struct softirq_action *h)
1411 {
1412  struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1413 
1414  if (cpu_base->clock_was_set) {
1415  cpu_base->clock_was_set = 0;
1416  clock_was_set();
1417  }
1418 
1419  hrtimer_peek_ahead_timers();
1420 }
1421 
1422 #else /* CONFIG_HIGH_RES_TIMERS */
1423 
1424 static inline void __hrtimer_peek_ahead_timers(void) { }
1425 
1426 #endif /* !CONFIG_HIGH_RES_TIMERS */
1427 
1428 /*
1429  * Called from timer softirq every jiffy, expire hrtimers:
1430  *
1431  * For HRT its the fall back code to run the softirq in the timer
1432  * softirq context in case the hrtimer initialization failed or has
1433  * not been done yet.
1434  */
1436 {
1437  if (hrtimer_hres_active())
1438  return;
1439 
1440  /*
1441  * This _is_ ugly: We have to check in the softirq context,
1442  * whether we can switch to highres and / or nohz mode. The
1443  * clocksource switch happens in the timer interrupt with
1444  * xtime_lock held. Notification from there only sets the
1445  * check bit in the tick_oneshot code, otherwise we might
1446  * deadlock vs. xtime_lock.
1447  */
1448  if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1449  hrtimer_switch_to_hres();
1450 }
1451 
1452 /*
1453  * Called from hardirq context every jiffy
1454  */
1456 {
1457  struct timerqueue_node *node;
1458  struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1459  struct hrtimer_clock_base *base;
1460  int index, gettime = 1;
1461 
1462  if (hrtimer_hres_active())
1463  return;
1464 
1465  for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1466  base = &cpu_base->clock_base[index];
1467  if (!timerqueue_getnext(&base->active))
1468  continue;
1469 
1470  if (gettime) {
1471  hrtimer_get_softirq_time(cpu_base);
1472  gettime = 0;
1473  }
1474 
1475  raw_spin_lock(&cpu_base->lock);
1476 
1477  while ((node = timerqueue_getnext(&base->active))) {
1478  struct hrtimer *timer;
1479 
1480  timer = container_of(node, struct hrtimer, node);
1481  if (base->softirq_time.tv64 <=
1482  hrtimer_get_expires_tv64(timer))
1483  break;
1484 
1485  __run_hrtimer(timer, &base->softirq_time);
1486  }
1487  raw_spin_unlock(&cpu_base->lock);
1488  }
1489 }
1490 
1491 /*
1492  * Sleep related functions:
1493  */
1494 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1495 {
1496  struct hrtimer_sleeper *t =
1497  container_of(timer, struct hrtimer_sleeper, timer);
1498  struct task_struct *task = t->task;
1499 
1500  t->task = NULL;
1501  if (task)
1502  wake_up_process(task);
1503 
1504  return HRTIMER_NORESTART;
1505 }
1506 
1508 {
1509  sl->timer.function = hrtimer_wakeup;
1510  sl->task = task;
1511 }
1513 
1514 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1515 {
1517 
1518  do {
1520  hrtimer_start_expires(&t->timer, mode);
1521  if (!hrtimer_active(&t->timer))
1522  t->task = NULL;
1523 
1524  if (likely(t->task))
1525  schedule();
1526 
1527  hrtimer_cancel(&t->timer);
1528  mode = HRTIMER_MODE_ABS;
1529 
1530  } while (t->task && !signal_pending(current));
1531 
1533 
1534  return t->task == NULL;
1535 }
1536 
1537 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1538 {
1539  struct timespec rmt;
1540  ktime_t rem;
1541 
1542  rem = hrtimer_expires_remaining(timer);
1543  if (rem.tv64 <= 0)
1544  return 0;
1545  rmt = ktime_to_timespec(rem);
1546 
1547  if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1548  return -EFAULT;
1549 
1550  return 1;
1551 }
1552 
1554 {
1555  struct hrtimer_sleeper t;
1556  struct timespec __user *rmtp;
