Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
korina.c
Go to the documentation of this file.
1 /*
2  * Driver for the IDT RC32434 (Korina) on-chip ethernet controller.
3  *
4  * Copyright 2004 IDT Inc. ([email protected])
5  * Copyright 2006 Felix Fietkau <[email protected]>
6  * Copyright 2008 Florian Fainelli <[email protected]>
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License as published by the
10  * Free Software Foundation; either version 2 of the License, or (at your
11  * option) any later version.
12  *
13  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
14  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
16  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
19  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
20  * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23  *
24  * You should have received a copy of the GNU General Public License along
25  * with this program; if not, write to the Free Software Foundation, Inc.,
26  * 675 Mass Ave, Cambridge, MA 02139, USA.
27  *
28  * Writing to a DMA status register:
29  *
30  * When writing to the status register, you should mask the bit you have
31  * been testing the status register with. Both Tx and Rx DMA registers
32  * should stick to this procedure.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/moduleparam.h>
38 #include <linux/sched.h>
39 #include <linux/ctype.h>
40 #include <linux/types.h>
41 #include <linux/interrupt.h>
42 #include <linux/init.h>
43 #include <linux/ioport.h>
44 #include <linux/in.h>
45 #include <linux/slab.h>
46 #include <linux/string.h>
47 #include <linux/delay.h>
48 #include <linux/netdevice.h>
49 #include <linux/etherdevice.h>
50 #include <linux/skbuff.h>
51 #include <linux/errno.h>
52 #include <linux/platform_device.h>
53 #include <linux/mii.h>
54 #include <linux/ethtool.h>
55 #include <linux/crc32.h>
56 
57 #include <asm/bootinfo.h>
58 #include <asm/bitops.h>
59 #include <asm/pgtable.h>
60 #include <asm/io.h>
61 #include <asm/dma.h>
62 
63 #include <asm/mach-rc32434/rb.h>
65 #include <asm/mach-rc32434/eth.h>
66 #include <asm/mach-rc32434/dma_v.h>
67 
68 #define DRV_NAME "korina"
69 #define DRV_VERSION "0.10"
70 #define DRV_RELDATE "04Mar2008"
71 
72 #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
73  ((dev)->dev_addr[1]))
74 #define STATION_ADDRESS_LOW(dev) (((dev)->dev_addr[2] << 24) | \
75  ((dev)->dev_addr[3] << 16) | \
76  ((dev)->dev_addr[4] << 8) | \
77  ((dev)->dev_addr[5]))
78 
79 #define MII_CLOCK 1250000 /* no more than 2.5MHz */
80 
81 /* the following must be powers of two */
82 #define KORINA_NUM_RDS 64 /* number of receive descriptors */
83 #define KORINA_NUM_TDS 64 /* number of transmit descriptors */
84 
85 /* KORINA_RBSIZE is the hardware's default maximum receive
86  * frame size in bytes. Having this hardcoded means that there
87  * is no support for MTU sizes greater than 1500. */
88 #define KORINA_RBSIZE 1536 /* size of one resource buffer = Ether MTU */
89 #define KORINA_RDS_MASK (KORINA_NUM_RDS - 1)
90 #define KORINA_TDS_MASK (KORINA_NUM_TDS - 1)
91 #define RD_RING_SIZE (KORINA_NUM_RDS * sizeof(struct dma_desc))
92 #define TD_RING_SIZE (KORINA_NUM_TDS * sizeof(struct dma_desc))
93 
94 #define TX_TIMEOUT (6000 * HZ / 1000)
95 
97 #define IS_DMA_FINISHED(X) (((X) & (DMA_DESC_FINI)) != 0)
98 #define IS_DMA_DONE(X) (((X) & (DMA_DESC_DONE)) != 0)
99 #define RCVPKT_LENGTH(X) (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
100 
101 /* Information that need to be kept for each board. */
106  struct dma_desc *td_ring; /* transmit descriptor ring */
107  struct dma_desc *rd_ring; /* receive descriptor ring */
108 
111 
116 
121  int tx_count;
122  int tx_full;
123 
124  int rx_irq;
125  int tx_irq;
126  int ovr_irq;
127  int und_irq;
128 
129  spinlock_t lock; /* NIC xmit lock */
130 
137  struct net_device *dev;
138  int phy_addr;
139 };
140 
141 extern unsigned int idt_cpu_freq;
142 
143 static inline void korina_start_dma(struct dma_reg *ch, u32 dma_addr)
144 {
145  writel(0, &ch->dmandptr);
146  writel(dma_addr, &ch->dmadptr);
147 }
148 
149 static inline void korina_abort_dma(struct net_device *dev,
150  struct dma_reg *ch)
151 {
152  if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) {
153  writel(0x10, &ch->dmac);
154 
155  while (!(readl(&ch->dmas) & DMA_STAT_HALT))
156  dev->trans_start = jiffies;
157 
158  writel(0, &ch->dmas);
159  }
160 
161  writel(0, &ch->dmadptr);
162  writel(0, &ch->dmandptr);
163 }
164 
165 static inline void korina_chain_dma(struct dma_reg *ch, u32 dma_addr)
166 {
167  writel(dma_addr, &ch->dmandptr);
168 }
169 
170 static void korina_abort_tx(struct net_device *dev)
171 {
172  struct korina_private *lp = netdev_priv(dev);
173 
174  korina_abort_dma(dev, lp->tx_dma_regs);
175 }
176 
177 static void korina_abort_rx(struct net_device *dev)
178 {
179  struct korina_private *lp = netdev_priv(dev);
180 
181  korina_abort_dma(dev, lp->rx_dma_regs);
182 }
183 
184 static void korina_start_rx(struct korina_private *lp,
185  struct dma_desc *rd)
186 {
187  korina_start_dma(lp->rx_dma_regs, CPHYSADDR(rd));
188 }
189 
190 static void korina_chain_rx(struct korina_private *lp,
191  struct dma_desc *rd)
192 {
193  korina_chain_dma(lp->rx_dma_regs, CPHYSADDR(rd));
194 }
195 
196 /* transmit packet */
197 static int korina_send_packet(struct sk_buff *skb, struct net_device *dev)
198 {
199  struct korina_private *lp = netdev_priv(dev);
200  unsigned long flags;
201  u32 length;
202  u32 chain_prev, chain_next;
203  struct dma_desc *td;
204 
205  spin_lock_irqsave(&lp->lock, flags);
206 
207  td = &lp->td_ring[lp->tx_chain_tail];
208 
209  /* stop queue when full, drop pkts if queue already full */
210  if (lp->tx_count >= (KORINA_NUM_TDS - 2)) {
211  lp->tx_full = 1;
212 
213  if (lp->tx_count == (KORINA_NUM_TDS - 2))
214  netif_stop_queue(dev);
215  else {
216  dev->stats.tx_dropped++;
217  dev_kfree_skb_any(skb);
218  spin_unlock_irqrestore(&lp->lock, flags);
219 
220  return NETDEV_TX_BUSY;
221  }
222  }
223 
224  lp->tx_count++;
225 
226  lp->tx_skb[lp->tx_chain_tail] = skb;
227 
228  length = skb->len;
229  dma_cache_wback((u32)skb->data, skb->len);
230 
231  /* Setup the transmit descriptor. */
232  dma_cache_inv((u32) td, sizeof(*td));
233  td->ca = CPHYSADDR(skb->data);
234  chain_prev = (lp->tx_chain_tail - 1) & KORINA_TDS_MASK;
235  chain_next = (lp->tx_chain_tail + 1) & KORINA_TDS_MASK;
236 
237  if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
238  if (lp->tx_chain_status == desc_empty) {
239  /* Update tail */
240  td->control = DMA_COUNT(length) |
242  /* Move tail */
243  lp->tx_chain_tail = chain_next;
244  /* Write to NDPTR */
246  &lp->tx_dma_regs->dmandptr);
247  /* Move head to tail */
248  lp->tx_chain_head = lp->tx_chain_tail;
249  } else {
250  /* Update tail */
251  td->control = DMA_COUNT(length) |
253  /* Link to prev */
254  lp->td_ring[chain_prev].control &=
255  ~DMA_DESC_COF;
256  /* Link to prev */
257  lp->td_ring[chain_prev].link = CPHYSADDR(td);
258  /* Move tail */
259  lp->tx_chain_tail = chain_next;
260  /* Write to NDPTR */
262  &(lp->tx_dma_regs->dmandptr));
263  /* Move head to tail */
264  lp->tx_chain_head = lp->tx_chain_tail;
266  }
267  } else {
268  if (lp->tx_chain_status == desc_empty) {
269  /* Update tail */
270  td->control = DMA_COUNT(length) |
272  /* Move tail */
273  lp->tx_chain_tail = chain_next;
275  } else {
276  /* Update tail */
277  td->control = DMA_COUNT(length) |
279  lp->td_ring[chain_prev].control &=
280  ~DMA_DESC_COF;
281  lp->td_ring[chain_prev].link = CPHYSADDR(td);
282  lp->tx_chain_tail = chain_next;
283  }
284  }
285  dma_cache_wback((u32) td, sizeof(*td));
286 
287  dev->trans_start = jiffies;
288  spin_unlock_irqrestore(&lp->lock, flags);
289 
290  return NETDEV_TX_OK;
291 }
292 
293 static int mdio_read(struct net_device *dev, int mii_id, int reg)
294 {
295  struct korina_private *lp = netdev_priv(dev);
296  int ret;
297 
298  mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
299 
300  writel(0, &lp->eth_regs->miimcfg);
301  writel(0, &lp->eth_regs->miimcmd);
302  writel(mii_id | reg, &lp->eth_regs->miimaddr);
303  writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
304 
305  ret = (int)(readl(&lp->eth_regs->miimrdd));
306  return ret;
307 }
308 
309 static void mdio_write(struct net_device *dev, int mii_id, int reg, int val)
310 {
311  struct korina_private *lp = netdev_priv(dev);
312 
313  mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
314 
315  writel(0, &lp->eth_regs->miimcfg);
316  writel(1, &lp->eth_regs->miimcmd);
317  writel(mii_id | reg, &lp->eth_regs->miimaddr);
318  writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