1557  int ret = 0;
1558 
1559  hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1561  hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1562 
1563  if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1564  goto out;
1565 
1566  rmtp = restart->nanosleep.rmtp;
1567  if (rmtp) {
1568  ret = update_rmtp(&t.timer, rmtp);
1569  if (ret <= 0)
1570  goto out;
1571  }
1572 
1573  /* The other values in restart are already filled in */
1574  ret = -ERESTART_RESTARTBLOCK;
1575 out:
1576  destroy_hrtimer_on_stack(&t.timer);
1577  return ret;
1578 }
1579 
1580 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1581  const enum hrtimer_mode mode, const clockid_t clockid)
1582 {
1583  struct restart_block *restart;
1584  struct hrtimer_sleeper t;
1585  int ret = 0;
1586  unsigned long slack;
1587 
1588  slack = current->timer_slack_ns;
1589  if (rt_task(current))
1590  slack = 0;
1591 
1592  hrtimer_init_on_stack(&t.timer, clockid, mode);
1593  hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1594  if (do_nanosleep(&t, mode))
1595  goto out;
1596 
1597  /* Absolute timers do not update the rmtp value and restart: */
1598  if (mode == HRTIMER_MODE_ABS) {
1599  ret = -ERESTARTNOHAND;
1600  goto out;
1601  }
1602 
1603  if (rmtp) {
1604  ret = update_rmtp(&t.timer, rmtp);
1605  if (ret <= 0)
1606  goto out;
1607  }
1608 
1609  restart = &current_thread_info()->restart_block;
1610  restart->fn = hrtimer_nanosleep_restart;
1611  restart->nanosleep.clockid = t.timer.base->clockid;
1612  restart->nanosleep.rmtp = rmtp;
1613  restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1614 
1615  ret = -ERESTART_RESTARTBLOCK;
1616 out:
1617  destroy_hrtimer_on_stack(&t.timer);
1618  return ret;
1619 }
1620 
1621 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1622  struct timespec __user *, rmtp)
1623 {
1624  struct timespec tu;
1625 
1626  if (copy_from_user(&tu, rqtp, sizeof(tu)))
1627  return -EFAULT;
1628 
1629  if (!timespec_valid(&tu))
1630  return -EINVAL;
1631 
1633 }
1634 
1635 /*
1636  * Functions related to boot-time initialization:
1637  */
1638 static void __cpuinit init_hrtimers_cpu(int cpu)
1639 {
1640  struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1641  int i;
1642 
1643  raw_spin_lock_init(&cpu_base->lock);
1644 
1645  for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1646  cpu_base->clock_base[i].cpu_base = cpu_base;
1647  timerqueue_init_head(&cpu_base->clock_base[i].active);
1648  }
1649 
1650  hrtimer_init_hres(cpu_base);
1651 }
1652 
1653 #ifdef CONFIG_HOTPLUG_CPU
1654 
1655 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1656  struct hrtimer_clock_base *new_base)
1657 {
1658  struct hrtimer *timer;
1659  struct timerqueue_node *node;
1660 
1661  while ((node = timerqueue_getnext(&old_base->active))) {
1662  timer = container_of(node, struct hrtimer, node);
1663  BUG_ON(hrtimer_callback_running(timer));
1664  debug_deactivate(timer);
1665 
1666  /*
1667  * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1668  * timer could be seen as !active and just vanish away
1669  * under us on another CPU
1670  */
1671  __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1672  timer->base = new_base;
1673  /*
1674  * Enqueue the timers on the new cpu. This does not
1675  * reprogram the event device in case the timer
1676  * expires before the earliest on this CPU, but we run
1677  * hrtimer_interrupt after we migrated everything to
1678  * sort out already expired timers and reprogram the
1679  * event device.