319  writel(val, &lp->eth_regs->miimwtd);
320 }
321 
322 /* Ethernet Rx DMA interrupt */
323 static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id)
324 {
325  struct net_device *dev = dev_id;
326  struct korina_private *lp = netdev_priv(dev);
327  u32 dmas, dmasm;
329 
330  dmas = readl(&lp->rx_dma_regs->dmas);
331  if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) {
332  dmasm = readl(&lp->rx_dma_regs->dmasm);
333  writel(dmasm | (DMA_STAT_DONE |
335  &lp->rx_dma_regs->dmasm);
336 
337  napi_schedule(&lp->napi);
338 
339  if (dmas & DMA_STAT_ERR)
340  printk(KERN_ERR "%s: DMA error\n", dev->name);
341 
342  retval = IRQ_HANDLED;
343  } else
344  retval = IRQ_NONE;
345 
346  return retval;
347 }
348 
349 static int korina_rx(struct net_device *dev, int limit)
350 {
351  struct korina_private *lp = netdev_priv(dev);
352  struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done];
353  struct sk_buff *skb, *skb_new;
354  u8 *pkt_buf;
355  u32 devcs, pkt_len, dmas;
356  int count;
357 
358  dma_cache_inv((u32)rd, sizeof(*rd));
359 
360  for (count = 0; count < limit; count++) {
361  skb = lp->rx_skb[lp->rx_next_done];
362  skb_new = NULL;
363 
364  devcs = rd->devcs;
365 
366  if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0)
367  break;
368 
369  /* Update statistics counters */
370  if (devcs & ETH_RX_CRC)
371  dev->stats.rx_crc_errors++;
372  if (devcs & ETH_RX_LOR)
373  dev->stats.rx_length_errors++;
374  if (devcs & ETH_RX_LE)
375  dev->stats.rx_length_errors++;
376  if (devcs & ETH_RX_OVR)
377  dev->stats.rx_fifo_errors++;
378  if (devcs & ETH_RX_CV)
379  dev->stats.rx_frame_errors++;
380  if (devcs & ETH_RX_CES)
381  dev->stats.rx_length_errors++;
382  if (devcs & ETH_RX_MP)
383  dev->stats.multicast++;
384 
385  if ((devcs & ETH_RX_LD) != ETH_RX_LD) {
386  /* check that this is a whole packet
387  * WARNING: DMA_FD bit incorrectly set
388  * in Rc32434 (errata ref #077) */
389  dev->stats.rx_errors++;
390  dev->stats.rx_dropped++;
391  } else if ((devcs & ETH_RX_ROK)) {
392  pkt_len = RCVPKT_LENGTH(devcs);
393 
394  /* must be the (first and) last
395  * descriptor then */
396  pkt_buf = (u8 *)lp->rx_skb[lp->rx_next_done]->data;
397 
398  /* invalidate the cache */
399  dma_cache_inv((unsigned long)pkt_buf, pkt_len - 4);
400 
401  /* Malloc up new buffer. */
402  skb_new = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
403 
404  if (!skb_new)
405  break;
406  /* Do not count the CRC */
407  skb_put(skb, pkt_len - 4);
408  skb->protocol = eth_type_trans(skb, dev);
409 
410  /* Pass the packet to upper layers */
411  netif_receive_skb(skb);
412  dev->stats.rx_packets++;
413  dev->stats.rx_bytes += pkt_len;
414 
415  /* Update the mcast stats */
416  if (devcs & ETH_RX_MP)
417  dev->stats.multicast++;
418 
419  lp->rx_skb[lp->rx_next_done] = skb_new;
420  }
421 
422  rd->devcs = 0;
423 
424  /* Restore descriptor's curr_addr */
425  if (skb_new)
426  rd->ca = CPHYSADDR(skb_new->data);
427  else
428  rd->ca = CPHYSADDR(skb->data);
429 
430  rd->control = DMA_COUNT(KORINA_RBSIZE) |
432  lp->rd_ring[(lp->rx_next_done - 1) &
434  ~DMA_DESC_COD;
435 
436  lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK;
437  dma_cache_wback((u32)rd, sizeof(*rd));
438  rd = &lp->rd_ring[lp->rx_next_done];
439  writel(~DMA_STAT_DONE, &lp->rx_dma_regs->dmas);
440  }
441 
442  dmas = readl(&lp->rx_dma_regs->dmas);
443 
444  if (dmas & DMA_STAT_HALT) {
445  writel(~(DMA_STAT_HALT | DMA_STAT_ERR),
446  &lp->rx_dma_regs->dmas);
447 
448  lp->dma_halt_cnt++;
449  rd->devcs = 0;
450  skb = lp->rx_skb[lp->rx_next_done];
451  rd->ca = CPHYSADDR(skb->data);
452  dma_cache_wback((u32)rd, sizeof(*rd));
453  korina_chain_rx(lp, rd);
454  }
455 
456  return count;
457 }
458 
459 static int korina_poll(struct napi_struct *napi, int budget)
460 {
461  struct korina_private *lp =
462  container_of(napi, struct korina_private, napi);
463  struct net_device *dev = lp->dev;
464  int work_done;
465 
466  work_done = korina_rx(dev, budget);
467  if (work_done < budget) {
468  napi_complete(napi);
469 
470  writel(readl(&lp->rx_dma_regs->dmasm) &
471  ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
472  &lp->rx_dma_regs->dmasm);
473  }
474  return work_done;
475 }
476 
477 /*
478  * Set or clear the multicast filter for this adaptor.
479  */
480 static void korina_multicast_list(struct net_device *dev)
481 {
482  struct korina_private *lp = netdev_priv(dev);
483  unsigned long flags;
484  struct netdev_hw_addr *ha;
485  u32 recognise = ETH_ARC_AB; /* always accept broadcasts */
486  int i;
487 
488  /* Set promiscuous mode */
489  if (dev->flags & IFF_PROMISC)
490  recognise |= ETH_ARC_PRO;
491 
492  else if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 4))
493  /* All multicast and broadcast */
494  recognise |= ETH_ARC_AM;
495 
496  /* Build the hash table */
497  if (netdev_mc_count(dev) > 4) {
498  u16 hash_table[4];
499  u32 crc;
500 
501  for (i = 0; i < 4; i++)
502  hash_table[i] = 0;
503 
504  netdev_for_each_mc_addr(ha, dev) {
505  crc = ether_crc_le(6, ha->addr);
506  crc >>= 26;
507  hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
508  }
509  /* Accept filtered multicast */
510  recognise |= ETH_ARC_AFM;
511 
512  /* Fill the MAC hash tables with their values */
513  writel((u32)(hash_table[1] << 16 | hash_table[0]),
514  &lp->eth_regs->ethhash0);
515  writel((u32)(hash_table[3] << 16 | hash_table[2]),
516  &lp->eth_regs->ethhash1);
517  }
518 
519  spin_lock_irqsave(&lp->lock, flags);
520  writel(recognise, &lp->eth_regs->etharc);
521  spin_unlock_irqrestore(&lp->lock, flags);
522 }
523 
524 static void korina_tx(struct net_device *dev)
525 {
526  struct korina_private *lp = netdev_priv(dev);
527  struct dma_desc *td = &lp->td_ring[lp->tx_next_done];
528  u32 devcs;
529  u32 dmas;
530 
531  spin_lock(&lp->lock);
532 
533  /* Process all desc that are done */
534  while (IS_DMA_FINISHED(td->control)) {
535  if (lp->tx_full == 1) {
536  netif_wake_queue(dev);
537  lp->tx_full = 0;
538  }
539 
540  devcs = lp->td_ring[lp->tx_next_done].devcs;
541  if ((devcs & (ETH_TX_FD | ETH_TX_LD)) !=
542  (ETH_TX_FD | ETH_TX_LD)) {
543  dev->stats.tx_errors++;
544  dev->stats.tx_dropped++;
545 
546  /* Should never happen */
547  printk(KERN_ERR "%s: split tx ignored\n",
548  dev->name);
549  } else if (devcs & ETH_TX_TOK) {
550  dev->stats.tx_packets++;
551  dev->stats.tx_bytes +=
552  lp->tx_skb[lp->tx_next_done]->len;
553  } else {
554  dev->stats.tx_errors++;
555  dev->stats.tx_dropped++;
556 
557  /* Underflow */
558  if (devcs & ETH_TX_UND)
559  dev->stats.tx_fifo_errors++;
560 
561  /* Oversized frame */
562  if (devcs & ETH_TX_OF)
563  dev->stats.tx_aborted_errors++;
564 
565  /* Excessive deferrals */
566  if (devcs & ETH_TX_ED)
567  dev->stats.tx_carrier_errors++;
568 
569  /* Collisions: medium busy */
570  if (devcs & ETH_TX_EC)
571  dev->stats.collisions++;
572 
573  /* Late collision */
574  if (devcs & ETH_TX_LC)
575  dev->stats.tx_window_errors++;
576  }
577 
578  /* We must always free the original skb */
579  if (lp->tx_skb[lp->tx_next_done]) {
581  lp->tx_skb[lp->tx_next_done] = NULL;
582  }
583 
584  lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF;
585  lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD;
586  lp->td_ring[lp->tx_next_done].link = 0;
587  lp->td_ring[lp->tx_next_done].ca = 0;
588  lp->tx_count--;
589 
590  /* Go on to next transmission */
591  lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK;
592  td = &lp->td_ring[lp->tx_next_done];
593 
594  }
595 
596  /* Clear the DMA status register */
597  dmas = readl(&lp->tx_dma_regs->dmas);
598  writel(~dmas, &lp->tx_dma_regs->dmas);
599 
600  writel(readl(&lp->tx_dma_regs->dmasm) &
602  &lp->tx_dma_regs->dmasm);
603 
604  spin_unlock(&lp->lock);
605 }
606 
607 static irqreturn_t
608 korina_tx_dma_interrupt(int irq, void *dev_id)
609 {
610  struct net_device *dev = dev_id;
611  struct korina_private *lp = netdev_priv(dev);
612  u32 dmas, dmasm;
614 
615  dmas = readl(&lp->tx_dma_regs->dmas);
616 
617  if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) {
618  dmasm = readl(&lp->tx_dma_regs->dmasm);
619  writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR),
620  &lp->tx_dma_regs->dmasm);
621 
622  korina_tx(dev);
623 
624  if (lp->tx_chain_status == desc_filled &&
625  (readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
627  &(lp->tx_dma_regs->dmandptr));
629  lp->tx_chain_head = lp->tx_chain_tail;
630  dev->trans_start = jiffies;
631  }
632  if (dmas & DMA_STAT_ERR)
633  printk(KERN_ERR "%s: DMA error\n", dev->name);
634 
635  retval = IRQ_HANDLED;
636  } else
637  retval = IRQ_NONE;
638 
639  return retval;
640 }
641 
642 
643 static void korina_check_media(struct net_device *dev, unsigned int init_media)
644 {