1680  */
1681  enqueue_hrtimer(timer, new_base);
1682 
1683  /* Clear the migration state bit */
1684  timer->state &= ~HRTIMER_STATE_MIGRATE;
1685  }
1686 }
1687 
1688 static void migrate_hrtimers(int scpu)
1689 {
1690  struct hrtimer_cpu_base *old_base, *new_base;
1691  int i;
1692 
1693  BUG_ON(cpu_online(scpu));
1694  tick_cancel_sched_timer(scpu);
1695 
1697  old_base = &per_cpu(hrtimer_bases, scpu);
1698  new_base = &__get_cpu_var(hrtimer_bases);
1699  /*
1700  * The caller is globally serialized and nobody else
1701  * takes two locks at once, deadlock is not possible.
1702  */
1703  raw_spin_lock(&new_base->lock);
1705 
1706  for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1707  migrate_hrtimer_list(&old_base->clock_base[i],
1708  &new_base->clock_base[i]);
1709  }
1710 
1711  raw_spin_unlock(&old_base->lock);
1712  raw_spin_unlock(&new_base->lock);
1713 
1714  /* Check, if we got expired work to do */
1715  __hrtimer_peek_ahead_timers();
1716  local_irq_enable();
1717 }
1718 
1719 #endif /* CONFIG_HOTPLUG_CPU */
1720 
1721 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1722  unsigned long action, void *hcpu)
1723 {
1724  int scpu = (long)hcpu;
1725 
1726  switch (action) {
1727 
1728  case CPU_UP_PREPARE:
1729  case CPU_UP_PREPARE_FROZEN:
1730  init_hrtimers_cpu(scpu);
1731  break;
1732 
1733 #ifdef CONFIG_HOTPLUG_CPU
1734  case CPU_DYING:
1735  case CPU_DYING_FROZEN:
1736  clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1737  break;
1738  case CPU_DEAD:
1739  case CPU_DEAD_FROZEN:
1740  {
1741  clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1742  migrate_hrtimers(scpu);
1743  break;
1744  }
1745 #endif
1746 
1747  default:
1748  break;
1749  }
1750 
1751  return NOTIFY_OK;
1752 }
1753 
1754 static struct notifier_block __cpuinitdata hrtimers_nb = {
1755  .notifier_call = hrtimer_cpu_notify,
1756 };
1757 
1759 {
1760  hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1761  (void *)(long)smp_processor_id());
1762  register_cpu_notifier(&hrtimers_nb);
1763 #ifdef CONFIG_HIGH_RES_TIMERS
1764  open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1765 #endif
1766 }
1767 
1775 int __sched
1776 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1777  const enum hrtimer_mode mode, int clock)
1778 {
1779  struct hrtimer_sleeper t;
1780 
1781  /*
1782  * Optimize when a zero timeout value is given. It does not
1783  * matter whether this is an absolute or a relative time.
1784  */
1785  if (expires && !expires->tv64) {
1787  return 0;
1788  }
1789 
1790  /*
1791  * A NULL parameter means "infinite"
1792  */
1793  if (!expires) {
1794  schedule();
1796  return -EINTR;
1797  }
1798 
1799  hrtimer_init_on_stack(&t.timer, clock, mode);
1800  hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1801 
1803 
1804  hrtimer_start_expires(&t.timer, mode);
1805  if (!hrtimer_active(&t.timer))
1806  t.task = NULL;
1807 
1808  if (likely(t.task))
1809  schedule();
1810 
1811  hrtimer_cancel(&t.timer);
1812  destroy_hrtimer_on_stack(&t.timer);
1813 
1815 
1816  return !t.task ? 0 : -EINTR;
1817 }
1818 
1847 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1848  const enum hrtimer_mode mode)
1849 {
1850  return schedule_hrtimeout_range_clock(expires, delta, mode,
1851  CLOCK_MONOTONIC);
1852 }
1854 
1878  const enum hrtimer_mode mode)
1879 {
1880  return schedule_hrtimeout_range(expires, 0, mode);
1881 }