645  struct korina_private *lp = netdev_priv(dev);
646 
647  mii_check_media(&lp->mii_if, 0, init_media);
648 
649  if (lp->mii_if.full_duplex)
650  writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD,
651  &lp->eth_regs->ethmac2);
652  else
653  writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD,
654  &lp->eth_regs->ethmac2);
655 }
656 
657 static void korina_poll_media(unsigned long data)
658 {
659  struct net_device *dev = (struct net_device *) data;
660  struct korina_private *lp = netdev_priv(dev);
661 
662  korina_check_media(dev, 0);
663  mod_timer(&lp->media_check_timer, jiffies + HZ);
664 }
665 
666 static void korina_set_carrier(struct mii_if_info *mii)
667 {
668  if (mii->force_media) {
669  /* autoneg is off: Link is always assumed to be up */
670  if (!netif_carrier_ok(mii->dev))
671  netif_carrier_on(mii->dev);
672  } else /* Let MMI library update carrier status */
673  korina_check_media(mii->dev, 0);
674 }
675 
676 static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
677 {
678  struct korina_private *lp = netdev_priv(dev);
679  struct mii_ioctl_data *data = if_mii(rq);
680  int rc;
681 
682  if (!netif_running(dev))
683  return -EINVAL;
684  spin_lock_irq(&lp->lock);
685  rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
686  spin_unlock_irq(&lp->lock);
687  korina_set_carrier(&lp->mii_if);
688 
689  return rc;
690 }
691 
692 /* ethtool helpers */
693 static void netdev_get_drvinfo(struct net_device *dev,
694  struct ethtool_drvinfo *info)
695 {
696  struct korina_private *lp = netdev_priv(dev);
697 
698  strcpy(info->driver, DRV_NAME);
699  strcpy(info->version, DRV_VERSION);
700  strcpy(info->bus_info, lp->dev->name);
701 }
702 
703 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
704 {
705  struct korina_private *lp = netdev_priv(dev);
706  int rc;
707 
708  spin_lock_irq(&lp->lock);
709  rc = mii_ethtool_gset(&lp->mii_if, cmd);
710  spin_unlock_irq(&lp->lock);
711 
712  return rc;
713 }
714 
715 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
716 {
717  struct korina_private *lp = netdev_priv(dev);
718  int rc;
719 
720  spin_lock_irq(&lp->lock);
721  rc = mii_ethtool_sset(&lp->mii_if, cmd);
722  spin_unlock_irq(&lp->lock);
723  korina_set_carrier(&lp->mii_if);
724 
725  return rc;
726 }
727 
728 static u32 netdev_get_link(struct net_device *dev)
729 {
730  struct korina_private *lp = netdev_priv(dev);
731 
732  return mii_link_ok(&lp->mii_if);
733 }
734 
735 static const struct ethtool_ops netdev_ethtool_ops = {
736  .get_drvinfo = netdev_get_drvinfo,
737  .get_settings = netdev_get_settings,
738  .set_settings = netdev_set_settings,
739  .get_link = netdev_get_link,
740 };
741 
742 static int korina_alloc_ring(struct net_device *dev)
743 {
744  struct korina_private *lp = netdev_priv(dev);
745  struct sk_buff *skb;
746  int i;
747 
748  /* Initialize the transmit descriptors */
749  for (i = 0; i < KORINA_NUM_TDS; i++) {
750  lp->td_ring[i].control = DMA_DESC_IOF;
751  lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD;
752  lp->td_ring[i].ca = 0;
753  lp->td_ring[i].link = 0;
754  }
755  lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail =
756  lp->tx_full = lp->tx_count = 0;
758 
759  /* Initialize the receive descriptors */
760  for (i = 0; i < KORINA_NUM_RDS; i++) {
761  skb = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
762  if (!skb)
763  return -ENOMEM;
764  lp->rx_skb[i] = skb;
765  lp->rd_ring[i].control = DMA_DESC_IOD |
767  lp->rd_ring[i].devcs = 0;
768  lp->rd_ring[i].ca = CPHYSADDR(skb->data);
769  lp->rd_ring[i].link = CPHYSADDR(&lp->rd_ring[i+1]);
770  }
771 
772  /* loop back receive descriptors, so the last
773  * descriptor points to the first one */
774  lp->rd_ring[i - 1].link = CPHYSADDR(&lp->rd_ring[0]);
775  lp->rd_ring[i - 1].control |= DMA_DESC_COD;
776 
777  lp->rx_next_done = 0;
778  lp->rx_chain_head = 0;
779  lp->rx_chain_tail = 0;
781 
782  return 0;
783 }
784 
785 static void korina_free_ring(struct net_device *dev)
786 {
787  struct korina_private *lp = netdev_priv(dev);
788  int i;
789 
790  for (i = 0; i < KORINA_NUM_RDS; i++) {
791  lp->rd_ring[i].control = 0;
792  if (lp->rx_skb[i])
793  dev_kfree_skb_any(lp->rx_skb[i]);
794  lp->rx_skb[i] = NULL;
795  }
796 
797  for (i = 0; i < KORINA_NUM_TDS; i++) {
798  lp->td_ring[i].control = 0;
799  if (lp->tx_skb[i])
800  dev_kfree_skb_any(lp->tx_skb[i]);
801  lp->tx_skb[i] = NULL;
802  }
803 }
804 
805 /*
806  * Initialize the RC32434 ethernet controller.
807  */
808 static int korina_init(struct net_device *dev)
809 {
810  struct korina_private *lp = netdev_priv(dev);
811 
812  /* Disable DMA */
813  korina_abort_tx(dev);
814  korina_abort_rx(dev);
815 
816  /* reset ethernet logic */
817  writel(0, &lp->eth_regs->ethintfc);
818  while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP))
819  dev->trans_start = jiffies;
820 
821  /* Enable Ethernet Interface */
822  writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc);
823 
824  /* Allocate rings */
825  if (korina_alloc_ring(dev)) {
826  printk(KERN_ERR "%s: descriptor allocation failed\n", dev->name);
827  korina_free_ring(dev);
828  return -ENOMEM;
829  }
830 
831  writel(0, &lp->rx_dma_regs->dmas);
832  /* Start Rx DMA */
833  korina_start_rx(lp, &lp->rd_ring[0]);
834 
835  writel(readl(&lp->tx_dma_regs->dmasm) &
837  &lp->tx_dma_regs->dmasm);
838  writel(readl(&lp->rx_dma_regs->dmasm) &
839  ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
840  &lp->rx_dma_regs->dmasm);
841 
842  /* Accept only packets destined for this Ethernet device address */
843  writel(ETH_ARC_AB, &lp->eth_regs->etharc);
844 
845  /* Set all Ether station address registers to their initial values */
846  writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
847  writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
848 
849  writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
850  writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
851 
852  writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
853  writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
854 
855  writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
856  writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
857 
858 
859  /* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
861  &lp->eth_regs->ethmac2);
862 
863  /* Back to back inter-packet-gap */
864  writel(0x15, &lp->eth_regs->ethipgt);
865  /* Non - Back to back inter-packet-gap */
866  writel(0x12, &lp->eth_regs->ethipgr);
867 
868  /* Management Clock Prescaler Divisor
869  * Clock independent setting */
870  writel(((idt_cpu_freq) / MII_CLOCK + 1) & ~1,
871  &lp->eth_regs->ethmcp);
872 
873  /* don't transmit until fifo contains 48b */
874  writel(48, &lp->eth_regs->ethfifott);
875 
876  writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1);
877 
878  napi_enable(&lp->napi);
879  netif_start_queue(dev);
880 
881  return 0;
882 }
883 
884 /*
885  * Restart the RC32434 ethernet controller.
886  */
887 static void korina_restart_task(struct work_struct *work)
888 {
889  struct korina_private *lp = container_of(work,
890  struct korina_private, restart_task);
891  struct net_device *dev = lp->dev;
892 
893  /*
894  * Disable interrupts
895  */
896  disable_irq(lp->rx_irq);
897  disable_irq(lp->tx_irq);
898  disable_irq(lp->ovr_irq);
899  disable_irq(lp->und_irq);
900 
901  writel(readl(&lp->tx_dma_regs->dmasm) |
903  &lp->tx_dma_regs->dmasm);
904  writel(readl(&lp->rx_dma_regs->dmasm) |
905  DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR,
906  &lp->rx_dma_regs->dmasm);
907 
908  korina_free_ring(dev);
909 
910  napi_disable(&lp->napi);
911 
912  if (korina_init(dev) < 0) {
913  printk(KERN_ERR "%s: cannot restart device\n", dev->name);
914  return;
915  }
916  korina_multicast_list(dev);
917 
918  enable_irq(lp->und_irq);
919  enable_irq(lp->ovr_irq);
920  enable_irq(lp->tx_irq);
921  enable_irq(lp->rx_irq);
922 }
923 
924 static void korina_clear_and_restart(struct net_device *dev, u32 value)
925 {
926  struct korina_private *lp = netdev_priv(dev);
927 
928  netif_stop_queue(dev);
929  writel(value, &lp->eth_regs->ethintfc);
931 }
932 
933 /* Ethernet Tx Underflow interrupt */
934 static irqreturn_t korina_und_interrupt(int irq, void *dev_id)
935 {
936  struct net_device *dev = dev_id;
937  struct korina_private *lp = netdev_priv(dev);
938  unsigned int und;
939 
940  spin_lock(&lp->lock);
941 
942  und = readl(&lp->eth_regs->ethintfc);
943 
944  if (und & ETH_INT_FC_UND)
945  korina_clear_and_restart(dev, und & ~ETH_INT_FC_UND);
946 
947  spin_unlock(&lp->lock);
948 
949  return IRQ_HANDLED;
950 }
951 
952 static void korina_tx_timeout(struct net_device *dev)
953 {
954  struct korina_private *lp = netdev_priv(dev);
955 
957 }
958 
959 /* Ethernet Rx Overflow interrupt */
960 static irqreturn_t
961 korina_ovr_interrupt(int irq, void *dev_id)
962 {
963  struct net_device *dev = dev_id;
964  struct korina_private *lp = netdev_priv(dev);
965  unsigned int ovr;
966 
967  spin_lock(&lp->lock);
968  ovr = readl(&lp->eth_regs->ethintfc);
969 
970  if (ovr & ETH_INT_FC_OVR)
971  korina_clear_and_restart(dev, ovr & ~ETH_INT_FC_OVR);
972 
973  spin_unlock(&lp->lock);
974 
975  return IRQ_HANDLED;
976 }
977 
978 #ifdef CONFIG_NET_POLL_CONTROLLER
979 static void korina_poll_controller(struct net_device *dev)
980 {
981  disable_irq(dev->irq);
982  korina_tx_dma_interrupt(dev->irq, dev);
983  enable_irq(dev->irq);
984 }
985 #endif
986 
987 static int korina_open(struct net_device *dev)
988 {
989  struct korina_private *lp = netdev_priv(dev);
990  int ret;
991 
992  /* Initialize */
993  ret = korina_init(dev);
994  if (ret < 0) {
995  printk(KERN_ERR "%s: cannot open device\n", dev->name);
996  goto out;
997  }
998 
999  /* Install the interrupt handler
1000  * that handles the Done Finished
1001  * Ovr and Und Events */
1002  ret = request_irq(lp->rx_irq, korina_rx_dma_interrupt,
1003  IRQF_DISABLED, "Korina ethernet Rx", dev);
1004  if (ret < 0) {
1005  printk(KERN_ERR "%s: unable to get Rx DMA IRQ %d\n",
1006  dev->name, lp->rx_irq);
1007  goto err_release;
1008  }
1009  ret = request_irq(lp->tx_irq, korina_tx_dma_interrupt,
1010  IRQF_DISABLED, "Korina ethernet Tx", dev);
1011  if (ret < 0) {
1012  printk(KERN_ERR "%s: unable to get Tx DMA IRQ %d\n",
1013  dev->name, lp->tx_irq);
1014  goto err_free_rx_irq;
1015  }
1016 
1017  /* Install handler for overrun error. */
1018  ret = request_irq(lp->ovr_irq, korina_ovr_interrupt,
1019  IRQF_DISABLED, "Ethernet Overflow", dev);
1020  if (ret < 0) {
1021  printk(KERN_ERR "%s: unable to get OVR IRQ %d\n",
1022  dev->name, lp->ovr_irq);
1023  goto err_free_tx_irq;
1024  }
1025 
1026  /* Install handler for underflow error. */
1027  ret = request_irq(lp->und_irq, korina_und_interrupt,
1028  IRQF_DISABLED, "Ethernet Underflow", dev);
1029  if (ret < 0) {
1030  printk(KERN_ERR "%s: unable to get UND IRQ %d\n",
1031  dev->name, lp->und_irq);
1032  goto err_free_ovr_irq;
1033  }
1034  mod_timer(&lp->media_check_timer, jiffies + 1);
1035 out:
1036  return ret;
1037 
1038 err_free_ovr_irq:
1039  free_irq(lp->ovr_irq, dev);
1040 err_free_tx_irq:
1041  free_irq(lp->tx_irq, dev);
1042 err_free_rx_irq:
1043  free_irq(lp->rx_irq, dev);
1044 err_release:
1045  korina_free_ring(dev);
1046  goto out;
1047 }
1048 
1049 static int korina_close(struct net_device *dev)
1050 {
1051  struct korina_private *lp = netdev_priv(dev);
1052  u32 tmp;
1053 
1055 
1056  /* Disable interrupts */
1057  disable_irq(lp->rx_irq);
1058  disable_irq(lp->tx_irq);
1059  disable_irq(lp->ovr_irq);
1060  disable_irq(lp->und_irq);
1061 
1062  korina_abort_tx(dev);
1063  tmp = readl(&lp->tx_dma_regs->dmasm);
1064  tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR;
1065  writel(tmp, &lp->tx_dma_regs->dmasm);
1066 
1067  korina_abort_rx(dev);
1068  tmp = readl(&lp->rx_dma_regs->dmasm);
1069  tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR;
1070  writel(tmp, &lp->rx_dma_regs->dmasm);
1071 
1072  korina_free_ring(dev);
1073 
1074  napi_disable(&lp->napi);
1075 
1077 
1078  free_irq(lp->rx_irq, dev);
1079  free_irq(lp->tx_irq, dev);
1080  free_irq(lp->ovr_irq, dev);
1081  free_irq(lp->und_irq, dev);
1082 
1083  return 0;
1084 }
1085 
1086 static const struct net_device_ops korina_netdev_ops = {
1087  .ndo_open = korina_open,
1088  .ndo_stop = korina_close,
1089  .ndo_start_xmit = korina_send_packet,
1090  .ndo_set_rx_mode = korina_multicast_list,
1091  .ndo_tx_timeout = korina_tx_timeout,
1092  .ndo_do_ioctl = korina_ioctl,
1093  .ndo_change_mtu = eth_change_mtu,
1094  .ndo_validate_addr = eth_validate_addr,
1095  .ndo_set_mac_address = eth_mac_addr,
1096 #ifdef CONFIG_NET_POLL_CONTROLLER
1097  .ndo_poll_controller = korina_poll_controller,
1098 #endif
1099 };
1100 
1101 static int korina_probe(struct platform_device *pdev)
1102 {
1103  struct korina_device *bif = platform_get_drvdata(pdev);
1104  struct korina_private *lp;
1105  struct net_device *dev;
1106  struct resource *r;
1107  int rc;
1108 
1109  dev = alloc_etherdev(sizeof(struct korina_private));
1110  if (!dev)
1111  return -ENOMEM;
1112 
1113  SET_NETDEV_DEV(dev, &pdev->dev);
1114  lp = netdev_priv(dev);
1115 
1116  bif->dev = dev;
1117  memcpy(dev->dev_addr, bif->mac, 6);
1118 
1119  lp->rx_irq = platform_get_irq_byname(pdev, "korina_rx");
1120  lp->tx_irq = platform_get_irq_byname(pdev, "korina_tx");
1121  lp->ovr_irq = platform_get_irq_byname(pdev, "korina_ovr");
1122  lp->und_irq = platform_get_irq_byname(pdev, "korina_und");
1123 
1124  r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_regs");
1125  dev->base_addr = r->start;
1126  lp->eth_regs = ioremap_nocache(r->start, resource_size(r));
1127  if (!lp->eth_regs) {
1128  printk(KERN_ERR DRV_NAME ": cannot remap registers\n");
1129  rc = -ENXIO;
1130  goto probe_err_out;
1131  }
1132 
1133  r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_rx");
1134  lp->rx_dma_regs = ioremap_nocache(r->start, resource_size(r));
1135  if (!lp->rx_dma_regs) {
1136  printk(KERN_ERR DRV_NAME ": cannot remap Rx DMA registers\n");
1137  rc = -ENXIO;
1138  goto probe_err_dma_rx;
1139  }
1140 
1141  r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_tx");
1142  lp->tx_dma_regs = ioremap_nocache(r->start, resource_size(r));
1143  if (!lp->tx_dma_regs) {
1144  printk(KERN_ERR DRV_NAME ": cannot remap Tx DMA registers\n");
1145  rc = -ENXIO;
1146  goto probe_err_dma_tx;
1147  }
1148 
1150  if (!lp->td_ring) {
1151  rc = -ENXIO;
1152  goto probe_err_td_ring;
1153  }
1154 
1155  dma_cache_inv((unsigned long)(lp->td_ring),
1157 
1158  /* now convert TD_RING pointer to KSEG1 */
1159  lp->td_ring = (struct dma_desc *)KSEG1ADDR(lp->td_ring);
1160  lp->rd_ring = &lp->td_ring[KORINA_NUM_TDS];
1161 
1162  spin_lock_init(&lp->lock);
1163  /* just use the rx dma irq */
1164  dev->irq = lp->rx_irq;
1165  lp->dev = dev;
1166 
1167  dev->netdev_ops = &korina_netdev_ops;
1168  dev->ethtool_ops = &netdev_ethtool_ops;
1169  dev->watchdog_timeo = TX_TIMEOUT;
1170  netif_napi_add(dev, &lp->napi, korina_poll, 64);
1171 
1172  lp->phy_addr = (((lp->rx_irq == 0x2c? 1:0) << 8) | 0x05);
1173  lp->mii_if.dev = dev;
1174  lp->mii_if.mdio_read = mdio_read;
1175  lp->mii_if.mdio_write = mdio_write;
1176  lp->mii_if.phy_id = lp->phy_addr;
1177  lp->mii_if.phy_id_mask = 0x1f;
1178  lp->mii_if.reg_num_mask = 0x1f;
1179 
1180  rc = register_netdev(dev);
1181  if (rc < 0) {
1183  ": cannot register net device: %d\n", rc);
1184  goto probe_err_register;
1185  }
1186  setup_timer(&lp->media_check_timer, korina_poll_media, (unsigned long) dev);
1187 
1188  INIT_WORK(&lp->restart_task, korina_restart_task);
1189 
1190  printk(KERN_INFO "%s: " DRV_NAME "-" DRV_VERSION " " DRV_RELDATE "\n",
1191  dev->name);
1192 out:
1193  return rc;
1194 
1195 probe_err_register:
1196  kfree(lp->td_ring);
1197 probe_err_td_ring:
1198  iounmap(lp->tx_dma_regs);
1199 probe_err_dma_tx:
1200  iounmap(lp->rx_dma_regs);
1201 probe_err_dma_rx:
1202  iounmap(lp->eth_regs);
1203 probe_err_out:
1204  free_netdev(dev);
1205  goto out;
1206 }
1207 
1208 static int korina_remove(struct platform_device *pdev)
1209 {
1210  struct korina_device *bif = platform_get_drvdata(pdev);
1211  struct korina_private *lp = netdev_priv(bif->dev);
1212 
1213  iounmap(lp->eth_regs);
1214  iounmap(lp->rx_dma_regs);
1215  iounmap(lp->tx_dma_regs);
1216 
1217  platform_set_drvdata(pdev, NULL);
1218  unregister_netdev(bif->dev);
1219  free_netdev(bif->dev);
1220 
1221  return 0;
1222 }
1223 
1224 static struct platform_driver korina_driver = {
1225  .driver.name = "korina",
1226  .probe = korina_probe,
1227  .remove = korina_remove,
1228 };
1229 
1230 module_platform_driver(korina_driver);
1231 
1232 MODULE_AUTHOR("Philip Rischel <[email protected]>");
1233 MODULE_AUTHOR("Felix Fietkau <[email protected]>");
1234 MODULE_AUTHOR("Florian Fainelli <[email protected]>");
1235 MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver");
1236 MODULE_LICENSE("GPL");